
SCRs 0.5 Amp, Planar

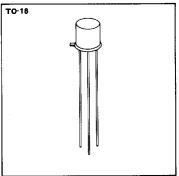
FEATURES

- JAN and JANTX Types Available
- Fully Characterized for "Worst Case" Design
 Passivated Planar Construction for Maximum Reliability and Parameter Uniformity
- Low On-State Voltage and Fast Switching at High Current Levels
- Typical Turn-On Time: 0.12µs
- Typical Recovery Time: 0.7µs
- Pulse Currents: to 30A

ABSOLUTE MAXIMUM RATINGS

DESCRIPTION

The 2N3027 series of planar SCRs (controlled switches) are intended for use in military and space applications requiring a high degree of reliability. They offer a unique combination of extremely fast switching, precise triggering, high pulse power, small size, intrinsic parameter stability, and high radiation tolerance.


The JAN and JANTX types are specified under MIL-S-19500/419, and are included in MIL-STD-701 as recommended types for military usage.

ARSOLUTE MAXIMUM RATINGS	JAN & JANTX 2N3027 Jan & Jantx 2N3030	JAN & JANTX 2N3028 Jan & Jantx 2N3031	JAN & JANTX 2N3029 Jan & Jantx 2N3032
Repetitive Peak Off-State Voltage, VDRM		60V	100V
Repetitive Peak Reverse Voltage. V		60V	100V
D.C. On-State Current, I _T			
100°C Case			
75°C Ambient		250mA	
Repetitive Peak On-State Current, I			
Surge (Non-Rep.) On-State Current, I75M			
50ms			
8ms			
Peak Gate Current, IGM		250mA	
Average Gate Current, IG(AV)		25mA	
Reverse Gate Voltage			
Reverse Gate Current		3mA	
Storage Temperature Range		-65°C to +200°C	
Operating Temperature Range			

Note: Blocking voltage ratings apply over the operating temperature range, provided the gate is connected to the cathode through an appropriate resistor, or adequate gate bias is used. (See section on bias stabilization.)

MECHANICAL SPECIFICATIONS

Micro semi Corp. Watertown The diode experts

8-12

ELECTRICAL SPECIFICATIONS (at 25°C unless noted) 2N3027 - 2N3028 - 2N3029

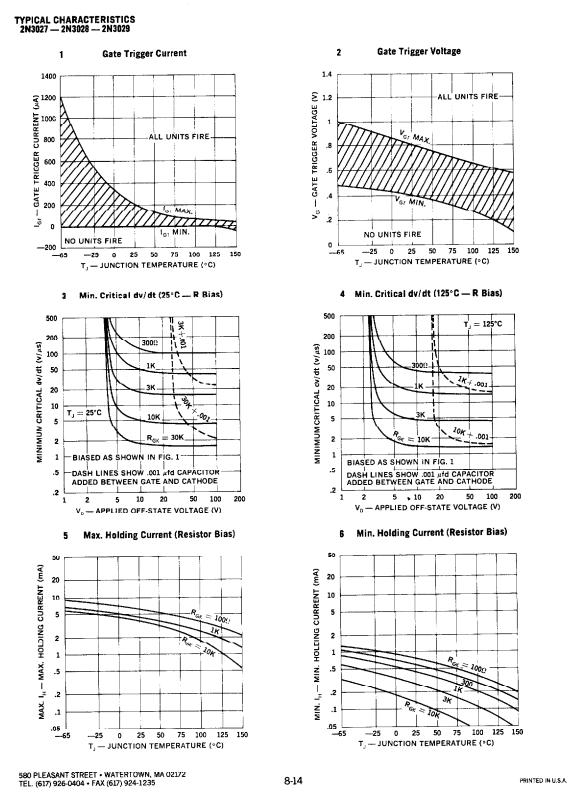
Parameter	Symbol	Min.	Typical	Max.	Units	Test Conditions
SUBGROUP 1						MIL-STD-750
Visual and Mechanical						Method 2071
SUBGROUP 2 (25°C Tests)						
Off-State Current	DBM	- 1	.002	0.1	μA	R _{GK} = 1K, V _{DBM} = Rating
Reverse Current	BBM	-	.002	0.1	μA	R _{GK} = 1K, V _{BBM} = Rating
Reverse Gate Voltage	V _{GR}	5	6	-	۲	$I_{GR} = 0.1 \text{mA}$
Gate Trigger Current	I _{GT}	-5	8	200	μA	$R_{GS} = 10K, V_D \approx 5V$
Gate Trigger Voltage	V _{GT}	.40	.55	.80	v	$R_{GS} = 100\Omega, V_D = 5V$
On-State Voltage	VT	0.8	1.2	1.5	٧	IT = 1A (pulse test)
Holding Current	l _H	0.3	0.7	5.0	mΑ	$R_{GK} = 1K.V_{D} = 5V$
SUBGROUP 3 (25°C Tests)						
		30	60			$R_{GK} = 1K, V_D = 30V (2N3027)$
Off-State Voltage — Critical Rate of Rise	dv_/dt	15	30		V/µs	$R_{GK} = 1K, V_D = 60V (2N3028)$
		10	25			$R_{ok} = 1K, V_{o} = 100V (2N3029)$
Gate Trigger on Pulse Width	t _{pg (on)}	-	.07	0.2	μS	$l_{G} = 10 \text{mA}, l_{T} = 1 \text{A}, V_{DM} = 30 \text{V}$
Delay Time	td	-	.08		μs	$I_0 = 10 \text{mA}, I_T = 1 \text{A}, V_D = 30 \text{V}$
Rise Time	t,	- 1	.04		μS	$I_{G} = 10 \text{mA}, I_{T} = 1 \text{A}, V_{D} = 30 \text{V}$
Circuit Commutated Turn-off Time	ta	-	0.7	2.0	μs	$I_{T} = 1A, I_{R} = 1A, R_{GK} = 1K$
SUBGROUP 4 (150°C Tests)						
High Temp. Off-State Current	I _{DBM}		2	20	μA	R _{GK} = 1K, V _{DRM} = Rating
High Temp. Reverse Current	I _{BAM}	I _	20	50	μA	R _{GK} = 1K, V _{BBM} = Rating
High Temp. Gate Trigger Voltage	VGT	.10	.15	0.6	v	$R_{ce} = 100Q, V_{c} = 5V$
High Temp. Holding Current	I _H	.05	.20	1.0	mA	$R_{GK} = 1K, V_D = 5V$
SUBGROUP 5 (-65°C Tests)	h	1				
Low Temp. Gate Trigger Voltage	V _{GT}	0.6	0.75	1.1	v	$R_{cs} = 100Q, V_{D} = 5V$
Low Temp. Gate Trigger Current	I I GT	0.0	150	1.2	mA	$R_{cc} = 10K_{c}V_{c} = 5V$
Low Temp. Holding Current	¹ 61	0.5	3.5	10	mA	$R_{GK} = 1K, V_D = 5V$

ELECTRICAL SPECIFICATIONS (at 25°C unless noted) 2N3030 - 2N3031 - 2N3032

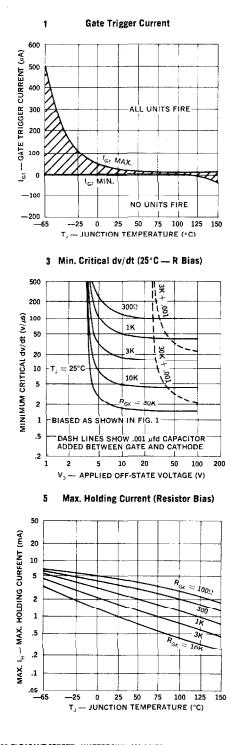
Parameter	Symbol	Min	Typical	Max	1 Inits	Test Conditions
SUBGROUP 1						MIL-STD-750
Visual and Mechanical		—	-		-	Method 2071
SUBGROUP 2 (25°C Tests)		1				
Off-State Current	DBM		.002	0.1	μA	R _{GK} = 1K, V _{DRM} = Rating
Reverse Current	I _{BBM}	-	.002	0.1	μA	$R_{GK} = 1K, V_{RBM} = Rating$
Reverse Gate Voltage	V _{GB}	5	8	_	V	$l_{GB} = 0.1 \text{mA}$
Gate Trigger Current	I I _{GT}	-5		20	μA	$R_{GS} = 10K, V_D = 5V$
Gate Trigger Voltage	V _{GT}	0.44	1	0.6	v v	$R_{GS} = 100 \Omega, V_D = 5 V$
On-State Voltage	V _T	0.8	1.2	1.5	V	$I_T = 1A$ (pulse test)
Holding Current	Чн	0.3	1.0	4.0	mA	$R_{GK} = 1K, V_D = 5V$
SUBGROUP 3 (25°C Tests)						
		30	60	-		$R_{GK} = 1K, V_D = 30V (2N3030)$
Off-State Voltage — Critical Rate of Rise	dv _e /dt	15	30	-	V/µs	$R_{GK} = 1K, V_D = 60V (2N3031)$
-		10	25	_		$R_{GK} = 1K, V_0 = 100V (2N3032)$
Gate Trigger-on Pulse Width	t _{pg (on)}	-	.05	0.1	μs	$l_{G} = 10 \text{mA}, l_{T} = 1 \text{A}, V_{D} = 30 \text{V}$
Delay Time	ta		0.1		μS	$l_{0} = 10 \text{mA}, l_{T} = 1 \text{A}, V_{D} = 30 \text{V}$
Rise Time	tr		.05	_	μS	$l_0 = 10 \text{mA}, l_T = 1 \text{A}, V_D = 30 \text{V}$
Circuit Commutated Turn-off Time	tg	-	0.7	2.0	μs	$I_{T} = 1A, I_{R} = 1A, R_{GK} = 1K$
SUBGROUP 4 (150°C Tests)						
High Temp. Off-State Current	I DEIM	_	2	20	μA	R _{ok} = 1K, V _{DBM} = Rating
High Temp. Reverse Current	IREM	-	20	50	μA	R _{GK} = 1K, V _{RRM} = Rating
High Temp. Gate Trigger Voltage	V _{GT}	.10	.15	0.4	Ϋ́ν	$R_{GS} = 100\Omega, V_{D} = 5V$
High Temp. Holding Current	Î.	.05	.30	2.0	mA	$R_{GK} \approx 1K, V_D = 5V$
SUBGROUP 5 (65°C Toete)						
Low Temp. Gate Trigger Voltage	V _{at}	0.44	0.8	0.95	V	$R_{GS} = 100Q, V_{D} = 5V$
Low Temp. Gate Trigger Current	IGT	0	0.4	0.5	mA	$R_{GS} = 10K, V_0 = 5V$
Low Temp. Holding Current	Гщ	0.5	5.0	8	mΑ	$R_{GK} = 1K, V_D = 5V$

High Rehability Processing The 2N3027-2N3032 series provides a complete range of high reliability processing from the standard devices that undergo extensive electrical testing, through JAN and JANTX levels. 100% processing, Group B, and Group C tests for JAN and JANTX devices is shown below. For further details, see MIL-S-19500/419(EL).

100% Screening TX-Types High Temperature Storage Temperature Cycling Constant Acceleration Fine & Gross Hermetic Seal Electrical Test Burn-in Electrical Test

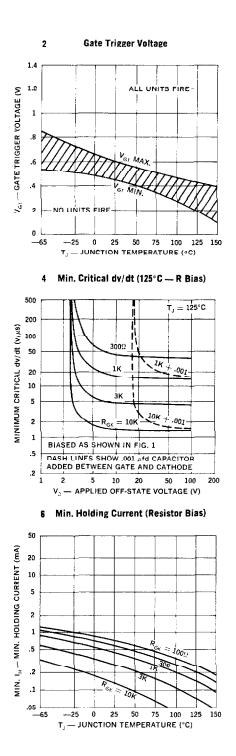

Group B Tests Subgroup 1 — Physical Dimensions Subgroup 2 — Solderability Temperature Cycling Thermal Shock Constant Acceleration Moisture Resistance Subgroup 3 — Surge Current Subgroup 4 — Blocking Life Test Subgroup 5 — Storage Life Test Subgroup 6 — Operating Life Test 8-13

Group C Tests Subgroup 1 — Shock Vibration, Variable Frequency Subgroup 2 --- Salt Atmosphere Subgroup 3 — Terminal Strength Subgroup 4 — High Temp. Anode Voltage — Critical rate or rise Subgroup 5 — Storage Life Test Subgroup 6 — Operating Life Test


PRINTED IN U.S.A.

580 PLEASANT STREET • WATERTOWN, MA 02172 TEL. (617) 926-0404 • FAX (617) 924-1235

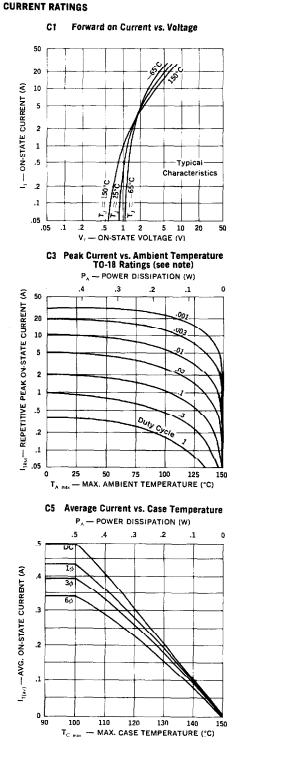
Downloaded from Elcodis.com electronic components distributor

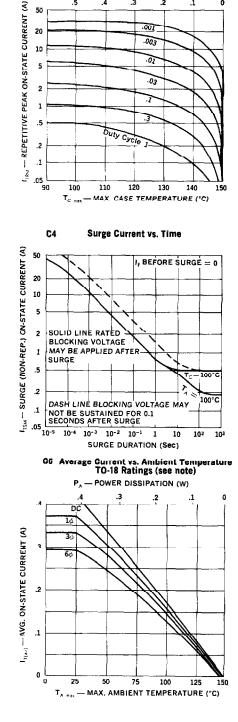


Downloaded from **Elcodis.com** electronic components distributor

580 PLEASANT STREET • WATERTOWN, MA 02172 TEL. (617) 926-0404 • FAX (617) 924-1235

PRINTED IN U.S.A.


0


Peak Current vs. Case Temperature

PA - POWER DISSIPATION (W) .3

.2

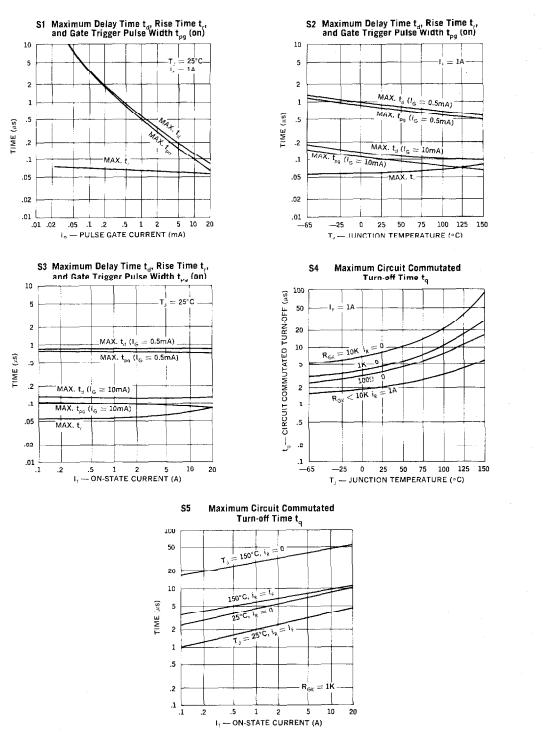
.1

C2

50

.5

.4


580 PLEASANT STREET - WATERTOWN, MA 02172 TEL. (617) 926-0404 • FAX (617) 924-1235

8-16

Downloaded from Elcodis.com electronic components distributor

SWITCHING SPEEDS

580 PLEASANT STREET • WATERTOWN, MA 02172 TEL. (617) 926-0404 • FAX (617) 924-1235

8-17

PRINTED IN U.S.A.