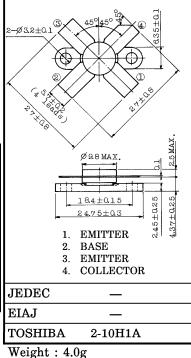
TOSHIBA 2SC2395

TOSHIBA TRANSISTOR SILICON NPN EPITAXIAL PLANAR TYPE

2 S C 2 3 9 5

2~30MHz SSB LINEAR POWER AMPLIFIER APPLICATIONS (LOW SUPPLY VOLTAGE USE)


• Specified 12.5V, 28MHz Characteristics

 $\begin{array}{lll} \bullet & \text{Output Power} & : & \text{Po} = 10 \text{Wpp (Min.)} \\ \bullet & \text{Power Gain} & : & \text{G}_p = 17 \text{dB (Min.)} \\ \bullet & \text{Collector Efficiency} & : & \gamma_{\text{C}} = 35\% \text{ (Min.)} \\ \bullet & \text{Intermodulation Distortion} & : & \text{IMD} = -30 \text{dB (Max.)} \\ \end{array}$

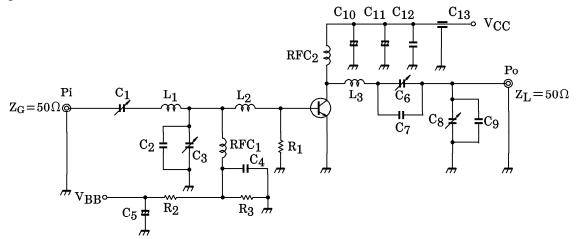
MAXIMUM RATINGS (Tc = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Collector-Base Voltage	v_{CBO}	40	V	
Collector-Emitter Voltage	v_{CES}	40	V	
Collector-Emitter Voltage	v_{CEO}	18	V	
Emitter-Base Voltage	v_{EBO}	4	V	
Collector Current	IC	5	Α	
Collector Power Dissipation	PC	40	W	
Junction Temperature	T_{j}	175	°C	
Storage Temperature Range	$\mathrm{T_{stg}}$	-65~175	$^{\circ}\mathrm{C}$	

Unit in mm

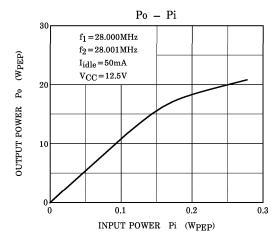
ELECTRICAL CHARACTERISTICS (Tc = 25°C)

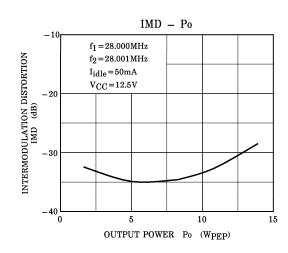
CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Collector-Emitter Breakdown Voltage	V _(BR) CEO	$I_{C}=10mA, I_{B}=0$	18	_	_	V
Collector-Emitter Breakdown Voltage			40	_	-	V
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	$I_E=1mA$, $I_C=0$	4	_	_	V
DC Current Gain	$h_{ extbf{FE}}$	$V_{CE}=5V, I_{C}=1A$ *	20	_	_	
Transition Frequency	$ m f_{T}$	$V_{CE}=5V, I_{C}=1A$	_	200	_	MHz
Collector Output Capacitance	Cob	$V_{CB} = 12.5V, I_{E} = 0$ f=1MHz	_	-	150	рF
Power Gain	$G_{ m p}$	$V_{CC} = 12.5V, f_1 = 28.000$	17.0	_	_	dB
Input Power	Pi	MHz, $f_2 = 28.001 \text{MHz}$		_	0.2	W_{PEP}
Collector Efficiency	$\eta_{\mathbf{C}}$	$I_{idle} = 50 mA$	35	45	1	%
Intermodulation Distortion	IMD	$Po = 10W_{PEP}(Fig.)$		_	-30	dB
Series Equivalent Input Impedance	Z _{in}	V_{CC} =12.5V, f_1 =28.000 MHz, f_2 =28.001MHz Po=10WPEP	1	1.5 -j1.0	_	Ω
Series Equivalent Output Impedance	Z _{out}		_	6.5 -j2.0	_	Ω


^{*} Pulse Test: Pulse Width $\leq 100 \mu$ s, Duty Cycle $\leq 3\%$

Beryllia Ceramic is used in this product. The dust or vapor can be dangerous to humans. Do not break, cut, crush or dissolve chemically. Dispose of this product properly according to law. Do not intermingle with normal industrial or domestic waste.

1998-07-17 1/


[■] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.


Fig. Pi TEST CIRCUIT

 C_{13} : 1000pF

(FEED THROUGH)

CAUTION

These are only typical curves and devices are not necessarily guaranteed at these curves.

961001EAA2

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

1998-07-17 2/2