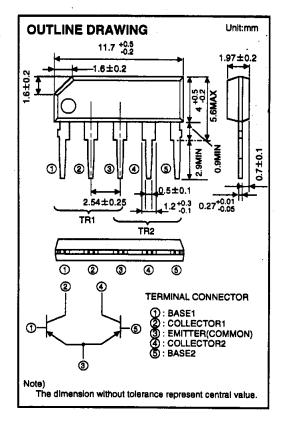
DUAL TRANSISTOR

FOR LOW NOISE DIFFERENTIAL AMPLIFY APPLICATION SILICON NPN EPITAXIAL TYPE

DESCRIPTION

2SC5169 is a silicon NPN epitaxial type transistor. It is designed for low noise differential amplify application.

FEATURE


- ●High VCEO VCEO=100V
- ●Low noise NF=0.5dB typ NV=100mV typ
- ●High hFE hFE=250 to 1200
- ●Good two elements characteristics

hFE1/hFE2=0.98 typ

IVBE1-VBE2l=1mV typ

APPLICATION

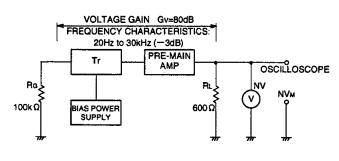
For low noise differential amplify application.

MAXIMUM RATINGS (Ta=25°C)

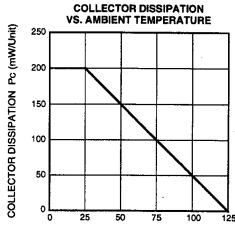
Symbol	Parameter	Ratings	Unit
Vсво	Collector to Base voltage	100	V
VEBO	Emitter to Base voltage	5	٧
VCEO	Collector to Emitter voltage 10		V
lc	Collector current	50	mA
Pc	Collector dissipation(Ta=25°C)	200	mW/unit
PT	Total dissipation(Ta=25℃)	400	mW
Tj	Junction temperature	+125	Ċ.
Tatg	Storage temperature	-55 to +125	r

ELECTRICAL CHARACTERISTICS (Ta=25°C)

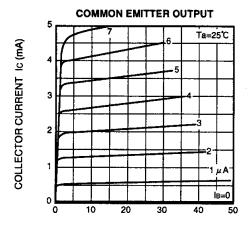
Symbol	Parameter	Test conditions	Limits			Unit	
			1 est conditions	Min	Тур	Max	Unit
V(BR)CEO	C to E break do	own voltage	IC=100 μ A,R8E=∞	100			V
ICBO	Collector cut off current		Vcb=70V,lE=0			0.1	μА
IEBO	Emitter cut off current		VEB=2V,IC=0		1	0.1	μA
ICER	Collector cut off current		VcE=100V,RBE=100kΩ			10	μA
hfE *	DC forward cur	rrent gain	VcE=6V,lc=1mA	250		1200	
VCE(sat)	C to E saturation	on voltage	Ic=10mA,Is=1mA			0.6	V
VBE1-VBE2	B-E voltage dif	ferential	VcE=6V,lc=1mA		1	10	mV
hFE1/hFE2	DC forward current gain ratio		VcE=6V,lc=1mA	0.8	0.98	1.0	
fr	Gain band width product		VcE=6V,IE=-1mA		150		MHz
Cob	Collector output capacitance		VcB=6V,IE=0,f=1MHz		1.8		pF
NF	Noise figure		VcE=6V,IE=-0.1mA,f=1kHz,Rg=10kΩ		0.5		dB
NV	Low frequency broadband	effective value	VcE=10V,IE=-1mA,RG=100kΩ,Gv=80dB,		100	<u> </u>	mV
NVM	noise voltage	peaked value	(Refer to test circuit)		0.5		V

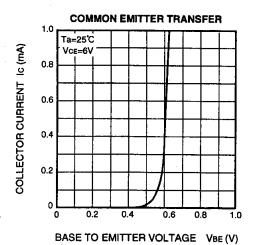

^{* 1} It shows here (element 1) classification in right table.

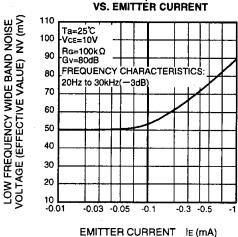
Item	F	G	Н
hFE	250 to 500	400 to 800	600 to 1200

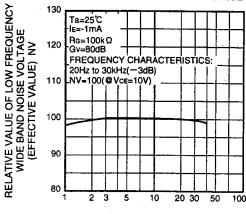

DUAL TRANSISTOR

FOR LOW NOISE DIFFERENTIAL AMPLIFY APPLICATION
SILICON NPN EPITAXIAL TYPE

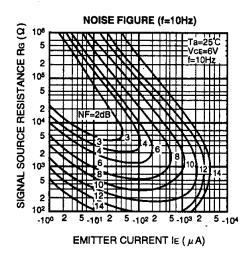

LOW FREQUENCY WIDE BAND NOISE VOLTAGE TEST CIRCUIT

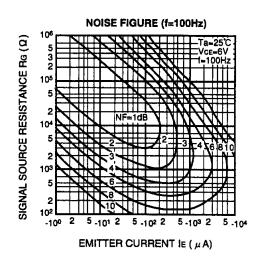

TYPICAL CHARACTERISTICS

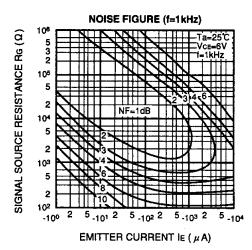

AMBIENT TEMPERATURE Ta (°C)

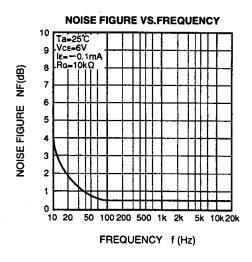

COLLECTOR TO EMITTER VOLTAGE VCE(V)

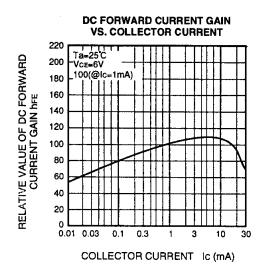
LOW FREQUENCY WIDE BAND NOISE VOLTAGE (EFFECTIVE VALUE)

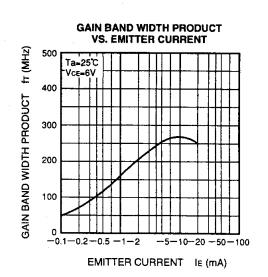


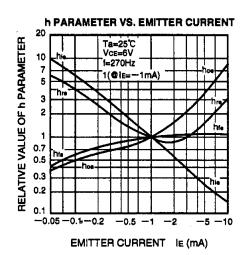

LOW FREQUENCY WIDE BAND NOISE VOLTAGE (EFFECTIVE) VS. COLLECTOR TO EMITTER VOLTAGE

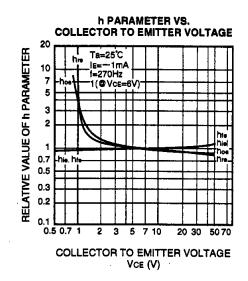



COLLECTOR TO EMITTER VOLTAGE VCE (V)


DUAL TRANSISTOR FOR LOW NOISE DIFFERENTIAL AMPLIFY APPLICATION SILICON NPN EPITAXIAL TYPE







DUAL TRANSISTOR

FOR LOW NOISE DIFFERENTIAL AMPLIFY APPLICATION

SILICON NPN EPITAXIAL TYPE

COMMON EMITTER h PARAMETER (TYPICAL VALUE)

Symbol	Parameter	Test conditions	Limits	Unit
hie	Closed loop small signal input impedance	Ta=25℃	18	kΩ
hre	Open loop small signal reverse voltage amplification factor	Vce=6V	0.08	×10-3
hie	Closed loop small signal forward current amplification factor	le=-1mA	600	
hoe	Open loop small signal output admittance	f=270Hz	10	μS

http://www.idc-com.co.jp 6-41, TSUKUBA, ISAHAYA, NAGASAKI, 854-0065, JAPAN

· Keep safety in your circuit designs!

Isahaya Electronics Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.Remember to give consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

•These materials are intended as reference to assist out customers in the selection of the Isahaya semiconductor product best suited to the customer's application, they do not convey any license under any intellectual property rights, or any other rights, belonging to Isahaya Electronics Corporation or a third party.

Isahaya Electronics Corporation assumes no responsibility for any damage, or infringement of any third-party rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in the materials.

All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Isahaya Electronics Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Isahaya Electronics Corporation or authorized Isahaya Semiconductor product distributor for the latest product information before purchasing a product listed herein.

•The prior written approval of Isahaya Electronics Corporation is necessary to reprint or reproduce in whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

Please contact Isahaya Electronics Corporation or an authorized Isahaya Semiconductor product distributor for further details on these materials or the products contained therein.