

GENERAL DESCRIPTION

PT4207 is an AC/DC buck constant current driver for high power LED lighting applications. The IC uses a constant off-time control scheme. Both off time and peak LED current is externally programmed. The operating duty cycle can be as wide as 100% and it can power LED load from a 20V-450V power supply. The peak LED current compensation makes sure the LED current is stable within the overall input range.

The PT4207 integrates a 350mA low side switch. Besides, it provides EXT pin to drive external low side power switch to extend current capacity. The dedicated DIM input can accept either a 0.5V-2.5V analog dim signal or a PWM dim signal. Multi protection is integrated into PT4207 including output open/short circuit protection and soft over temperature protection. Built in soft start greatly reduces the inrush current during start up.

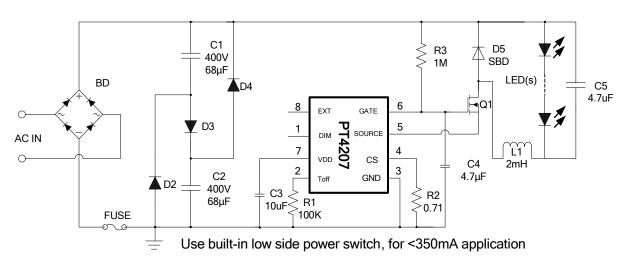
PT4207 is available in SOP8 package.

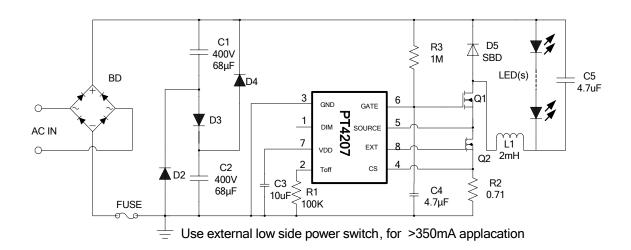
FEATURES

- Support 20VDC-450VDC input range application
- LED string up to hundreds of diodes
- Built-in 20V/350mA low side power switch
- Low side power switch extendable
- Up to 100% duty cycle
- 0.5V-2.5V analog dim and PWM dim acceptable
- Built in 4mS soft start
- LED string open/short circuit protection
- Soft over temperature protection

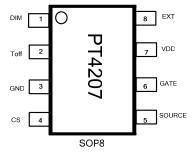
APPLICATION

- AC/DC LED lighting
- RGB Backlighting LED Driver
- Signal and Decorative LED lighting
- E27/PAR30/PAR38 power supplier


ORDERING INFORMATION


PACKAGE	TEMPERATURE RANGE	ORDERING PART NUMBER	TRANSPORT MEDIA	MARKING	
SOP-8	-40 °C to 85 °C	PT4207ESOH	Tape and Reel	PT4207 xxxxxX	

Note:



TYPICAL APPLICATION

PIN ASSIGNMENT

PIN DESCRIPTIONS

No,	Name	Description
1	DIM	Dim signal input. This pin can accept either a 0.5V~2.5V analog dim signal or a PWM dim signal
2	Toff	Off time setting pin, off time is programmed by a resistor from this pin to GND
3	GND	Ground connection
4	CS	LED current sense input, connect a resistor from CS to GND to set peak LED current
5	SOURCE	Internal low side switch drain output, connect this pin to the source of high side MOSFET.
6	GATE	High side MOSFET gate bias pin, must connect a bypass capacitor from this pin to GND
7	VDD	Power supply input pin, must be locally bypassed
8	EXT	Low side extended MOSFET drive pin. Floating this pin if use internal switch, if external low side switch is used, connect this pin to the gate of external low-side MOSFET.

ABSOLUTE MAXIMUM RATINGS (note1,2,3)

SYMBOL	ITEMS	VALUE	UNIT
V_{DD}	Supply input	-0.3~6	V
GATE	GATE input voltage	-0.3~15	V
EXT	EXT output voltage	-0.3~ (VDD+0.3)	V
SOURCE	Max voltage of SOURCE	-0.3~20	V
VI/O	Other I/O pin voltage	-0.3~6	V
I _{GATE(MAX)}	Max current into GATE	10	mA
P _{DMAX}	Power dissipation(note 2)	Internally limited	W
P _{TR1}	Package thermal resistance, SOP-8 $R\theta_{JA}$	150	°C /W
T _J	Operating junction temperature range	-40 to 150	°C
T_{STG}	Storage temperature	-55 to 150	°C
HBM	ESD Susceptibility (Note 3)	2	kV

RECOMMENDED OPERATING RANGE

SYMBOL	ITEMS	VALUE	UNIT	
V_{DD}	Power supply voltage	0 ~6	V	
VI/O	Other I/O pin voltage	0 ~ 5	V	
T_{OPT}	Operating Temperature	-40 to +85	°C	

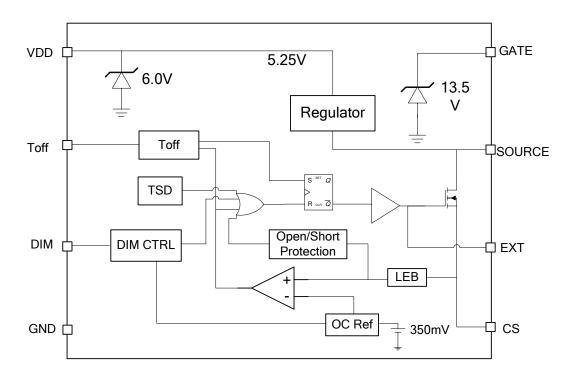
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Range indicates conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Range. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature T_A . The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} - T_A)/\theta_{JA}$ or the number given in Absolute Maximum Ratings, whichever is lower.

Note 3: Human body model, 100pF discharged through a $1.5k\Omega$ resistor.

ELECTRICAL CHARACTERISTICS (Note 4, 5)

V_{DD}=5.5V, T_A=25 °C unless specified otherwise.

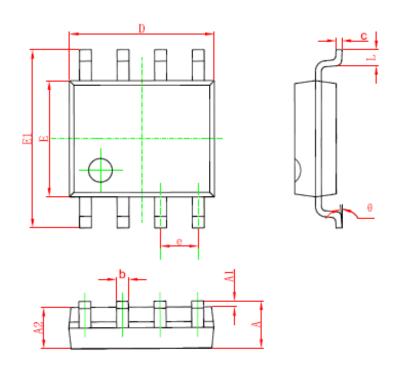

SYMBOL	ITEMS	CONDITIONS	MIN.	TYP.	MAX.	UNIT
MOSFET G	ATE bias pin					•
V _{GATE} Clamp	GATE clamp voltage	I _{GATE} =5mA	12	13.5	15	V
$I_{ ext{GATE}}$ Clamp	GATE continues clamp current			10		mA
Power suppl	y VDD					
V_{UVLO}	VDD UVLO threshold	VDD falling		3.5		V
VDDH	VDD start up threshold	VDD rising	5.2	5.5	5.8	V
VDD _{HYS}	VDD ripple voltage			0.5		V
I_{VDD}	VDD charge current	VDD=0		7.5		mA
$V_{DD\;Clamp}$	VDD clamp voltage	I _{DD} =5mA	5.6	6.0	6.4	V
I _{DD Clamp}	VDD continues clamp current			10		mA
OFF time se	tting pin Toff					
T_{OFF}	OFF time	Ri=100Kohm	9.5	10	10.5	uS
Dim input pi	in DIM					•
$V_{ m DIM}$	DIM floating voltage		4.0	4.5	5.0	V
V_{DIMH}	DIM input logic high level		2.5			V
$V_{ m DIML}$	DIM input logic low level				0.35	V
$V_{\mathrm{DIM_DC}}$	DIM input analog dim range		0.5		2.5	V
I_{DIM}	DIM pull up current	V _{DD} =5.5V, V _{DIM} =0V		20		uA
Current sens	e input pin CS					
V _{CS}	CS peak reference voltage	Duty=0	340	350	360	mV
T _{ONMIN}	Minimum turn on time			230		ns
Internal swit	ch output pin SOURCE					•
Rsc	Rdson of internal switch			1.5	2	Ohm
T_RSC	SOURCE rise time	Drive 4N60 SOURCE		50		ns
T_FSC	SOURCE fall time	Drive 4N60 SOURCE		50		ns
Ileak	Internal switch leak current	V _{DIM} =0, V _{SOUECE} =20V			1	uA
Dmax	SOURCE maximum duty cycle				100	%
Dmin	SOURCE minimum duty cycle		0			%

ELECTRICAL CHARACTERISTICS (Continued) (Note 4, 5)

SYMBOL	ITEMS	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
External MC	External MOS drive output pin EXT						
T_{R_EXT}	EXT rise time	Cload=500fF, 10%-90%		10		nS	
T _{F_EXT}	EXT fall time	Cload=500fF, 90%-10%		10		nS	
Protection							
T_{PROT}	Over temperature protection junction temperature			135		${\mathbb C}$	
$T_{ m JMAX}$	Maximum operating junction temperature			150		${\mathbb C}$	
T_{SS}	Soft start time	Ri=100Kohm		4		mS	
Topen	Load open circuit protection detection time			10.0		mS	
Trestart	Load open circuit restart time			1		mS	

- **Note 4:** Typical parameters are measured at 25°C and represent the parametric norm.
- Note 5: Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.

BLOCK DIAGRAM



PACKAGE INFORMATION

SOP-8 Package

Symbol	Dimension	in Millimeters	Dimension	Dimension in Inches		
Symbol	Min	Max	Min	Max		
A	1.350	1.750	0.053	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.330	0.510	0.013	0.020		
С	0.170	0.250	0.006	0.010		
D	4.700	5.100	0.185	0.200		
Е	3.800	4.000	0.150	0.157		
E1	5.800	6.200	0.228	0.244		
e	1.270(BSC)		0.050(BSC)			
L	0.400	1.270	0.016	0.060		
θ	0°	8°	0°	8°		