MOTOROLA SC {XSTRS/R F}

96

DE 6367254 0082391 7

		511(57	R F)	r			91 T-2'	D 9-2
MAXIMUM RATINGS						2N30 thru 2N30 2N30	43 1 45	
Rating	Symbol	Va	ue	Unit		20		
ollector-Emitter Voltage	VCEO	4	5	Vdc		S		
collector-Base Voltage	VCBO	4	5	Vdc		10	olisctor	7 Collecto
mitter-Base Voltage	VEBO	5.		Vdc	9-	$\cdot \mathcal{P}$		
ollector Current — Continuous	lc_	3		mAdc		Base	Base Th	$\mathbf{\nabla}$
		One Die	Both Die	<u>⊢</u>		Ý.	mitter	5 Emitte
otal Device Dissipation @ T _A = 25°C Derate above 25°C	PD	250 1.67	350 2.33	mW mW/℃				ND
Fotal Device Dissipation @ T _C = 25°C Derate above 25°C	PD	0.7 4.67	1.4 9.33	Watts mW/⁰C ℃	AMPLI			'n
Derating and Storage Junction Temperature Range	Tj, T _{stg}	- 65 te	o + 200	Č				
ELECTRICAL CHARACTERISTICS (TA Chara OFF CHARACTERISTICS	acteristic				Symbol	Min	Max	Unit
Collector-Emitter Breakdown Voltage(1) (I _C = 10 mAdc, I _B = 0)					V(BR)CEO	45	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \ \mu Adc, I_C = 0$)					V(BR)EBO	5.0	_	Vdc
Collector Cutoff Current (Vop = 45 Vdc, In = 0)					СВО		0.010 10	μAdi
$(V_{CB} = 45 \text{ Vdc}, I_E = 0, T_A = +150^{\circ}\text{C})$ Emitter Cutoff Current			<u> </u>		IEBO	-	0.010	μAd
(VEB = 4.0 Vdc, IC = 0) ON CHARACTERISTICS	vv		. <u> </u>					
DC Current Gain(1) ($I_C = 10 \ \mu$ Adc, VCE = 5.0 Vdc)		2N 2N	3043, 2N304 3048	44, 2N3045	hfe	100 50	300 200	-
$(I_{C} = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$			3043, 2N30 3048	44, 2N3045		130 65		
Collector-Emitter Saturation Voltage (IC = 10 mAdc, IB = 0.5 mAdc)					VCE(sat)	-	1.0	Vdo
Base-Emitter On Voltage					VBE	0.6	0.8	Vde
$(l_{C} = 10 \text{ mAdc}, \text{ VCF} = 5.0 \text{ Vuc})$								
(I _C = 10 mAdc, V _{CE} = 5.0 Vdc) SMALL-SIGNAL CHARACTERISTICS					fr	30	-	MH
SMALL-SIGNAL CHARACTERISTICS Current-Gain — Bandwidth Product (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 2	20 MHz)				fT C _{obo}	30	8.0	<u> </u>
SMALL-SIGNAL CHARACTERISTICS						30	8.0	MH pł Ohr

45

dB

5.0

NF

(VEB = 4.0 Vdc, 10 - 0)					
ON CHARACTERISTICS		h		T	_
DC Current Gain(1) ($I_C = 10 \ \mu Adc, V_{CE} = 5.0 \ Vdc$)	2N3043, 2N3044, 2N3045 2N3048	hFE	100 50	300 200	
$(I_{C} = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N3043, 2N3044, 2N3045 2N3048		130 65		
Collector-Emitter Saturation Voltage		V _{CE(sat)}	-	1.0	Vdc
(I _C = 10 mAdc, I _B = 0.5 mAdc) Bese-Emitter On Voltage (I _C = 10 mAdc, V _{CE} = 5.0 Vdc)		VBE	0.6	0.8	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain - Bandwidth Product		fT	30	-	MHz
(IC = 1.0 mAdc, VCE = 5.0 Vdc, f = 20 MHz) Output Capacitance		Cobo	-	8.0	pF
	2N3043, 2N3044, 2N3045 2N3048	h _{ie}	3.2k 1.6k	19k 13k	Ohms
Small-Signal Current Gain (IC = 1.0 mAdc, VCE = 5.0 Vdc, f = 1.0 kHz)	2N3043, 2N3044, 2N3045 2N3048	h _{fe}	130 65	600 400	-
Output Admittance (IC = 1.0 mAdc, VCE = 5.0 Vdc, f = 1.0 kHz)		h _{oe}	-	100 70	μmhos

MOTOROLA SMALL-SIGNAL SEMICONDUCTORS

Noise Figure (IC = 10 μ Adc, V_{CE} = 5.0 Vdc, R_S = 10 kohms, Bandwidth = 10 Hz to 15.7 kHz)

5-17

MOTOROLA SC {XSTRS/R F}

-- ----

96 DE 6367254 0082392 9

6367254 MOTOROLA SC (XSTRS/R F)

.

96D 82392 D

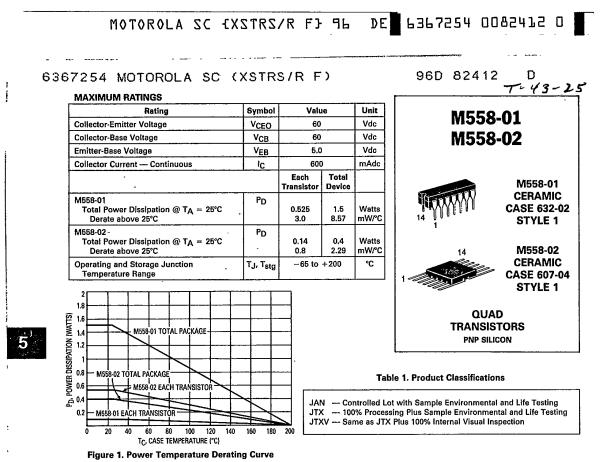
T-29-27

2N3043 thru 2N3045, 2N3048

Characteristic		Symbol	Min	Max	Unit
MATCHING CHARACTERISTICS				-	
DC Current Gain Ratio(2) (I _C = 10 μAdc, V _{CE} = 5.0 Vdc)	2N3043 2N3044	hFE1/hFE2	0.9 0.8	1.0 1.0	-
Base-Emitter Voltage Differential		VBE1-VBE2	0.0		mVdo
$(I_{C} = 10 \ \mu Adc, V_{CE} = 5.0 \ Vdc)$	2N3043 2N3044			5.0 10	
Base-Emitter Voltage Differential Temperature Gradient (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc, T _A = -55 to +125°C)	2N3043	$\frac{\Delta(V_{BE1}-V_{BE2})}{\Delta T_{\Delta}}$	_	10	μVrC
$10^{-10} \mu do, 10^{-10} \mu do, 10^{-10} do,$	2N3044			20	1

. . .

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%. (2) The lowest hFE reading is taken as hFE1 for this test.


5

MOTOROLA SMALL-SIGNAL SEMICONDUCTORS

5-18

,ĩ

, h Li

.

ELECTRICAL CHARACTERISTICS ($T_{\Delta} = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage(1) {ic = 10 mAdc, Ig = 0)	V(BR)CEO	60	-	Vdc
Collector-Base Breakdown Voltage ($I_{C} = 10 \ \mu Adc$, $I_{E} = 0$)	V(BR)CBO	60		Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)	V(BR)EBO	5.0	-	Vdc
Collector Cutoff Current ($I_E = 0$, $V_{CB} = 60$ Vdc) ($I_E = 0$, $V_{CB} = 60$ V, $T_A = 150^{\circ}$ C)	ІСВО	_	10 10	nAdc μA
Emitter Cutoff Current (I _C = 0, V _{CB} = 4.0 Vdc)	IEBO	-	10	nAdc
ON CHARACTERISTICS				
DC Current Gain(1) (I _C = 0.1 mA, V _{CE} = 10 Vdc) (I _C = 1.0 mA, V _{CE} = 10 Vdc) (I _C = 150 mAdc, V _{CE} = 10 Vdc) (I _C = 150 mAdc, V _{CE} = 10 Vdc) (I _C = 500 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mA, V _{CE} = 10 V, T _A = -55° C)	hfE	75 100 100 100 50 50	450 — 300 —	
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc)	V _{CE(sat)}	=	0.4 1.6	Vdc
Base-Emitter Saturation Voltage ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)	V _{BE(sat)}	0.6	1.3 2.6	Vdc
DYNAMIC CHARACTERISTICS				
Current-Gain — Bandwidth Product(1) (I _C = 50 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fT	250	800	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}		8.0	рF
Input Capacitance (VBE = 0.5 Vdc, IC = 0, f = 1.0 MHz)	Cibo	_	30	pF

MOTOROLA SMALL-SIGNAL SEMICONDUCTORS

5-38

ł

DE 6367254 0082413 2 MOTOROLA SC {XSTRS/R F} 96

ىرى ئەت مەربىي مەربىيەر مەربىيەر مەربىيەر بىرىمىيە مەربىيەر بىرىمىيەر مەربىيەر بىرىمىيەر بىرىمىيەر بىرىمىيەر بىرىمىيەر 6367254 MOTOROLA SC (XSTRS/R F)

•• ••

M558-01, M558-02

T-43-25

D

96D 82413

			,
ton	—	45	ពទ
	Í		
		L	
toff		300	ns
-011	1	· ·	1
	t _{on}		

متحدد بسر

(1) Pulse Test: Pulse Width \leq 300 µs, Duty Cycle = 2.0%.

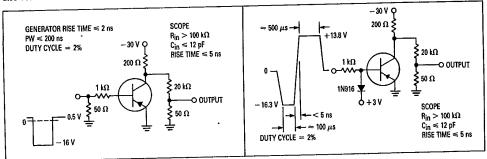


Figure 2. ton Test Circuit

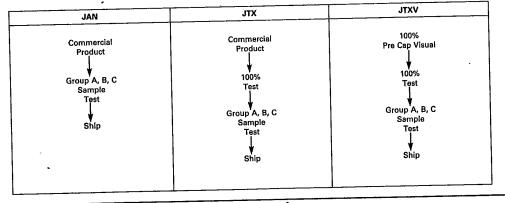

Figure 3. toff Test Circuit

Table 2. JTX, JTXV 100% Processing Steps

	JTX	JTXV
Little of Anti Cod 750, Mothod 2072)		100%
Internal Visual (Mil-Std-750, Method 2072) High Temperature Storage (Mil-Std-750, Method 1032)	100%	100%
High Temperature Storage (Will-Std-760, Weinlot 10027 Thermal Shock (Mil-Std-750, Method 1051 Cond. F*)	100%	100%
Constant Acceleration (Mil-Std-750, Method 2006, 20 KG ^s , Y1)	100%	100%
Hermetic Seal (Fine + Gross Leak) (Mil-Std-750, Method 1071, Cond. G or H)**	100%	100%
READ Electrical Parameters (Group A)	100%	100%
High Temperature Reverse Bias (Mil-Std-750, Method 1039, Cond. A)	100%	100%
READ Electrical Parameters (Group A)	100%	100%
Power Burn-In (Mil-Std-750, Method 1039, Cond. B)	100%	100%
READ Electrical Parameters (Group A)	100%	100%

 $T_{LOW} = -55^{\circ}C$ **Cond. G, Fine Leak = 1 x 10⁻⁷ ATM. CC/sec.

Table 3. Simplified Hi-Rel Product Flow

MOTOROLA SMALL-SIGNAL SEMICONDUCTORS

5-39

