WM8595

24-bit 192kHz 2Vrms Multi-Channel CODEC

DESCRIPTION

The WM8595 is a high performance multi-channel audio CODEC with flexible input/output selection and digital and analogue volume control. Features include a 24-bit stereo ADC with digital gain control, two 24-bit DACs with independent volume control and clocking, and a range of input/output channel selection options with analogue volume control for flexible routing within current and future audio systems.

The WM8595 has a six stereo input selector which accepts input levels up to 2Vrms. One stereo input can be selected through an input mux to be routed through to the ADC.

The WM8595 outputs two stereo audio channels at line levels up to 2Vrms, driven from independent DACs. The DAC channels include independent digital volume control, and both stereo output channels include analogue volume control with soft ramp.

The WM8595 supports up to 2Vrms analogue inputs, 2Vrms outputs, with sample rates from 32kHz to 192kHz on the DACs, and 32kHz to 96kHz on the ADC.

The WM8595 is controlled via a serial interface with support for 2-wire and 3-wire control with full readback. Control of mute, emergency shutdown and reset can also be achieved by pin selection.

The WM8595 is ideal for audio applications requiring high performance and flexible routing options, including flat panel digital TV and DVD recorder.

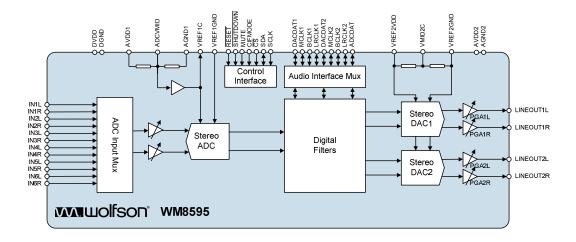
The WM8595 is available in a 48-pin QFN package.

FEATURES

- Multi-channel CODEC with 6 stereo input selector and 2 stereo output selector
- 4-channel DAC, 2-channel ADC
- 6x2Vrms stereo input selector to ADC
- 2x2Vrms stereo output
- Audio performance
 - DAC: 100dB SNR typical ('A' weighted @ 48kHz)
 - DAC: -87dB THD typical
 - ADC: 96dB SNR typical ('A' weighted @ 48kHz)
 - ADC: -80dB THD typical
- Independent sampling rate for ADC and DACs possible
- DACs sampling frequency 32kHz 192kHz
- ADC sampling frequency 32kHz 96kHz
- DAC digital volume control +12dB to -100dB in 0.5dB steps
- ADC digital volume control from +30dB to -97dB in 0.5dB steps
- ADC input analogue boost control, selectable from 0dB, +3dB, +6dB and +12dB
- Output analogue volume control +6dB to -73.5dB in 0.5dB steps with zero cross or soft ramp to prevent pops and clicks
- Digital multiplexer to interface to multiple digital sources DSP, HDMI, memory card
- 2-wire and 3-wire serial control interface with readback and hardware reset, mute and emergency shutdown pins
- ADC features master or slave clocking modes
- Programmable format audio data interface modes
 I2S, LJ, RJ, DSP
- 3.3V / 9V analogue, 3.3V digital supply operation
- 48-pin QFN package

APPLICATIONS

- Digital Flat Panel TV
- DVD-RW
- Set Top Boxes


WOLFSON MICROELECTRONICS plc

Downloaded from Elcodis.com electronic components distributor

To receive regular email updates, sign up at <u>http://www.wolfsonmicro.com/enews</u>

Copyright @2010 Wolfson Microelectronics plc

BLOCK DIAGRAM

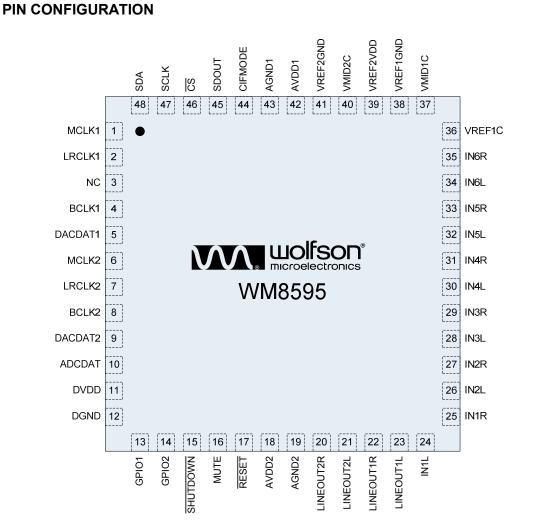


TABLE OF CONTENTS

DESCRIPTION1
FEATURES1
APPLICATIONS1
BLOCK DIAGRAM
PIN CONFIGURATION
PIN DESCRIPTION
ABSOLUTE MAXIMUM RATINGS
RECOMMENDED OPERATING CONDITIONS
SUPPLY CURRENT CONSUMPTION
ELECTRICAL CHARACTERISTICS
TERMINOLOGY
MASTER CLOCK TIMING
RESET TIMING
DIGITAL AUDIO INTERFACE TIMING – SLAVE MODE
DIGITAL AUDIO INTERFACE TIMING – MASTER MODE
CONTROL INTERFACE TIMING – 2-WIRE MODE 14
CONTROL INTERFACE TIMING – 3-WIRE MODE 15
POWER ON RESET (POR)16
DEVICE DESCRIPTION
INTRODUCTION
CONTROL INTERFACE
2-WIRE (SM-BUS COMPATIBLE) SERIAL CONTROL INTERFACE MODE
3-WIRE (SPI COMPATIBLE) SERIAL CONTROL INTERFACE MODE
DIGITAL AUDIO DATA FORMATS
DIGITAL AUDIO INTERFACE
DIGITAL AUDIO DATA SAMPLING RATES
ANALOGUE OUTPUT VOLUME CONTROL
ANALOGUE OUTPUT VOLUME CONTROL
DIGITAL ROUTING CONTROL
POP AND CLICK PERFORMANCE
GLOBAL ENABLE CONTROL
EMERGENCY POWER DOWN
REGISTER MAP
DIGITAL FILTER CHARACTERISTICS
APPLICATIONS INFORMATION
RECOMMENDED EXTERNAL COMPONENTS
RECOMMENDED ANALOGUE LOW PASS FILTER
RELEVANT APPLICATION NOTES
PACKAGE DIMENSIONS
IMPORTANT NOTICE
ADDRESS

WM8595

ORDERING INFORMATION

ORDER CODE	TEMPERATURE RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL	PACKAGE BODY TEMPERATURE
WM8595GEFL/V	-40°C to +85°C	48-lead QFN (Pb-free)	MSL3	260°C
WM8595GEFL/RV	-40°C to +85°C	48-lead QFN (Pb-free, tape and reel)	MSL3	260°C

Note:

Reel quantity = 2200

PIN DESCRIPTION

PIN	NAME	TYPE	DESCRIPTION
1	MCLK1	Digital Input/Output	Audio interface port 1 master clock input/output
2	LRCLK1	Digital Input/Output	Audio interface port 1 left/right clock input/output
3	N/C		No internal connection
4	BCLK1	Digital Input/Output	Audio interface port 1 bit clock input/output
5	DACDAT1	Digital Input	Audio interface port 1 data input for DAC1
6	MCLK2	Digital Input/Output	Audio interface port 2 master clock input/output
7	LRCLK2	Digital Input/Output	Audio interface port 2 left/right clock input/output
8	BCLK2	Digital Input/Output	Audio interface port 2 bit clock input/output
9	DACDAT2	Digital Input	Audio interface port 2 data input for DAC2
10	ADCDAT	Digital Output	Audio interface port 3 data output for ADC
11	DVDD	Supply	Digital supply
12	DGND	Supply	Digital ground
13	GPIO1	Digital Input/Output	General purpose input/output 1
14	GPIO2	Digital Input/Output	General purpose input/output 2
15	SHUTDOWN	Digital Input	Emergency shutdown
16	MUTE	Digital Input	Hardware DAC mute
17	RESET	Digital Input	Hardware reset
18	AVDD2	Supply	Analogue 9V supply
19	AGND2	Supply	Analogue 9V ground
20	LINEOUT2R	Analogue Output	Output channel 2 right
21	LINEOUT2L	Analogue Output	Output channel 2 left
22	LINEOUT1R	Analogue Output	Output channel 1 right
23	LINEOUT1L	Analogue Output	Output channel 1 left
24	IN1L	Analogue Input	Input channel 1 left
25	IN1R	Analogue Input	Input channel 1 right
26	IN2L	Analogue Input	Input channel 2 left
27	IN2R	Analogue Input	Input channel 2 right
28	IN3L	Analogue Input	Input channel 3 left
29	IN3R	Analogue Input	Input channel 3 right
30	IN4L	Analogue Input	Input channel 4 left
31	IN4R	Analogue Input	Input channel 4 right
32	IN5L	Analogue Input	Input channel 5 left
33	IN5R	Analogue Input	Input channel 5 right
34	IN6L	Analogue Input	Input channel 6 left
35	IN6R	Analogue Input	Input channel 6 right
36	VREF1C	Analogue Output	Positive reference for ADC
37	VMID1C	Analogue Output	Midrail divider decoupling pin for ADC
38	VREF1GND	Analogue Input	Ground reference for ADC
39	VREF2VDD	Analogue Input	Positive reference for DACs
40	VMID2C	Analogue Output	Midrail divider decoupling pin for DACs
41	VREF2GND	Analogue Input	Ground reference for DACs
42	AVDD1	Supply	Analogue 3.3V supply
43	AGND1	Supply	Analogue 3.3V ground
43	CIFMODE	Digital Input	2-wire/3-wire mode select
44	SDOUT	Digital Output	Serial Data output for 3-wire readback
40	CS	Digital Input	3-wire serial control interface latch
40	SCLK	Digital Input	Software mode: serial control interface clock signal
47	SCLK	Digital Input	Software mode: bi-directional serial control interface data signal

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag. MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag. MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

The Moisture Sensitivity Level for each package type is specified in Ordering Information.

CONDITION	MIN	MAX
Digital supply voltage, DVDD	-0.3V	+4.5V
Analogue supply voltage, AVDD1	-0.3V	+7V
Analogue supply voltage, AVDD2	-0.3V	+15V
Voltage range digital inputs	DGND -0.3V	DVDD + 0.3V
Voltage range analogue inputs	AGND – 2.4V	AVDD1 + 2.4V
Master Clock Frequency		38.462MHz
Ambient temperature (supplies applied)	-55°C	+125°C
Storage temperature	-65°C	+150°C
Pb free package body temperature (reflow 10 seconds)		+260°C
Package body temperature (soldering 2 minutes)		+183°C

Note:

1. Analogue and digital grounds must always be within 0.3V of each other.

THERMAL PERFORMANCE

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Thermal resistance – junction to ambient	$R_{ extsf{ heta}JA}$			TBD		°C/W
Thermal resistance – junction to case	$R_{ extsf{ heta}JC}$			TBD		°C/W

Notes:

1. Figures given for package mounted on 4-layer FR4 according to JESD51-7. (No forced air flow is assumed).

2. Thermal performance figures are estimated.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital power supply	DVDD		2.97	3.3	3.6	V
Analogue power supply	AVDD1		2.97	3.3	3.6	V
Analogue power supply	AVDD2		8.1	9	9.9	V
Ground	DGND/AGND1/			0		V
	AGND2					
Operating temperature range	T _A		-40		+85	°C

Notes:

1. Digital supply (DVDD) must never be more than 0.3V greater than AVDD1 in normal operation.

2. Digital ground (DGND) and analogue grounds (AGND1, AGND2) must never be more than 0.3V apart.

SUPPLY CURRENT CONSUMPTION

Test Conditions

 $AVDD2=9V, \ AVDD1=DVDD=3.3V, \ AGND1=AGND2=0V, \ DGND=0V, \ T_{A}=+25^{\circ}C, \ fs=48kHz, \ MCLK=256fs \ unless \ otherwise \ stated$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ADC Record (DACs disabled)						
Digital supply current	I _{DVDD}			8.6		mA
Analogue supply 1 current	I _{AVDD1}	fs=48kHz, 256fs Quiescent		9.2		mA
Analogue supply 2 current	I _{AVDD2}	Quiescent		0.01		mA
DAC Playback (ADC disabled	, one DAC disable	d)				
Digital supply current	I _{DVDD}			5.5		mA
Analogue supply 1 current	I _{AVDD1}	fs=48kHz, 256fs Quiescent		6.5		mA
Analogue supply 2 current	I _{AVDD2}			2.0		mA
Digital supply current	I _{DVDD}			9.5		mA
Analogue supply 1 current	I _{AVDD1}	fs=96kHz, 256fs Quiescent		7.0		mA
Analogue supply 2 current	I _{AVDD2}	Quiescent		2.0		mA
Digital supply current	I _{DVDD}			10.0		mA
Analogue supply 1 current	I _{AVDD1}	fs=192kHz, 256fs Quiescent		7.0		mA
Analogue supply 2 current	I _{AVDD2}	Quiescent		2.0		mA
ADC Record, DAC Playback (all circuit blocks e	nabled)				
Digital supply current	I _{DVDD}	fa-40141 = 050fa		17.0		mA
Analogue supply 1 current	I _{AVDD1}	fs=48kHz, 256fs		20.0		mA
Analogue supply 2 current	I _{AVDD2}	Quiescent		11.0		mA

ELECTRICAL CHARACTERISTICS

Test Conditions

AVDD2=9V, AVDD1=DVDD=3.3V, AGND1=AGND2=0V, DGND=0V, T_A=+25°C, 1kHz signal, fs=48kHz, MCLK=256fs unless otherwise stated

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital logic levels						
Input low level	VIL				0.3xDVDD	V
Input high level	VIH		0.7xDVDD			V
Output low level	V _{OL}				0.1 x DVDD	V
Output high level	V _{OH}		0.9 x DVDD			V
Digital input leakage current				±0.2		μA
Digital input capacitance				5		pF
Analogue Reference Levels		1	1	•	R	•
ADC Midrail Voltage	VMID1C			AVDD1/2		V
ADC Buffered Positive Reference Voltage	VREF1C			VMID1C		V
DAC Midrail Voltage	VMID2C			VREF2VDD/2		V
Potential divider resistance		AVDD1 to VMID1C		100		kΩ
		VMID1C to AGND1				
		VREF2VDD to VMID2C		19		kΩ
		VMID2C to VREF2GND		(Note 2)		
		VMID SEL[1:0] = 01		(
Analogue Line Outputs	1		1	1		
Output signal level (0dB)				2.0x		Vrms
			-10%	AVDD1/3.3	+10%	VIIIIO
Maximum capacitance load				71000110.0	11	nF
Minimum resistance load			1			kΩ
Analogue Inputs			1			K32
• •				2.0 x		
Input signal level (0dB)				2.0 x AVDD1/3.3		Vrms
Inputimpodopoo						kO
Input impedance Input capacitance				48 5		kΩ pF
DAC Performance (DAC1 to LI				5		μr
Signal to Noise Ratio ^{1,5}	SNR		90	100	ſ	dB
Signal to Noise Ratio	SINK	A-weighted	90	100		aв
		@ fs = 48kHz		100		٩D
		A-weighted		100		dB
		@ fs = 96kHz		400		
		A-weighted		100		dB
D 25		@ fs = 192kHz		400		
Dynamic Range ^{2,5}	DNR	A-weighted, -60dB full scale input	90	100		dB
Total Harmonic Distortion ^{3,5}	THD	1kHz, 0dBFS		-87	-80	dB
		@ fs = 48kHz				
		1kHz, 0dBFS		-86		dB
		@ fs = 96kHz				
		1kHz, 0dBFS		-85		dB
		@ fs = 192kHz				
Channel Separation ^{4,5}		1kHz		110		dB
Channel Level Matching				0.1		dB
Channel Phase Deviation		1kHz		0.01		Degree
Power supply rejection ratio	PSRR	1kHz, 100mVpp		50		dB
		20Hz to 20kHz, 100mVpp		45		dB

PD, Rev 4.1, April 2010

Production Data

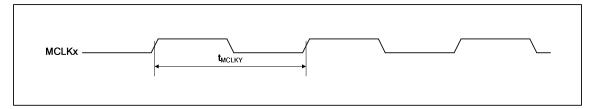
Test Conditions

AVDD2=9V, AVDD1=DVDD=3.3V, AGND1=AGND2=0V, DGND=0V, T_A=+25°C, 1kHz signal, fs=48kHz, MCLK=256fs unless otherwise stated

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ADC Performance	•			•	•	
Signal to Noise Ratio ^{1,5}	SNR	A-weighted, 0dB gain @ fs = 48kHz	85	96		dB
		A-weighted, 0dB gain @ fs = 96kHz		98		dB
Dynamic Range ^{2,5}	DNR	A-weighted, -60dB full scale input	85	96		dB
Total Harmonic Distortion ^{3,5}	THD	1kHz, -1dBFS @ fs = 48kHz		-80	-70	dB
		1kHz, -1dBFS @ fs = 96kHz		-78		dB
Channel Separation ^{4,5}		1kHz		110		dB
Channel Level Matching				0.1		dB
Channel Phase Deviation		1kHz		0.01		Degree
Power Supply Rejection Ratio	PSRR	1kHz, 100mVpp		70		dB
		20Hz to 20kHz, 100mVpp		52		dB
Digital Volume Control						
ADC minimum digital volume				-97		dB
ADC maximum digital volume				+30		dB
ADC volume step size				0.5		dB
DAC minimum digital volume				-100		dB
DAC maximum digital volume				+12		dB
DAC volume step size				0.5		dB
Analogue Volume Control						
Minimum gain				-73.5		dB
Maximum gain				+6		dB
Step size				0.5		dB
Mute attenuation				120		dB
Crosstalk	•			-		
DAC to ADC		1kHz signal, ADC fs=48kHz, DAC fs=44.1kHz		100		dB
		20kHz signal, ADC fs=48kHz, DAC fs=44.1kHz		100		dB
ADC to DAC		1kHz signal, ADC fs=48kHz, DAC fs=44.1kHz		100		dB
		20kHz signal, ADC fs=48kHz, DAC fs=44.1kHz		100		dB

WM8595

TERMINOLOGY


- Signal-to-noise ratio (dBFS) SNR is the difference in level between a reference full scale output signal and the device output with no signal applied. This ratio is also called idle channel noise. (No Auto-zero or Automute function is employed in achieving these results).
- Dynamic range (dBFS) DNR is a measure of the difference in level between the highest and lowest components of a signal. Normally a THD measurement at -60dBFS. The measured signal is then corrected by adding 60dB to the result, e.g. THD @ -60dBFS = -30dB, DNR = 90dB.
- 3. Total Harmonic Distortion (dBFS) THD is the difference in level between a reference full scale output signal and the first seven odd harmonics of the output signal. To calculate the ratio, the fundamental frequency of the output signal is notched out and an RMS value of the next seven odd harmonics is calculated.
- 4. Channel Separation (dB) Also known as Cross-Talk. This is a measure of the amount one channel is isolated from the other. Normally measured by sending a full scale signal down one channel and measuring the other.
- 5. All performance measurements carried out with 20kHz low pass filter, and where noted an A-weighted filter. Failure to use such a filter will result in higher THD and lower SNR and Dynamic Range readings than are found in the Electrical Characteristics. The low pass filter removes out of band noise; although it is not audible it may affect dynamic specification values.

Notes:

- 1. All minimum and maximum values are subject to change.
- 2. This resistance is selectable using VMID_SEL[1:0] see Figure 47 for full details.
- 3. See p81 for details of extended input impedance configuration.

MASTER CLOCK TIMING

Figure 1 MCLK Timing

Test Conditions

AVDD1, DVDD = 3.3V, AVDD2 = 9V, AGND1, AGND2, DGND = 0V, T_A = $+25^{\circ}C$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Master Clock Timing Information					
MCLK System clock cycle time	t _{MCLKY}	27		120	ns
MCLK Duty cycle		40:60		60:40	%
MCLK Period Jitter				200	ps
MCLK Rise/Fall times				10	ns

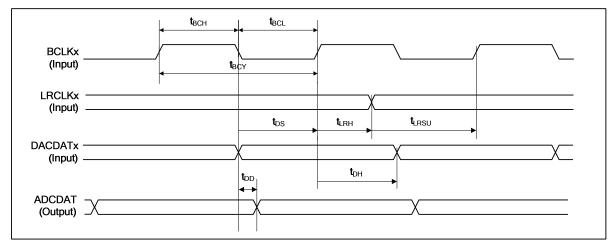
Table 1 Master Clock Timing Requirements

RESET TIMING

RESET	

Figure 2 RESET Timing

Test Conditions


AVDD1, DVDD = 3.3V, AVDD2 = 9V, AGND1, AGND2, DGND = 0V, $T_A = +25^{\circ}C$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
RESET Timing Information					
RESET pulsewidth low	T _{RESET}	10			ns

Table 2 RESET Timing Requirements

DIGITAL AUDIO INTERFACE TIMING – SLAVE MODE

Figure 3 Slave Mode Digital Audio Data Timing

Test Conditions

AVDD1, DVDD = 3.3V, AVDD2 = 9V, AGND1, AGND2, DGND = 0V, T_A = +25°C, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Audio Data Input Timing Information					
BCLK cycle time	t _{BCY}	80			ns
BCLK pulse width high	t _{BCH}	30			ns
BCLK pulse width low	t _{BCL}	30			ns
BCLK rise/fall times				5	ns
LRCLK set-up time to BCLK rising edge	t _{LRSU}	22			ns
LRCLK hold time from BCLK rising edge	t _{LRH}	25			ns
LRCLK rise/fall times				5	ns
DACDAT (input) hold time from LRCLK rising edge	t _{DH}	25			ns
ADCDAT (output) propagation delay from BCLK falling edge	t _{DD}	4		16	ns

Table 3 Slave Mode Audio Interface Timing

DIGITAL AUDIO INTERFACE TIMING – MASTER MODE

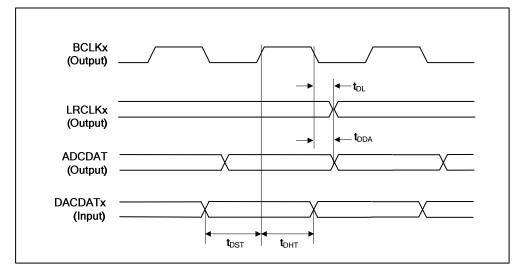


Figure 4 Master Mode Digital Audio Data Timing

Test Conditions

AVDD1, DVDD = 3.3V, AVDD2 = 9V, AGND1, AGND2, DGND = 0V, T_A = +25°C, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Audio Data Input Timing Information					
LRCLK propagation delay from BCLK falling edge	t _{DL}	4		16	ns
ADCDAT (output) propagation delay from BCLK falling edge	t _{DDA}	4		16	ns
DACDAT (input) setup time to BCLK rising edge	t _{DST}	22			ns
DACDAT (input) hold time to BCLK rising edge	t _{DHT}	25			ns

Table 4 Master Mode Audio Interface Timing

CONTROL INTERFACE TIMING – 2-WIRE MODE

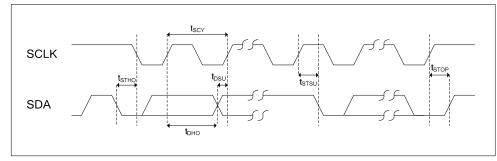


Figure 5 Control Interface Timing – 2-Wire Serial Control Mode

Test Conditions

AVDD1, DVDD = 3.3V, AVDD2 = 9V, AGND1, AGND2, DGND = 0V, T_A = +25°C, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Program Register Input Information				•	•
SCLK pulse cycle time	t _{SCY}	2500			ns
SCLK duty cycle		40/60		60/40	%
SCLK frequency				400	kHz
Hold Time (Start Condition)	t _{sтно}	600			ns
Setup Time (Start Condition)	tsтsu	600			ns
Data Setup Time	t _{DSU}	100			ns
SDA, SCLK Rise Time				300	ns
SDA, SCLK Fall Time				300	ns
Setup Time (Stop Condition)	t _{STOP}	600			ns
Data Hold Time	t _{DHO}			900	ns
Pulse width of spikes that will be suppressed	t _{ps}	2		8	ns

Table 5 Control Interface Timing – 2-Wire Serial Control Mode

CONTROL INTERFACE TIMING – 3-WIRE MODE



Figure 6 Control Interface Timing – 3-Wire Serial Control Mode

Test Conditions

AVDD1, DVDD = 3.3V, AVDD2 = 9V, AGND1, AGND2, DGND = 0V, $T_A = +25^{\circ}C$, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.

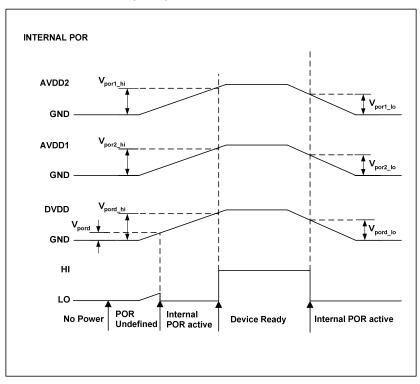

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT				
Program Register Input Information									
SCLK rising edge to CS rising edge	t _{scs}	80			ns				
SCLK pulse cycle time	tscy	160			ns				
SCLK duty cycle		40/60		60/40	%				
SDA to SCLK set-up time	t _{DSU}	20			ns				
SDA hold time from SCLK rising edge	t _{DHO}	40			ns				
SDOUT propagation delay from SCLK falling edge	t _{DL}			5	ns				
CS pulse width high	t _{CSH}	40			ns				
CS falling to SCLK rising	t _{CSS1}	40			ns				
SCLK failing to CS rising	t _{CSS2}	40			ns				
Pulse width of spikes that will be suppressed	t _{ps}	2		8	ns				

Table 6 Control Interface Timing – 3-Wire Serial Control Mode

WM8595

POWER ON RESET (POR)

Figure 1 Power Supply Timing Requirements

Test Conditions

DVDD = 3.3V, AVDD1 = 3.3V, AVDD2 = 9V DGND = AGND1 = AGND2 = 0V, $T_A = +25^{\circ}C$, $T_{A_max} = +125^{\circ}C$, $T_{A_min} = -25^{\circ}C$ AVDD1_{max} = DVDD_{max} = 3.63V, AVDD1_{min} = DVDD_{mim}= 2.97V AVDD2_{max} = 9.9V, AVDD2_{min} = 8.1V

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
Power Supply Input Timing Information									
VDD level to POR defined (DVDD rising)	V _{pord}	Measured from DGND	0.27	0.36	0.60	V			
VDD level to POR rising edge (DVDD rising)	V _{pord_hi}	Measured from DGND	1.34	1.88	2.32	V			
VDD level to POR falling edge (DVDD falling)	V _{pord_lo}	Measured from DGND	1.32	1.86	2.30	V			
VDD level to POR rising edge (AVDD1 rising)	V _{por1_hi}	Measured from DGND	1.65	1.68	1.85	V			
VDD level to POR falling edge (AVDD1 falling)	V _{por1_lo}	Measured from DGND	1.63	1.65	1.83	V			
VDD level to POR rising edge (AVDD2 rising)	V _{por2_hi}	Measured from DGND	1.80	1.86	2.04	V			
VDD level to POR falling edge (AVDD2 falling)	V _{por2_lo}	Measured from DGND	1.76	1.8	2.02	V			

Table 7 Power on Reset

DEVICE DESCRIPTION

INTRODUCTION

The WM8595 is a high performance multi-channel audio CODEC with 2Vrms line level inputs and outputs and flexible digital input / output switching. The device comprises a 24-bit stereo ADC, two 24-bit stereo DACs with independent sampling rates and digital volume control, two stereo PGAs in the output path, a flexible digital audio interface multiplexer, a flexible analogue input multiplexer. Analogue inputs and outputs are all at 2Vrms line level, minimising external component count.

The DACs can operate from independent left/right clocks, bit clocks and master clocks with independent data inputs. Alternatively, the DACs can be synchronised to use the same clocks with independent data inputs.

The ADC uses a separate left/right clock, bit clock and master clock, allowing independent recording and playback in audio applications. The ADC audio interface can be configured to operate in either master or slave clocking mode. In master mode, left/right clocks and bit clocks are all outputs. In slave mode, left/right clocks and bit clocks are all inputs.

The ADC includes digital gain control, allowing signals to be gained and attenuated between +30dB and -97dB in 0.5dB steps.

The DACs include independent digital volume control, which is adjustable between +12dB and -100 dB in 0.5dB steps. The DACs can be configured to output stereo audio data and a range of mono audio options.

The input analogue multiplexer accepts six stereo line level inputs at up to 2Vrms, and allows any stereo input to be routed to the input of the ADC.

The output PGAs have optional zero cross functionality, with gain adjustable between +6dB and -73.5dB in 0.5dB steps, and configurable soft ramp rate. Analogue audio is output at 2Vrms line level.

The digital audio interface multiplexer allows flexible routing of the digital signals internal to the device between the independent ADC, DAC1 and DAC2 audio interfaces from the digital audio ports. By integrating this functionality into the WM8595, the external component count and board space normally required to switch between various digital audio sources can be significantly reduced.

Control of the internal functionality of the device is by 2-wire or 3-wire serial control interface with readback. The interface may be asynchronous to the audio data interface as control data will be resynchronised to the audio processing internally. In addition, control of mute, emergency shutdown and reset may also be achieved by pin control.

Operation using system clocks of 128fs, 192fs, 256fs, 384fs, 512fs, 768fs or 1152fs is provided. ADC and DACs may be clocked independently. Sampling rates from 32kHz to 192kHz are supported for both DACs provided the appropriate master clocks are input. Sampling rates from 32kHz to 96kHz are supported for the ADC provided the appropriate master clock is input.

The audio data interface supports right justified, left justified, and I2S interface formats along with a highly flexible DSP serial port interface format.

CONTROL INTERFACE

Control of the WM8595 is achieved by a 2-wire SM-bus-compliant or 3-wire SPI compliant serial interface with readback. Software interface mode is selected using the CIFMODE pin as shown in Table 8 below:

CIFMODE (PIN 44)	INTERFACE FORMAT
Low	2 wire
High	3 wire

Table 8 Control Interface Mode Selection

2-WIRE (SM-BUS COMPATIBLE) SERIAL CONTROL INTERFACE MODE

Many devices can be controlled by the same bus, and each device has a unique 7-bit address.

REGISTER WRITE

The controller indicates the start of data transfer with a high to low transition on SDA while SCLK remains high. This indicates that a device address and data will follow. All devices on the 2-wire bus respond to the start condition and shift in the next eight bits on SDA (7-bit address and read/write bit, MSB first). If the device address received matches the address of the WM8595, the WM8595 responds by pulling SDA low on the next clock pulse (ACK). If the address is not recognised, the WM8595 returns to the idle condition and waits for a new start condition with valid address.

When the WM8595 has acknowledged a correct address, the controller sends the first byte of control data (B23 to B16, i.e. the WM8595 register address). The WM8595 then acknowledges the first data byte by pulling SDA low for one SCLK pulse. The controller then sends a second byte of control data (B15 to B8, i.e. the first 8 bits of register data), and the WM8595 acknowledges again by pulling SDA low for one SCLK pulse. Finally, the controller sends a third byte of control data (B7 to B0, i.e. the final 8 bits of register data), and the WM8595 acknowledges again by pulling SDA low for one SCLK pulse. Finally, the controller sends a third byte of control data (B7 to B0, i.e. the final 8 bits of register data), and the WM8595 acknowledges again by pulling SDA low for one SCLK pulse.

The transfer of data is complete when there is a low to high transition on SDA while SCLK is high. After receiving a complete address and data sequence the WM8595 returns to the idle state and waits for another start condition. If a start or stop condition is detected out of sequence at any point during data transfer (i.e. SDA changes while SCLK is high), the WM8595 reverts to the idle condition.

The WM8595 device 2-wire write address is 34h (0110100) or 36h (0110110), selectable by control of CS.

CS (PIN 46)	2-WIRE BUS ADDRESS (B[7:1])
0	34h (011010)
1	36h (011011)

Table 9 2-Wire Control Interface Bus Address Selection

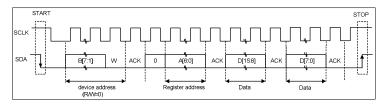


Figure 7 2-Wire Write Protocol

AUTO-INCREMENT REGISTER WRITE

It is possible to write to multiple consecutive registers using the auto-increment feature. When AUTO_INC is set, the register write protocol follows the method shown in Figure 8

. As with normal register writes, the controller indicates the start of data transfer with a high to low transition on SDA while SCLK remains high, and all devices on the bus receive the device address.

When the WM8595 has acknowledged a correct address, the controller sends the first byte of control data (A6 to A0, i.e. the WM8595 initial register address). The WM8595 then acknowledges the first control data byte by pulling SDA low for one SCLK pulse. The controller then sends a byte of register data. The WM8595 acknowledges the first byte of register data, auto-increments the register address to be written to, and waits for the next byte of register data. Subsequent bytes of register data can be written to consecutive registers of the WM8595 without setting up the device and register address.

The transfer of data is complete when there is a low to high transition on SDA while SCLK is high.

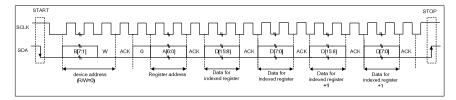


Figure 8 2-Wire Auto-Increment Register Write

REGISTER READBACK

The WM8595 allows readback of all registers with data output on the bidirectional SDA pin. The protocol is similar to that used to write to the device. The controller will issue the device address followed by a write bit, and the register index will then be passed to the WM8595.

At this point the controller will issue a repeated start condition and resend the device address along with a read bit. The WM8595 will acknowledge this and the WM8595 will become a slave transmitter.

The WM8595 will place the data from the indexed register onto SDA MSB first. When the controller receives the first byte of data, it acknowledges it. When the controller receives the second and final byte of data it will not acknowledge receipt of the data indicating that it will resume master transmitter control of SDA. The controller will then issue a stop command completing the read cycle.

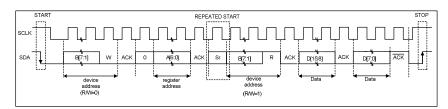


Figure 9 2-wire Read Protocol

AUTO-INCREMENT REGISTER READBACK

It is possible to read from multiple consecutive registers in continuous readback mode. Continuous readback mode is selected by setting AUTO_INC. In continuous readback mode, the WM8595 will return the indexed register first, followed by consecutive registers in increasing index order until the controller issues a stop sequence.

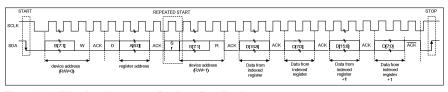


Figure 10 2-Wire Auto-Increment Register Readback

WM8595

3-WIRE (SPI COMPATIBLE) SERIAL CONTROL INTERFACE MODE

REGISTER WRITE

SDA is used for the program data, SCLK is used to clock in the program data and CS is use to latch in the program data. SDA is sampled on the rising edge of SCLK. The 3-wire interface write protocol is shown in Figure 11.

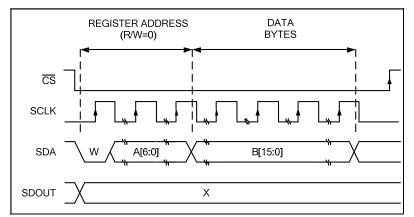


Figure 11 3-Wire Serial Interface Write Protocol

- W indicates write operation.
- A[6:0] is the register index.
- B[15:0] is the data to be written to the register indexed.
- CS is edge sensitive the data is latched on the rising edge of /CS.

REGISTER READ-BACK

The read-only status registers can be read back via the SDOUT pin. Read Back is enabled when the R/W bit is high. The data can then be read by writing to the appropriate register address, to which the device will respond with data.

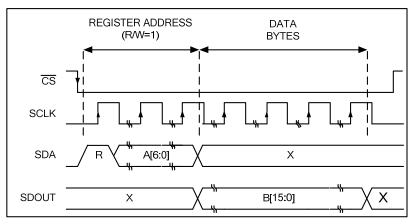


Figure 12 3-Wire Serial Interface Readback Protocol

REGISTER RESET

Any write to register R0 (00h) will reset the WM8595. All register bits are reset to their default values.

DEVICE ID AND REVISION

Reading from register R0 returns the device ID. Reading from register R1 returns the device revision number.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R0	15:0	DEVICE_ID	10000101	Device ID
DEVICE_ID		[15:0]	10010101	A read of this register will return the device
00h				ID, 0x8595.
R1	7:0	REVNUM	N/A	Device Revision
REVISION		[7:0]		A read of this register will return the device
01h				revision number. This number is sequentially incremented if the device design is updated.

Table 10 Device ID and Revision Number

DIGITAL AUDIO DATA FORMATS

The WM8595 supports a range of common audio interface formats:

- I²S
- Left Justified (LJ)
- Right Justified (RJ)
- DSP Mode A
- DSP Mode B

All formats send the MSB first and support word lengths of 16, 20, 24 and 32 bits, with the exception of 32 bit RJ mode, which is not supported.

Audio data for each stereo channel is time multiplexed with the interface's left/right clock indicating whether the left or right channel is present. The left/right clock is also used as a timing reference to indicate the beginning or end of the data words.

In LJ, RJ and I²S modes, the minimum number of bit clock periods per left/right clock period is two times the selected word length. The left/right clock must be high for a minimum of bit clock periods equivalent to the word length, and low for the same period. For example, for a word length of 24 bits, the left/right clock must be high for a minimum of 24 bit clock periods and low for a minimum of 24 bit clock periods. Any mark to space ratio is acceptable for the left/right clock provided these requirements are met.

In DSP modes A and B, left and right channels must be time multiplexed and input on DACDAT. LRCLK is used as a frame synchronisation signal to identify the MSB of the first input word. The minimum number of bit clock periods per left/right clock period is two times the selected word length. Any mark to space ratio is acceptable for the left/right clock provided the rising edge is correctly positioned.

I2S MODE

In I²S mode, the MSB of input data is sampled on the second rising edge of bit clock following a left/right clock transition. The MSB of output data changes on the first falling edge of bit clock following a left/right clock transition, and may be sampled on the next rising edge of bit clock. Left/right clocks are low during the left channel audio data samples and high during the right channel audio data samples.

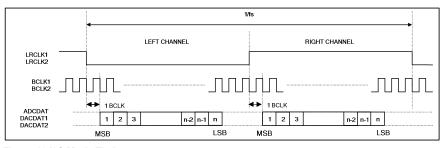


Figure 13 I2S Mode Timing

LEFT JUSTIFIED (LJ) MODE

In LJ mode, the MSB of the input data is sampled by the WM8595 on the first rising edge of bit clock following a left/right clock transition. The MSB of output data changes on the same falling edge of bit clock as left/right clock and may be sampled on the next rising edge of bit clock. Left/right clock is high during the left channel audio data samples and low during the right channel audio data samples.

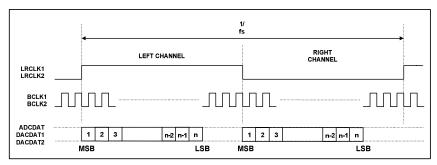


Figure 14 LJ Mode Timing

RIGHT JUSTIFIED (RJ) MODE

In RJ mode the LSB of input data is sampled on the rising edge of bit clock preceding a left/right clock transition. The LSB of output data changes on the falling edge of bit clock preceding a left/right clock transition, and may be sampled on the next rising edge of bit clock. Left/right clock is high during the left channel audio data samples and low during the right channel audio data samples.

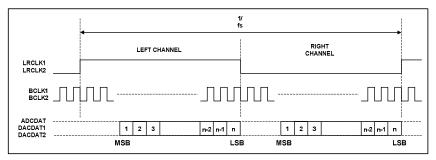


Figure 15 RJ Mode Timing

DSP MODE A

In DSP Mode A, the MSB of channel 1 left data input is sampled on the second rising edge of bit clock following a left/right clock rising edge. Channel 1 right data then follows. The MSB of output data changes on the first falling edge of bit clock following a left/right clock transition and may be sampled on the rising edge of bit clock. The right channel data is contiguous with the left channel data.

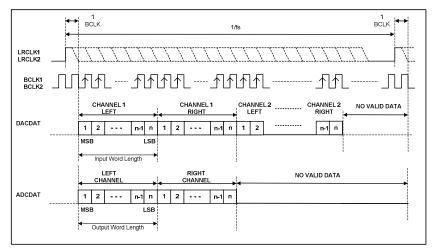


Figure 16 DSP Mode A Timing

DSP MODE B

In DSP Mode B, the MSB of channel 1 left data input is sampled on the first bit clock rising edge following a left/right clock rising edge. Channel 1 right data then follows. The MSB of output data changes on the same falling edge of BCLK as the low to high left/right clock transition and may be sampled on the rising edge of bit clock. The right channel data is contiguous with the left channel data.

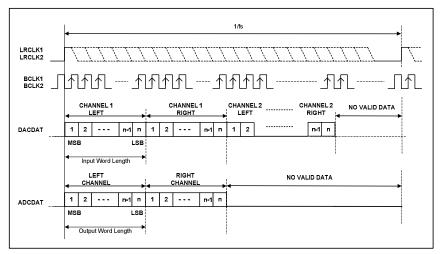


Figure 17 DSP Mode B Timing

DIGITAL AUDIO INTERFACE CONTROL

The control of the audio interface formats is achieved by register write. Dynamically changing the audio data format may cause erroneous operation and is not recommended.

Interface timing is such that the input data and left/right clock are sampled on the rising edge of the interface bit clock. Output data changes on the falling edge of the interface bit clock. By setting the appropriate bit clock and left/right clock polarity bits, the WM8595 ADC and DACs can sample data on the opposite clock edges.

The control of audio interface formats and clock polarities is summarised in Table 11.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	1:0	DAC1_	10	DAC1 Audio Interface Format
DAC1_CTRL1		FMT[1:0]		00 = Right Justified
02h				01 = Left Justified
				$10 = I^2 S$
				11 = DSP
	3:2	DAC1_	10	DAC1 Audio Interface Word Length
		WL[1:0]		00 = 16-bit
				01 = 20-bit
				10 = 24-bit
				11 = 32-bit (not available in Right Justified mode)
	4	DAC1_BCP	0	DAC1 BCLK Polarity
				0 = DACBCLK not inverted - data latched on rising edge of BCLK
				1 = DACBCLK inverted - data latched on falling edge of BCLK

Production Data

WM8595

REGISTER	BIT	LABEL	DEFAULT	DESCRIPTION
ADDRESS	5	DAC1_LRP	0	DAC1 LRCLK Polarity
	5	DACT_LIKE	0	0 = DACLRCLK not inverted
				1 = DACLRCLK inverted
R7	1:0	DAC2	10	DAC2 Audio Interface Format
DAC2 CTRL1	1.0	FMT[1:0]	10	00 = Right Justified
07h		1 1011[1.0]		01 = Left Justified
0711				$10 = l^2 S$
				11 = DSP
	3:2	DAC2	10	DAC2 Audio Interface Word Length
	0.2	WL[1:0]	10	00 = 16-bit
		112[110]		01 = 20-bit
				10 = 24-bit
				11 = 32-bit (not available in Right Justified
				mode)
	4	DAC2_BCP	0	DAC2 BCLK Polarity
				0 = DACBCLK not inverted - data latched on
				rising edge of BCLK
				1 = DACBCLK inverted - data latched on
				falling edge of BCLK
	5	DAC2_LRP	0	DAC2 LRCLK Polarity
				0 = DACLRCLK not inverted
				1 = DACLRCLK inverted
R13	1:0	ADC_	10	ADC Audio Interface Format
ADC_CTRL1		FMT[1:0]		00 = Right Justified
0Dh				01 = Left Justified
				$10 = I^2 S$
		150	10	11 = DSP
	3:2	ADC_	10	ADC Audio Interface Word Length
		WL[1:0]		00 = 16-bit 01 = 20-bit
				10 = 20-bit 10 = 24-bit
				11 = 32-bit (not available in Right Justified mode)
	4	ADC BCP	0	ADC BCLK Polarity
			Ŭ	0 = ADCBCLK not inverted - data latched on
				rising edge of BCLK
				1 = ADCBCLK inverted - data latched on
				falling edge of BCLK
	5	ADC_LRP	0	ADC LRCLK Polarity
				0 = ADCLRCLK not inverted
				1 = ADCLRCLK inverted

Table 11 Audio Interface Control

DIGITAL AUDIO INTERFACE

Digital audio data is transferred to and from the WM8595 via the digital audio interface. The DACs have independent data inputs and master clocks, bit clocks and left/right frame clocks, and operate in both master or slave mode The ADC has independent master clock, bit clock and left/right frame clock in addition to its data output, and can operate in both master and slave modes.

MASTER MODE

The ADC audio interface requires both a left/right frame clock (ADCLRCLK) and a bit clock (ADCBCLK). These can be supplied externally (slave mode) or they can be generated internally (master mode). Selection of master and slave mode is achieved by setting ADC_MSTR in ADC Control Register 3.

The frequency of ADCLRCLK in master mode is dependent upon the ADC master clock frequency and the ADC_SR[2:0] bits.

The frequency of ADCBCLK in master mode can be selected by ADC_BCLKDIV[1:0].

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R14	2:0	ADC_	000	ADC MCLK:LRCLK Ratio
ADC_CTRL2		SR[2:0]		000 = Auto detect
0Eh				001 = 128fs
				010 = 192fs
				011 = 256fs
				100 = 384fs
				101 = 512fs
				110 = 768fs
				111 = Reserved
	5:3	ADC_BCLK	000	ADC BCLK Rate
		DIV[2:0]		000 = MCLK / 4
				001 = MCLK / 8
				010 = 32fs
				011 = 64fs
				100 = 128fs
				All other values of ADC_BCLKDIV[2:0] are reserved
R15	0	ADC_	0	ADC Master Mode Select
ADC_CTRL3 0Fh		MSTR		0 = Slave mode, ADCBCLK and ADCLRCLK are inputs to WM8595
				1 = Master mode, ADCBCLK and ADCLRCLK are outputs from WM8595

Both DAC1 and DAC2 operate in slave mode only.

Table 12 ADC Master Mode Control

SLAVE MODE

In slave mode, the master clock to left/right clock ratio for the ADC, DAC1 and DAC2 can be autodetected or set manually by register write.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R3	2:0	DAC1_	000	DAC MCLK:LRCLK Ratio
DAC1_CTRL2		SR[2:0]		000 = Auto detect
03h				001 = 128fs
R8	2:0	DAC2_	000	010 = 192fs
DAC2_CTRL2		SR[2:0]		011 = 256fs
08h				100 = 384fs
				101 = 512fs
				110 = 768fs
				111 = 1152fs
R14	2:0	ADC_	000	ADC MCLK:LRCLK Ratio
ADC_CTRL2		SR[2:0]		000 = Auto detect
0Eh				001 = reserved
				010 = reserved
				011 = 256fs
				100 = 384fs
				101 = 512fs
				110 = 768fs
				111 = Reserved

Table 13 Slave Mode MCLK to LRCLK Ratio Control

DIGITAL AUDIO DATA SAMPLING RATES

In a typical digital audio system there is one central clock source producing a reference clock to which all audio data processing is synchronised. This clock is often referred to as the audio system's master clock. The WM8595 uses independent master clocks for ADC and DACs. The external master clocks can be applied directly to the ADCMCLK, DACMCLK1 and DACMCLK2 input pins. In a system where there are a number of possible sources for the reference clock, it is recommended that the clock source with the lowest jitter be used for the master clock to optimise the performance of the WM8595.

In slave clocking mode the WM8595 has a master detection circuit that automatically determines the relationship between the master clock frequency (ADCMCLK, DACMCLK1, DACMCLK2) and the sampling rate (ADCLRCLK, DACLRCLK1, DACLRCLK2), to within +/- 32 system clock periods. The master clocks must be synchronised with the left/right clocks, although the device is tolerant of phase variations or jitter on the master clocks.

The ADC supports master clock to sampling clock ratios of 256fs to 768fs and sampling rates of 32kHz to 96kHz, provided the internal signal processing of the ADC is programmed to operate at the correct rate. The DACs support master clock to sampling clock ratios of 128fs to 1152fs and sampling rates of 32kHz to 192kHz, provided the internal signal processing of the DACs is programmed to operate at the correct rate.

Table 14 shows typical master clock frequencies and sampling rates supported by the WM8595 ADC. Table 15 shows typical master clock frequencies and sampling rates supported by the WM8595 DACs.

	MASTER CLOCK FREQUENCY (MHZ)					
Sampling Rate (ADCLRCLK)	256fs	384fs	512fs	768fs		
32kHz	8.192	12.288	16.384	24.576		
44.1kHz	11.2896	16.9344	22.5792	33.8688		
48kHz	12.288	18.432	24.576	36.864		
88.2kHz	22.5792	33.8688	Unavailable	Unavailable		
96kHz	24.576	Unavailable	Unavailable	Unavailable		

Table 14 ADC Master Clock Frequency Versus Sampling Rate

Sampling Rate		MASTER CLOCK FREQUENCY (MHZ)					
(DACLRCLK1 DACLRCLK2)	128fs	192fs	256fs	384fs	512fs	768fs	1152fs
32kHz	Unavailable	Unavailable	8.192	12.288	16.384	24.576	36.864
44.1kHz	Unavailable	8.4672	11.2896	16.9344	22.5792	33.8688	Unavailable
48kHz	Unavailable	9.216	12.288	18.432	24.576	36.864	Unavailable
88.2kHz	11.2896	16.9344	22.5792	33.8688	Unavailable	Unavailable	Unavailable
96kHz	12.288	18.432	24.576	36.864	Unavailable	Unavailable	Unavailable
176.4kHz	22.5792	33.8688	Unavailable	Unavailable	Unavailable	Unavailable	Unavailable
192kHz	24.576	36.864	Unavailable	Unavailable	Unavailable	Unavailable	Unavailable

Table 15 DAC Master Clock Frequency Versus Sampling Rate

The WM8595 includes two 24-bit DACs with independent clocks and independent data inputs. The DACs include digital volume control with zero cross and soft mute, de-emphasis support, and the capability to select the output channels to be stereo or a range of mono options. The DACs are enabled by writing to DAC1_EN and DAC2_EN.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	8	DAC1_EN	0	DAC1 Enable
DAC1_CTRL1				0 = DAC disabled
02h				1 = DAC enabled
R7	8	DAC2_EN	0	DAC2 Enable
DAC2_CTRL1				0 = DAC2 disabled
07h				1 = DAC2 enabled

Table 16 DAC Enable Control

DIGITAL VOLUME CONTROL

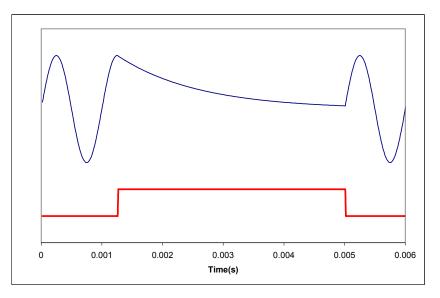
The WM8595 DACs include independent digital volume control, allowing the digital gain to be adjusted between -100dB and +12dB in 0.5dB steps. All four DAC channels can be controlled independently. Alternatively, global update bits allow the user to write all volume changes before the volume is updated.

Volume control includes optional zero cross functionality. When zero cross is enabled, volume changes are not applied until the output level crosses VMID. Zero cross helps to prevent pop and click noise when changing volume settings.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R5	7:0	DAC1L	11001000	DAC Digital Volume
DAC1L_VOL		_VOL[7:0]		0000 0000 = -100dB
05h				0000 0001 = -99.5dB
R6	7:0	DAC1R		0000 0010 = -99dB
DAC1R_VOL		_VOL[7:0]		0.5dB steps
06h				1100 1000 = 0dB
R10	7:0	DAC2L		0.5dB steps
DAC2L_VOL		_VOL[7:0]		1101 1111 = +11.5dB
0Ah				111X XXXX = +12dB
R11	7:0	DAC2R		
DAC2R_VOL		_VOL[7:0]		
0Bh				
R5	8	DAC1L_VU	0	DAC Digital Volume Update
DAC1L_VOL				0 = Latch DAC volume setting into Register
05h				Map but do not update volume
R6	8	DAC1R_VU		1 = Latch DAC volume setting into Register
DAC1R_VOL				Map and update left and right channels simultaneously
06h				Simulateously
R10	8	DAC2L_VU		
DAC2L_VOL				
0Ah				
R11	8	DAC2R_VU		
DAC2R_VOL				
0Bh				

WM8595

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2 DAC1_CTRL1 02h	7	DAC1 _ZCEN	1	DAC Digital Volume Control Zero Cross Enable 0 = Do not use zero cross
R7 DAC2_CTRL1 07h	7	DAC2 _ZCEN		1 = Use zero cross


Table 17 DAC Digital Volume Control

SOFTMUTE

A soft mute can be applied to DAC1 and DAC2 independently.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	9	DAC1_	0	DAC Softmute
DAC1_CTRL1		MUTE		0 = Normal operation
02h				1 = Softmute applied
R7	9	DAC2_	0	
DAC2_CTRL1		MUTE		
07h				

Table 18 DAC Softmute Control

Figure 18 Application and Release of DAC Soft Mute

Figure 18 shows the applications and release of DAC soft mute whilst a full amplitude sinusoid is being played at 48kHz sampling rate. When DACx_MUTE (lower trace) is asserted, the output (upper trace) of the appropriate DAC will decay exponentially from the DC level of the last input sample towards VMID2C with a time constant of approximately 64 input samples. When DACx_MUTE is de-asserted, the output will restart immediately from the current input sample.

DIGITAL MONOMIX CONTROL

Each DAC can be independently set to output a range of mono and stereo options. Each DAC output channel can output left channel data, right channel data or a mix of left and right channel data.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	11:10	DAC1_OP MUX[1:0]	00	DAC1 Digital Monomix
DAC1_CTRL1 02h		_1007[1:0]		00 = Stereo (Normal Operation) 01 = Mono (Left data to DAC1R)
				10 = Mono (Right data to DAC1L)
				11 = Digital Monomix, (L+R)/2
R7	11:10	DAC2_OP	00	DAC2 Digital Monomix
DAC2_CTRL1		_MUX[1:0]		00 = Stereo (Normal Operation)
07h				01 = Mono (Left data to DAC2R)
				10 = Mono (Right data to DAC2L)
				11 = Digital Monomix, (L+R)/2

Table 19 Digital Monomix Control

DE-EMPHASIS

A digital de-emphasis filter may be applied to the DAC outputs when the sampling frequency is 44.1kHz. The de-emphasis filter for each DAC can be applied independently. The de-emphasis filter responses and error can be seen in Figure 60 De-Emphasis Frequency Response (32kHz) and Figure 61 De-Emphasis Error (32kHz).

Note: De-emphasis is not available when MCLK=192fs.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	6	DAC1	0	DAC1 De-emphasis
DAC1_CTRL1		_DEEMPH		0 = No de-emphasis
02h				1 = Apply 44.1kHz de-emphasis
R7	6	DAC2	0	DAC2 De-emphasis
DAC2_CTRL1		_DEEMPH		0 = No de-emphasis
07h				1 = Apply 44.1kHz de-emphasis

Table 20 De-emphasis Control

SIMULATANEOUS DAC1 AND DAC2 CONTROL

If the same settings are required to both DAC1 and DAC2, it is possible to have the register settings of DAC2 copy the register settings made to DAC1. To use this feature, the user must ensure that DAC2_COPY_DAC1 is set before writes are made to DAC1. Any writes then made to R2-6 are automatically made to R7-11.

Example (When DAC2_COPY_DAC1=1):

REGISTER WRITE	ACTUAL REGISTER SETTING
R2 = 0x0001	R2 = 0x0001 & R7 = 0x0001
R3 = 0x0023	R3 = 0x0023 & R8 = 0x0023
R4 = 0x0045	R4 = 0x0045 & R9 = 0x0045
R5 = 0x0067	R5 = 0x0067 & R10 = 0x0067
R6 = 0x0089	R6 = 0x0089 & R11 = 0x0089

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R12	1	DAC2_	0	DAC2 Configuration Control
ENABLE		COPY_		0 = DAC2 settings independent of DAC1
0Bh		DAC1		1 = DAC2 settings are the same as DAC1

Table 21 DAC2 Configuration Control

ANALOGUE OUTPUT VOLUME CONTROL

ANALOGUE VOLUME CONTROL

Each analogue output includes analogue volume control. Volume changes can be applied to each output immediately as they are written. Alternatively, all volume changes can be written, and then all volume changes can be applied simultaneously using the volume update feature.

Volume control includes optional zero cross functionality. When zero cross is enabled, volume changes are not applied until the output level crosses the DC level of the analogue channel (VMID). Zero cross helps to prevent pop and click noise when changing volume settings.

The zero cross function includes a timeout which forces volume changes if a zero cross event does not occur. The timeout period is a maximum of 278ms.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R19	7:0	PGA1L_	00001100	PGA Volume
PGA1L_VOL		VOL[7:0]		0000 0000 = +6dB
13h				0000 0001 = +5.5dB
R20	7:0	PGA1R_		0.5dB steps
PGA1R_VOL		VOL[7:0]		00001100 = 0dB
14h				
R21	7:0	PGA2L_		1001 1110 = -73.5dB
PGA2L_VOL		VOL[7:0]		1001 1111 = PGA Mute
15h				
R22	7:0	PGA2R_		
PGA2R_VOL		VOL[7:0]		
16h				
R19	8	PGA1L_	0	PGA Volume Update
PGA1L_VOL		VU		0 = Latch corresponding volume setting into
13h				Register Map but do not update volume
R20	8	PGA1R_		1 = Latch corresponding volume setting
PGA1R_VOL		VU		into Register Map and update all channels simultaneously
14h				Simulateously
R21	8	PGA2L_		
PGA2L_VOL		VU		
15h				
R22	8	PGA2R_		
PGA2R_VOL		VU		
16h				
R25	2	PGA1L_	0	PGA Gain Zero Cross Enable
PGA_CTRL1		ZC		0 = PGA gain updates occur immediately
19h	3	PGA1R_		1 = PGA gain updates occur on zero cross
		ZC		
	4	PGA2L_		
		ZC		
	5	PGA2R_		
		ZC		

Table 22 Analogue Volume Control

VOLUME RAMP

Analogue volume can be adjusted by step change or by soft ramp. The ramp rate is dependent upon the sampling rate. The sampling rate upon which the volume ramp rate is based can be selected between the DAC sampling rate or the ADC sampling rate in either slave mode or master mode. The ramp rates for common audio sample rates are shown in Table 23:

SAMPLE RATE FOR PGA (kHz)	DIVIDE BY	PGA RAMP RATE
		(ms/dB)
32	8	0.50
44.1	8	0.36
48	8	0.33
88.2	16	0.36
96	16	0.33
176.4	32	0.36
192	32	0.33

Table 23 Analogue Volume Ramp Rate

For example, when using a sample rate of 48kHz, the time taken for a volume change from and initial setting of 0dB to -20dB is calculated as follows:

Volume Change (dB) x PGA Ramp Rate (ms/dB) = 20 x 0.33 = 6.6ms

When changing from one PGA ramp clock source to another, it is recommended that PGA_SAFE_SW is set to 0. This forces the clock switch over to occur at a point where all relevant clock signals are zero, ensuring glitch-free operation. This process can take up to 32 left/right clock cycles.

If a faster change in PGA ramp rate clock source is required, PGA_FORCE can be set to 1. This forces the change in clock source to occur immediately regardless of the state of the relevant clock signals internally. Glitch-free operation is not guaranteed under these conditions. PGA_FORCE must be set back to 0 to initialise the timing circuits with the new clock.

If the volume ramp function is not required when increasing or decreasing volume, this block can be bypassed by setting ATTACK_BYPASS or DECAY_BYPASS to 1. Figure 19 shows the effect of these register settings:

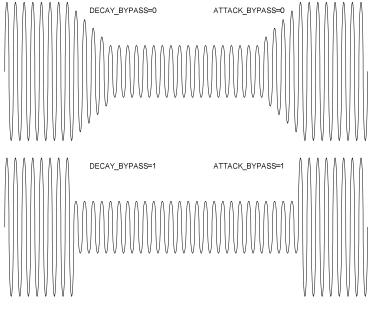


Figure 19 ATTACK_BYPASS and DECAY_BYPASS Functionality

PD, Rev 4.1, April 2010

WM8595

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R25	0	DECAY_	0	PGA Gain Decay Mode
PGA_CTRL1		BYPASS		0 = PGA gain will ramp down
19h				1 = PGA gain will step down
	1	ATTACK_	0	PGA Gain Attack Mode
		BYPASS		0 = PGA gain will ramp up
				1 = PGA gain will step up
R27	6:4	PGA_	001	Sample Rate for PGA
ADD_CTRL1		SR[2:0]		000 = 32kHz
1Bh				001 = 44.1kHz
				010 = 48kHz
				011 = 88.2kHz
				100 = 96kHz
				101 = 176.4kHz
				11X = 192kHz
				See Table 23 for further information on PGA
				sample rate versus volume ramp rate.
R36	3:1	PGA_	000	PGA Ramp Control Clock Source
PGA_CTRL3		SEL[2:0]		000 = LRCLK1
24h				001 = LRCLK2
				010 to 110 = Reserved
				111 = ADCLRCLK (when ADC is being used
				in master mode)
	10	PGA_UPD	0	PGA Ramp Control Clock Source Mux Update
				0 = Do not update PGA clock source
				1 = Update clock source

Note: When ATTACK_BYPASS=1 or DECAY_BYPASS=1, it is recommended that the zero cross function for the PGA is used to eliminate click noise when changing volume settings.

Table 24 Analogue Volume Ramp Control

ANALOGUE MUTE CONTROL

The analogue PGAs can be muted independently and are muted by default. Alternatively, all mute bits can be set using a master mute bit, $\mathsf{MUTE}_\mathsf{ALL}$.

Setting one of these mute bits is equivalent to setting the relevant PGAxx_VOL[7:0] register bits to mute as defined in Table 22.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R26	0	MUTE_	0	Master PGA Mute Control
PGA_CTRL2		ALL		0 = Unmute all PGAs
1Ah				1 = Mute all PGAs
	1	PGA1L_	1	Individual PGA Mute Control
		MUTE		0 = Unmute PGA
	2	PGA1R_	1	1 = Mute PGA
		MUTE		
	3	PGA2L_	1	
		MUTE		
	4	PGA2R_	1	
		MUTE		

Table 25 Analogue Mute Control

PGA ENABLE CONTROL

The PGAs are enabled using PGAxx_EN bits as described in Table 26

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R31	0	PGA1L_	0	PGA Enable Controls
INPUT_CTRL4		EN		0 = PGA disabled
1Fh	1	PGA1R_		1 = PGA enabled
		EN		
	2	PGA2L_		
		EN		
	3	PGA2R_		
		EN		

Table 26 PGA Enable Control

The WM8595 features a stereo 24-bit sigma-delta ADC, digital volume control with zero cross, a selectable high pass filter to remove DC offsets, and support for both master and slave clocking modes.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R13	6	ADC_EN	0	ADC Enable
ADC_CTRL1				0 = ADC disabled
0Dh				1 = ADC enabled

Table 27 ADC Enable Control

ADC INPUT SELECTOR CONTROL

The ADC input switch can be configured to allow any combination of two inputs to be input to the ADC. Each input switch channel can be controlled independently.

The input switch also includes PGAs to provide a range of analogue gain settings between 0dB and +12dB prior to the ADC. These PGAs can be enabled and disabled independently.

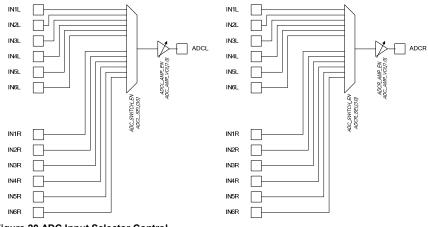


Figure 20 ADC Input Selector Control

Production Data

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R30	3:0	ADCL_	0000	ADC Input Select
INPUT_CTRL1		SEL[3:0]		0000 = IN1L
1Eh	7:4	ADCR_	1000	0001 = IN2L
		SEL[4:0]		0010 = IN3L
				0011 = IN4L
				0100 = IN5L
				0101 = IN6L
				0110 = Reserved
				0111 = Reserved
				1000 = IN1R
				1001 = IN2R
				1010 = IN3R
				1011 = IN4R
				1100 = IN5R
				1101 = IN6R
				1110 = Reserved
				1111 = Reserved
	9:8	ADC_AMP	10	ADC Amplifier Gain Control
		_VOL[1:0]		00 = 0dB
				01 = +3dB
				10 = +6dB
				11 = +12dB
	10	ADC_	0	ADC Input Switch Control
		SWITCH_		0 = ADC input switches open
		EN		1 = ADC input switches closed
R31	6	ADCL_	0	ADC Input Amplifier Enable Controls
INPUT_CTRL2		AMP_EN		0 = Amplifier disabled
1Fh	7	ADCR_	0	1 = Amplifier enabled
		AMP_EN		

Table 28 ADC Input Switch Control

DIGITAL VOLUME CONTROL

The ADC digital volume can be adjusted between +30dB and -97dB in 0.5dB steps. Left and right channels can be controlled independently. Volume changes can be applied immediately to each channel, or volume changes can be written to both channels before writing to an update bit in order to change the volume in both channels simultaneously.

Volume control includes optional zero cross functionality. When zero cross is enabled, volume changes are not applied until the output level crosses the DC level of the ADC output. Zero cross helps to prevent pop and click noise when changing volume settings.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R16 ADCL_VOL 10h	7:0	ADCL _VOL[7:0]	11000011	ADC Digital Volume 0000 0000 = Digital mute 0000 0001 = -97dB
R17 ADCR_VOL 11h	7:0	ADCR _VOL[7:0]	11000011	0000 0010 = -96.5dB 0.5dB steps 1100 0011 = 0dB 0.5dB steps 1111 1110 = +29.5dB 1111 1111 = +30dB
R16 ADCL_VOL 10h	8	ADCL_VU	0	ADC Digital Volume Update 0 = Latch ADC volume setting into Register Map but do not update volume
R17 ADCR_VOL 11h	8	ADCR_VU	0	1 = Latch ADC volume setting into Register Map and update left and right channels simultaneously
R13 ADC_CTRL1 0Dh	13	ADC_ZC_ EN	1	ADC Digital Volume Control Zero Cross Enable 0 = Do not use zero cross, change volume instantly 1 = Use zero cross, change volume when data crosses zero

Table 29 ADC Digital Volume Control

CHANNEL SWAP AND INVERSION

The WM8595 ADC input channels can be inverted and swapped in a number of ways to provide maximum flexibility of input path to the ADC. The default configuration provides stereo output data with the left and right channel data in the left and right channels. It is possible to swap the left and right channels, invert them independently, or select the same data from both channels.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R13	7	ADC_	0	ADC Left/Right Swap
ADC_CTRL1		LRSWAP		0 = Normal
0Dh				1 = Swap left channel data into right channel
				and vice-versa
	8	ADCR_	0	ADCL and ADCR Output Signal Inversion
		INV		0 = Output not inverted
	9	ADCL_	0	1 = Output inverted
		INV		
	11:10	ADC_	00	ADC Data Output Select
		DATA_ SEL[1:0]		00 = left data from ADCL, right data from ADCR
				01 = left data from ADCL, right data from ADCL
				10 = left data from ADCR, right data from ADCR
				11 = left data from ADCR, right data from ADCL

Table 30 ADC Channel Swap Control

HIGH PASS FILTER

The WM8595 includes a high pass filter to remove DC offsets. The high pass filter response is shown on page 77. It is possible to disable the high pass filter by writing to ADC_HPD.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R13	12	ADC_HPD	0	ADC High Pass Filter Disable
ADC_CTRL1				0 = High pass filter enabled
0Dh				1 = High pass filter disabled

Table 31 High Pass Filter Disable Control

DIGITAL ROUTING CONTROL

The WM8595 includes a highly flexible digital routing multiplexer, allowing independent systems to be directly connected to the WM8595 without the need for glue logic. The WM8595 consists of two digital audio 'ports', each with four pins, which can be configured to connect to any of the three internal WM8595 systems (ADC, DAC1 or DAC2) or to any other digital audio ports. An additional ADC data pin and two GPIO pins are available as auxiliary bidirectional data pins. A simplified block diagram of the digital routing is shown in Figure 21:

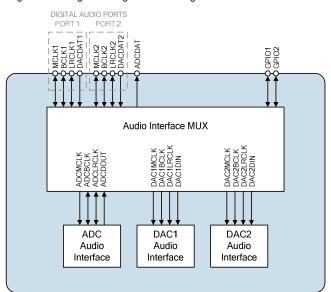


Figure 21 Digital Routing Block Diagram

The default configuration of the clocking is as shown in Figure 22 below. It is expected that this configuration will satisfy the majority of the use cases for the WM8595, but if it doesn't it is possible to route the signals differently. See the following pages for details of this setup.

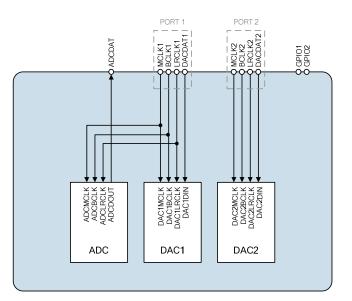


Figure 22 Default Clocking Configuration

DIGITAL AUDIO PORT PIN CONFIGURATION

The MCLK1 pin is defined as an input or an output using MCLK1_SEL[2:0]. The BCLK1 and LRCLK1 pins are always defined as inputs or outputs together using WORDCLK1_SEL[2:0]. DACDAT1 is always an input.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R37	3:1	MCLK1_	000	MCLK1 Pin Function Select
AIF_MUX1		SEL[2:0]		000 = Input to WM8595
25h				001 = Output MCLK2
				010 to 111 = Reserved
	6:4	WORD	000	BCLK1 and LRCLK1 Pins Function Select
		CLK1_		000 = Inputs to WM8595
		SEL[2:0]		001 = Output BCLK2 and LRCLK2
				010 to 110 = Reserved
				111 = Output ADCBCLK and ADCBCLK (when ADC is master mode)

Table 32 Digital Audio Port 1 Pin Configuration

The MCLK2 pin is defined as an input or an output using MCLK2_SEL[2:0]. The BCLK2 and LRCLK2 pins are always defined as inputs or outputs together using WORDCLK2_SEL[2:0]. DACDAT2 is always an input.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R38	3:1	MCLK2_	001	MCLK2 Pin Function Select
AIF_MUX2		SEL[2:0]		000 = Output MCLK1
26h				001 = Input to WM8595
				010 to 111 = Reserved
	6:4	WORD	001	BCLK2 and LRCLK2 Pins Function Select
		CLK2_		000 = Output BCLK1 and LRCLK1
		SEL[2:0]		001 = Inputs to WM8595
				010 to 110 = Reserved
				111 = Output ADCBCLK and ADCBCLK (when ADC is master mode)

Table 33 Digital Audio Port 2 Pin Configuration

ADC AUDIO INTERFACE CLOCK CONFIGURATION

The WM8595 ADC has an independent audio interface which can be configured to select the required signals from any of the digital audio ports. The audio interface is not restricted to take each signal from the same digital audio port, although the BCLK and LRCLK signals are selected together.

The MCLK is always an input to the ADC audio interface is selected using ADCMCLK_SEL[2:0]. The BCLK and LRCLK are always selected together, and can be either an input to the ADC audio interface (when the ADC is in slave mode) or an output from the ADC audio interface (when the ADC is in master mode). BCLK and LRCLK are selected using ADCWORDCLK_SEL[2:0].

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R44	3:1	ADC	000	ADCMCLK Select
AIF_MUX5		MCLK_		000 = Use MCLK1
2Ch		SEL[2:0]		001 = Use MCLK2
				010 to 111 = Reserved
	6:4	ADC	000	ADC BCLK and LRCLK Select
		WORD		000 = Use BCLK1 and LRCLK1
		CLK_		001 = Use BCLK2 and LRCLK2
		SEL[2:0]		010 to 110 = Reserved
				111 = Output ADCBCLK and ADCBCLK (when ADC is master mode)

Table 34 ADC Audio Interface Clock Configuration

DAC1 AND DAC2 AUDIO INTERFACE CLOCK CONFIGURATION

Both DACs on the WM8595 have independent audio interfaces which can be configured to select the required signals from any of the digital audio ports. The audio interfaces are not restricted to take each signal from the same digital audio ports, although the BCLK and LRCLK signals are selected together.

DAC1MCLK and DAC2MCLK are always inputs to the DAC1 and DAC2 audio interfaces and are selected using DAC1MCLK_SEL[2:0] and DAC2MCLK_SEL[2:0] respectively.

DAC1BCLK and DAC1LRCLK are always selected together and can are inputs to the DAC1 audio interface. DAC2BCLK and DAC2LRCLK are always selected together and are inputs to the DAC2 audio interface. DAC1BCLK and DAC1LRCLK are selected using DAC1WORDCLK_SEL[2:0], while DAC2BCLK and DAC2LRCLK are selected using DAC2WORDCLK_SEL[2:0].

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R42	3:1	DAC1	000	DAC1 MCLK Select
AIF_MUX3		MCLK_		000 = Use MCLK1
2Ah		SEL[2:0]		001 = Use MCLK2
				010 to 111 = Reserved
R43		DAC2	001	DAC2 MCLK Select
AIF_MUX4		MCLK_		000 = Use MCLK1
2Bh		SEL[2:0]		001 = Use MCLK2
				010 to 111 = Reserved
R42	6:4	DAC1	000	DAC1 BCLK and DAC LRCLK Select
AIF_MUX3		WORD		000 = Use BCLK1 and LRCLK1
2Ah		CLK_		001 = Use BCLK2 and LRCLK2
		SEL[2:0]		010 to 110 = Reserved
				111 = Use ADCBCLK and ADCBCLK (when
				ADC is master mode)
R43		DAC2	001	DAC2 BCLK and DAC LRCLK Select
AIF_MUX4		WORD		000 = Use BCLK1 and LRCLK1
2Bh		CLK_		001 = Use BCLK2 and LRCLK2
		SEL[2:0]		010 to 110 = Reserved
				111 = Use ADCBCLK and ADCBCLK (when
				ADC is master mode)
R42	9:7	DAC1	000	DAC1 DIN Select
AIF_MUX3		DIN_		000 = Use DACDAT1
2Ah		SEL[2:0]		001 = Use DACDAT2
				010 to 100 = Reserved
				101 = Use GPIO1
				110 = Use GPIO2
				111 = Reserved
R43	9:7	DAC2	001	DAC2 DIN Select
AIF_MUX4		DIN_		000 = Use DACDAT1
2Bh		SEL[2:0]		001 = Use DACDAT2
				010 to 100 = Reserved
				101 = Use GPIO1
				110 = Use GPIO2
				111 = Reserved

Table 35 DAC1 and DAC2 Audio Interface Clock Configuration

USING GPIO PINS AS ADDITIONAL DATA PINS

There are two GPIO pins, GPIO1 and GPIO2, which can be used as additional pins to connect to external devices. GPIO1 is controlled by GPIO1_SEL[2:0] and GPIO2 by GPIO2_SEL[2:0].

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R45	3:1	GPIO1_	101	GPIO1 Pin Function Select
AIF_MUX9		SEL[2:0]		000 = Source DACDAT1
2Dh				001 = Source DACDAT2
				010 = Source ADCDAT
				011 to 100 = Reserved
				101 = Input to WM8595
				110 = Source GPIO2
				111 = Source ADC Data Output

Table 36 GPIO1 Audio Interface Mux Configuration

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R46	3:1	GPIO2_	000	GPIO2 Pin Function Select
AIF_MUX10		SEL[2:0]		000 = Source DACDAT1
2Eh				001 = Source DACDAT2
				010 = Source ADCDAT
				011 to 100 = Reserved
				101 = Source GPIO1
				110 = Input to WM8595
				111 = Source ADC Data Output

Table 37 GPIO2 Audio Interface Mux Configuration

UPDATE FUNCTION

To prevent clock contention issues during setup of the digital audio interface mux, an update system has been implemented. This allows the registers to be configured as required and the update to be applied with the last register write synchronise the configuration of the digital audio mux. An update can be generated using any of the update bits shown in Table 38.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R37	10	PORT1_	0	Update
AIF_MUX1		UPD		0 = Latch corresponding settings into
25h				Register Map but do not update
R38	10	PORT2_		1 = Latch corresponding settings into
AIF_MUX2		UPD		Register Map and update all simultaneously
26h				
R42	10	DAC1_		
AIF_MUX3		UPD		
2Ah				
R43	10	DAC2_		
AIF_MUX4		UPD		
2Bh				
R44	10	ADC_		
AIF_MUX5		UPD		
2Ch				
R45	10	GPIO1_		
AIF_MUX6		UPD		
2Dh				
R46	10	GPIO2_		
AIF_MUX7		UPD		
2Eh				

Table 38 Audio Interface Mux Update Bits

POP AND CLICK PERFORMANCE

The WM8595 includes a number of features designed to minimise pops and clicks in various phases of operation including power up, power down, changing analogue paths and starting/stopping clocks. In order to ensure optimum performance, the following sequences should be followed.

POWERUP SEQUENCE

- 1. Apply power to the WM8595 (see Power On Reset).
- 2. Set-up initial internal biases:
 - SOFT_ST=1
 - FAST_EN=1
 - POBCTRL=1
 - BUFIO_EN=1
- Enable output drivers to allow the AC coupling capacitors at the output stage to be precharged to VMID2C:
 - VOUTxL_EN=1
 - VOUTxR_EN=1
- 4. Enable VMID2C. Highest resistance string selected here for optimum pop reduction:
 - VMID_SEL=10
- 5. Wait until VMID2C has fully charged. The time is dependent on the capacitor values used to AC-couple the outputs and to decouple VMID2C, and the VMID_SEL value chosen. An approximate delay of 6xRCms can be used, where R is the VMID2C resistance (between AVDD1 and VMID2C) and C is the decoupling capacitor on VMID2C, although this time should be determined by the customer using the exact application configuration for best results.
 - Insert delay
- 6. Enable the master bias and VMID2C buffer:
 - BIAS_EN=1
- 7. Switch the output drivers to use the master bias instead of the power up (fast) bias:
 - POBCTRL=0
- 8. Enable all functions (DACs, ADC, PGAs) required for use. Outputs are muted by default so the write order is not important.
- 9. Unmute the PGAs and switch VMID2C resistance to mid setting for normal operation:
 - PGAxL_MUTE=0
 - PGAxR_MUTE=0
 - VMID_SEL=01

POWERDOWN SEQUENCE

- 1. Mute all PGAs:
 - MUTE_ALL=1
- 2. Set up biases for power down mode:
 - FAST_EN=1
 - VMID_SEL=01
 - BIAS_EN=1
 - BUFIO_EN=1
 - VMIDTOG=0
 - SOFT_ST=1
- 3. Switch outputs to use fast bias instead of master bias:
 - POBCTRL=1
- 4. Power down all WM8595 functions (ADC, DACs, PGAs etc.). The outputs are muted so the write order is not important.
- 5. Power down VMID to allow the analogue outputs to ramp gently to ground in a pop-free manner.
 - VMID_SEL=00
- 6. Wait until VMID2C has fully discharged. The time taken depends on system capacitance and should be evaluated by the customer in their application.
 - Insert delay
- 7. Clamp outputs to ground.
 - APE_B=0
- 8. Power down outputs.
 - VOUTxL_EN=0
 - VOUTxR_EN=0
- 9. Disable remaining bias control bits.
 - FAST_EN=0
 - POBCTRL=0
 - BIAS_EN=0

Power supplies can now be safely removed from the WM8595 if desired.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R35	0	POBCTRL	0	Bias Source for Output Amplifiers
BIAS	0	FUBUIKL	0	0 = Output amplifiers use master bias
23h				
2311	1	VMIDTOG	0	1 = Output amplifiers use fast bias VMID Power Down Characteristic
	1	VMIDTOG	0	
				0 = Slow ramp
				1 = Fast ramp
	2	FAST_EN	0	Fast Bias Enable
				0 = Fast bias disabled
				1 = Fast bias enabled
	3	BUFIO_	0	VMID Buffer Enable
		EN		0 = VMID Buffer disabled
				1 = VMID Buffer enabled
	4	SOFT_ST	1	VMID Soft Ramp Enable
				0 = Soft ramp disabled
				1 = Soft ramp enabled
	5	BIAS_EN	0	Master Bias Enable
				0 = Master bias disabled
				1 = Master bias enabled
				Also powers down VMID1C
	7:6	VMID_ SEL[1:0]	00	VMID Resistor String Value Selection (VMID2C only)
				00 = off (no VMID)
				01 = 38k
				10 = 127k
				11 = 12.5k
				The selection is the total resistance of the string from VREF2VDD to VREF2GND. The VMID1C resistance is fixed at $200k\Omega$.

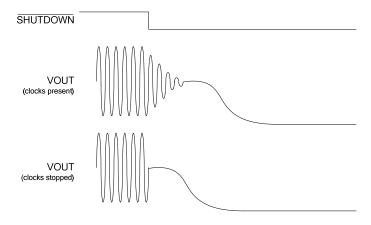
Table 39 describes the various bias control bits for power up/down control:

Table 39 Bias Control

GLOBAL ENABLE CONTROL

The WM8595 includes a number of enable and disable mechanisms to allow the device to be powered on and off in a pop-free manner. A global enable control bit enables the ADC, DAC and analogue paths.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R12	0	GLOBAL_	0	Device Global Enable
ENABLE 0Ch		EN		0 = ADC, DAC and PGA ramp control circuitry disabled
				1 = ADC, DAC and PGA ramp control circuitry enabled


Table 40 Global Enable Control

EMERGENCY POWER DOWN

In the event of sudden power failure in a system, or any other emergency condition, the SHUTDOWN pin may be used to power the device down from any state in a controlled manner. This may be useful in a system where there is no guarantee the power supplies will be available long enough to complete the recommended power down sequence using software writes.

When the SHUTDOWN is pulled low, the device will mute and then power down the outputs quietly. If the WM8595 is still receiving clocks, the outputs will be softmuted. If the clocks have stopped, the outputs will be muted immediately. Figure 23 shows the operation of SHUTDOWN and the effect on the outputs of the device:

Figure 23 SHUTDOWN Operation

It is expected that power is removed from the device before the device is used again, forcing the device to be reset via the POR. If this is not the case, the device must be manually reset by the customer (either by a software or hardware reset) once the SHUTDOWN is pulled high again.

Production Data

刀	
П	
ഹ	
H	
Ŋ	
Π	
刀	
_	
\leq	
⋗	
υ	

0x000 C	0		GPIO2_SEL[2:0]		0	0	0	0	0	0	GPI02_UPD	0	0	0	0	0	AIF_MUX7	2E	46
0x000 A	0		GPI01_SEL[2:0]		0	0	0	0	0	0	GPI01_UPD	0	0	0	0	0	AIF_MUX6	20	45
0x0000	0	10	ADCM CLK_SEL[2:0]	AD	2:0]	ADCWORDCLK_SEL[2:0]	ADC	0	0	0	ADC_UPD	0	0	0	0	0	AIF_MUX5	2C	44
0x0092	0	[0]	DAC2MCLK_SEL[2:0]	DAC	[2:0]	DAC2WORDCLK_SEL[2:0]	DAC:	[0	DAC2DIN_SEL[2:0]		DAC2_UPD	0	0	0	0	0	AIF_MUX4	2B	43
0×0000	0	0]	DAC1MCLK_SEU[2:0]	DAU	[2:0]	DAC1WORDCLK_SEL[2:0]	DAC		DAC1DIN_SEL[2:0]	_	DAC1_UPD	0	0	0	0	0	AIF_MUX3	2A	42
0x0092	0		M CLK2_SEL[2:0]	M	[0:	WORDCLK2_SEL[2:0]	W	0	0	0	PORT2_UPD	0	0	0	0	0	AIF_MUX2	26	38
0×0000	0		MCLK1_SEL[2:0]	~	0]	WORDCLK1_SEL[2:0]	Ŵ	0	0	0	PORT1_UPD	0	0	0	0	0	AIF_MUX1	25	37
0x0002	0		PGA_SEU[2:0]		0	0	0	0	0	0	PGA_UPD	0	0	0	0	0	PGA_CTRL3	24	36
0×0010	POBCTRL	VMIDTOG	FAST_EN	BUFIOEN	SOFT_ST	BIAS_EN	SEL[1:0]	VMID_SEL[1:0]	0	0	0	0	0	0	0	0	BIAS	23	35
0x0040	VOUT1L_TRI	VOUT IR_TRI	VOUT2L_TRI	VOUT2R_TRI	0	0	APE_B	VOUT1L_EN	VOUT1R_EN	VOUT2L_EN	VOUT2R_EN	0	0	0	0	0	OUTPUT_CTRL	22	34
0 000 x 0	PGA1L_EN	PGA1R_EN	PGA2L_EN	PGA2R_EN	0	0	ADCR_AMP_ENADCL_AMP_EN	ADCR_AMP_EN	0	0	0	0	0	0	0	0	INPUT_CTRL2	†	31
0×0080		EL[3:0]	ADCL_SEL[3:0]			_SEL[3:0]	ADCR_SEL[3		ADC_AMP_VOL[1:0]		DC_SWITCH_E	0	0	0	0	0	INPUT_CTRL1	ħ	30
0x0048	0	0	0	AUTO_INC		PGA_SR[2:0]		0	0	0	0	0	0	0	0	0	GEN	18	27
0x007E	MUTE_ALL	PGA1L_MUTE	PGA1R_MUTE	PGA2R_MUTE PGA2L_MUTE PGA1R_MUTE PGA1L_MUTE	PGA2R_MUTE	0	0	0	0	0	0	0	0	0	0	0	PGA_CTRL2	1A	26
0 000 X 0	TTACK_BYPASDECAY_BYPAS	TTACK_BYPAS	PGA1L_ZC	PGA1R_ZC	PGA2L_ZC	PGA2R_ZC	0	0	0	0	0	0	0	0	0	0	PGA_CTRL1	19	25
0x000 C				VOL7:0]	PGA2 R_VOL7:0]				PGA2R_VU	0	0	0	0	0	0	0	PGA2R_VOL	16	22
0x000 C				VOL[7:0]	PGA2L_VOL[7:0]				PGA2L_VU	0	0	0	0	0	0	0	PGA2L_VOL	ත්	21
0x000 C				VOL[7:0]	PGA1R_VOL[7:0]				PGA1R_VU	0	0	0	0	0	0	0	PGA1R_VOL	14	20
0x000 C				/OL[7:0]	PGA 1L_VOL[7:0]				PGA1L_VU	0	0	0	0	0	0	0	PGA1L_VOL	13	19
0x00C3				/OL[7:0]	ADCR_VOL[7:0]				ADCR_VU	0	0	0	0	0	0	0	ADCR_VOL	11	17
0x00C3				OL[7:0]	ADCL_VOL[7:0]				ADCL_VU	0	0	0	0	0	0	0	ADCL_VOL	10	16
0x0000	ADC_MSTR		0	0	0	0	0	0	0	0	0	0	0	0	0	0	ADC_CTRL3	0F	15
0×0000		ADC_SR[2:0]			ADC_BCLKDIV[2:0]	AE		0	0	0	0	0	0	0	0	0	ADC_CTRL2	0E	14
0x200A	MT[10]	ADC_FMT[10]	'L[1:0]	ADC_WL[1:0]	ADC_BCP	ADC_LRP	ADC_EN	ADC_LRSWAP	ADCR_INV	ADCL_INV	DATA_SEL[1:0]	ADC_DA	ADC_HPD	ADC_ZC_EN	0	0	ADC_CTRL1	0D	13
0x0000	GLOBAL_EN	DAC2_COPY_DAC1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ENABLE	0C	12
0x00C8				VOL[7:0]	DAC2R_VOL[7:0]				DAC2R_VU	0	0	0	0	0	0	0	DAC2R_VOL	0B	11
0x00C8				VOL[7:0]	DAC2L_VOL[7:0]				DAC2L_VU	0	0	0	0	0	0	0	DAC2L_VOL	0A	10
0×0000		DAC2_SR[2:0]		0	0	0	0	0	0	0	0	0	0	0	0	0	DAC2_CTRL2	08	8
0x008A	=M T[1:0]	DA C2_FM T[1:0]	VЦ 1:0]	DAC2_WU[1:0]	DAC2_BCP	H DAC2_LRP	DAC2_DEEMPH	DAC2_ZCEN	DAC2_EN	DAC2_MUTE	DAC2_OP_MUX[1:0]	DAC2_O	0	0	0	0	DAC2_CTRL1	07	7
0x00C8				VOL[7:0]	DAC1R_VOL[7:0]				DAC1R_VU	0	0	0	0	0	0	0	DAC1R_VOL	06	6
0x00C8				OL[7:0]	DAC1L_VOL[7:0]				DAC1L_VU	0	0	0	0	0	0	0	DAC1L_VOL	05	თ
0×0000		DAC1_SR[2:0]		0	0	0	0	0	0	0	0	0	0	0	0	0	DAC1_CTRL2	03	ω
0x008A	"MT[1:0]	DAC1_FMT[10]	VL[1:0]	DAC1_WL[1:0]	DAC1_BCP	H DAC1_LRP	DAC1_DEEM PH	DAC1_ZCEN	DAC1_EN	DAC1_MUTE	DAC1_OP_MUX[t0]	DAC1_0	0	0	0	0	DAC1_CTRL1	02	2
0x0000				M[7:0]	REVNUM [7:0]				0	0	0	0	0	0	0	0	REVISION	01	1
0 x859 5							RST	0] / Write: SW_RST	Read:DEVICE_ID[15:0]	Rea							DEVICE_ID	00	0
Hex Default	0	_	2	з	4	5	6	7	8	9	10	11	12	13	14	15	r N ame	ec Addr Hex Addr Name	Dec Add
									1	1						í			2

PD, Rev 4.1, April 2010

50

R0 (0h) –	Software Re	eset / Device ID	Register (DEV	/ICE_ID)				
Bit #	15	14	13	12	11	10	9	8
Read				DEVICE	_ID[15:8]			
Write				SW_	RST			
Default	1	0	0	0	0	1	0	1
Bit #	7	6	5	4	3	2	1	0
Read				DEVICE	_ID[7:0]			
Write				SW_	RST			
Default	1	0	0	1	0	1	0	1
					N/A	A = Not Applicat	ole (no function	implemented)
Fu	nction				Description			
DEVIC	EID[15:0]	Device ID						
		A read of this	register will ret	urn the device	ID. In this case	0x8595.		
SM	/_RST	Software Res	set					
		A write of any	value to this re	egister will gene	rate a software	reset.		

Figure 24 R0 – Software Reset / Device ID

. ,		vision Register	,		1	1	1	1
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	0
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Default	0	0	0	0	0	0	0	0
						-		-
Bit #	7	6	5	4	3	2	1	0
Read				REVN	JM[7:0]			
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Default	-	-	-	-	-	-	-	-
					N/A	A = Not Applicat	ole (no functior	implemented)
Fu	nction				Description			
REVN	NUM[7:0]	Device Revis	sion					
			s register will ref sign is updated		revision numbe	r. This number	is sequentially	incremented if

Figure 25 R1 – Device Revision Register

WM8595

Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0							
Write	N/A	N/A	N/A	N/A	DAC1_O	P_MUX[1:0]	DAC1_MUTE	DAC1_EN			
Default	0	0	0	0	0	0	0	0			
				11		1	1				
Bit #	7	6	5	4	3	2	1	0			
Read		DAC1_			DAG	MIL [4:0]	DA04 5	MT[4.0]			
Write	DAC1_ZCEN	DEEMPH	DAC1_LRP	DAC1_BCP	DAC1	_WL[1:0]	DAC1_F	·MT[1:0]			
Default	1	0	0	0	1	0	1	0			
					N	/A = Not Applica	able (no function	implemented			
Fu	nction				Description	1					
DAC1	_FMT[1:0]	DAC1 Audio	Interface Forn	nat							
		00 = Right Ju	stified								
		01 = Left Just	ified								
		$10 = I^2S$									
		11 = DSP									
DAC1	1_WL[1:0]	DAC1 Audio	Interface Wor	d Length							
		00 = 16-bit									
		01 = 20-bit									
		10 = 24-bit									
		11 = 32-bit (n	ot available in I	Right Justified m	ode)						
DAC	C1_BCP	DAC1 BCLK	Polarity								
		0 = DACBCL	< not inverted -	- data latched or	rising edge	of BCLK					
		1 = DACBCL	<pre>< inverted – dat</pre>	ta latched on fall	ing edge of E	BCLK					
DAG	C1_LRP	DAC1 LRCL	(Polarity								
		0 = DACLRCI	K not inverted								
		1 = DACLRCI	_K inverted								
DAC1	DEEMPH	DAC1 Deemp	ohasis								
		0 = No deemphasis									
		1 = Apply 44.	1kHz deempha	sis							
DAC	1_ZCEN	DAC1 Digital	Volume Cont	rol Zero Cross	Enable						
		0 = Do not us	e zero cross								
		1 = Use zero	cross								
DA	C1_EN	DAC1 Enable)								
		0 = DAC disa	bled								
		1 = DAC enal	bled								
DAC	1_MUTE	DAC1 Softm	ute								
		0 = Normal or	peration								
		1 = Softmute	applied								
DAC1 C	DP_MUX[1:0]	DAC1 Digital									
		-	Normal Operati	on)							
			eft data to DAC								
		•	ight data to DA	,							
		-	lonomix, (L+R)	-							

Figure 26 R2 – DAC1 Control Register 1

R3 (03h) -	- DAC1 Con	trol Register 2 (I	DAC1_CTRL2)					
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	0
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Default	0	0	0	0	0	0	0	0
Bit #	7	6	5	4	3	2	1	0
Read	0	0	0	0	0		DAC1 SR[2:0]	
Write	N/A	N/A	N/A	N/A	N/A		DACI_SR[2.0]	
Default	0	0	0	0	0	0	0	0
					N//	A = Not Applica	ble (no function	implemented)
Fur	nction				Description			
DAC1	_SR[2:0]	DAC1 MCLK:	LRCLK Ratio					
		000 = Auto de	etect					
		001 = 128fs						
		010 = 192fs						
		011 = 256fs						
		100 = 384fs						
		101 = 512fs						
		110 = 768fs						
		111 = 1152fs						

Figure 27 R3 – DAC1 Control Register 2

Bit #	15	14	13	12	11	10	9	8	
Read	0	0	0	0	0	0	0		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	DAC1L_VU	
Default	0	0	0	0	0	0	0	0	
Bit #	7	6	5	4	3	2	1	0	
Read				DAC1L_					
Write				DAOIL_					
Default	1	1	0	0	1	0	0	0	
					N/#	A = Not Applical	ble (no functio	n implemented)	
Fu	nction				Description				
DAC1L	_VOL[7:0]	DAC1L Digit	al Volume						
		0000 0000 =	-100dB						
		0000 0001 =	-99.5dB						
		0000 0010 =	-99dB						
		0.5dB step	s						
		1100 1000 = 0dB							
		0.5dB step	0.5dB steps						
		1101 1111 =	+11.5dB						
	111X XXXX = +12dB								
DAC	DAC1L_VU DAC1L Digital Volume Update								
DAC	C1L_VU	Ũ	•	into Register Ma	ap but do not u	pdate volume			

Figure 28 R5 – DAC1L Digital Volume Control Register

Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0			
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	DAC1R_VU		
Default	0	0	0	0	0	0	0	0		
Bit #	7	6	5	4	3	2	1	0		
Read	,		5				<u> </u>			
Write				DAC1R_	VOL[7:0]					
Default	1	1	0	0	1	0	0	0		
					N//	A = Not Applica	ble (no functio	on implemented		
Fu	nction				Description	••		•		
DAC1R	_VOL[7:0]	DAC1R Digit	al Volume							
		0000 0000 =	-100dB							
		0000 0001 =	-99.5dB							
		0000 0010 =	-99dB							
		0.5dB step	S							
		1100 1000 = 0dB								
		0.5dB steps								
		1101 1111 =	+11.5dB							
111X XXXX = +12dB										
DAC	1R_VU	DAC1R Digit	al Volume Up	date						
DAC	1R_VU	•	•	date nto Register Ma	p but do not up	date volume				

Figure 29 R6 – DAC1R Digital Volume Control Register

Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0							
Write	N/A	N/A	N/A	N/A	DAC2_O	P_MUX[1:0]	DAC2_MUTE	DAC2_EN			
Default	0	0	0	0	0	0	0	0			
		I									
Bit #	7	6	5	4	3	2	1	0			
Read		DAC2_			54.00	144 54 01	5400 5				
Write	DAC2_ZCEN	DEEMPH	DAC2_LRP	DAC2_BCP	DAC2	_WL[1:0]	DAC2_F	MI[1:0]			
Default	1	0	0	0	1	0	1	0			
	•			•	N	/A = Not Applica	ble (no function	implemented			
Fu	nction				Description	1					
DAC2	FMT[1:0]	DAC2 Audio	Interface Forn	nat							
		00 = Right Ju	stified								
		01 = Left Just	ified								
		$10 = I^2 S$									
		11 = DSP									
DAC2	_WL[1:0]		Interface Wor	d Length							
		00 = 16-bit									
		01 = 20-bit									
		10 = 24-bit									
			ot available in F	Right Justified m	ode)						
DAC	C2_BCP	DAC2 BCLK		0	,						
27102_201			-	- data latched or	rising edge	of BCLK					
		1 = DACBCL	K inverted – da	ta latched on fall	ling edge of E	BCLK					
DAG	C2_LRP	DAC2 LRCL	C Polarity		<u> </u>						
	_	0 = DACLRCI	K not inverted								
		1 = DACLRCI									
DAC2	DEEMPH	DAC2 Deemp	hasis								
-	-	0 = No deemphasis									
		1 = Apply 44.	1kHz deempha	sis							
DAC	2_ZCEN	DAC2 Digital	Volume Cont	rol Zero Cross	Enable						
		0 = Do not us	e zero cross								
		1 = Use zero	cross								
DA	C2_EN	DAC2 Enable)								
		0 = DAC2 dis	abled								
		1 = DAC2 ena	abled								
DAC	2_MUTE	DAC2 Softmu	ute								
		0 = Normal op	peration								
		1 = Softmute	applied								
DAC2_C	P_MUX[1:0]	DAC2 Digital	Monomix								
-		00 = Stereo (1	Normal Operati	on)							
		-	eft data to Righ								
		-	ight data to Let	-							
		-	onomix, (L+R)	-							

Figure 30 R7 – DAC2 Control Register 1

Bit #	15	14	13	12	11	10	9	8				
Read	0	0	0	0	0	0	0	0				
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
Default	0	0	0	0	0	0	0	0				
		_										
Bit #	7	6	5	4	3	2	1	0				
Read	0	0	0	0	0		DAC2 SR[2:0]					
Write	N/A	N/A	N/A	N/A	N/A		DAC2_SR[2.0]					
Default	0	0	0	0	0	0	0	0				
					N/A	A = Not Applica	ble (no function	implemented)				
Fu	nction				Description							
DAC2	2_SR[2:0]	DAC2 MCLK:	LRCLK Ratio									
		000 = Auto de	000 = Auto detect									
		001 = 128fs										
		010 = 192fs	010 = 192fs									
		011 = 256fs										
		100 = 384fs										
		101 = 512fs										
		101 = 512fs 110 = 768fs										

Figure 31 R8 – DAC2 Control Register 2

R10 (0Ah) – DAC2L Dig	ital Volume Co	ontrol Register	(DAC2L_VOL)			
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	DAC2L_VU
Default	0	0	0	0	0	0	0	0
Bit #	7	6	5	4	3	2	1	0
Read				DAC2L				
Write				DA02L_	VOL[7.0]			
Default	1	1	0	0	1	0	0	0
					N/A	= Not Applicab	le (no function	implemented)
Fu	nction				Description			
DAC2L	C2L_VOL[7:0] DAC2 Digital Volume							
		0000 0000 = -	-100dB					
		0000 0001 = -	·99.5dB					
		0000 0010 = -	99dB					
		0.5dB steps	6					
		1100 1000 = 0	DdB					
		0.5dB steps	6					
		1101 1111 = -	+11.5dB					
		111X XXXX =	+12dB					
DAC	2L_VU	DAC2 Digital	Volume Upda	te				
		0 = Latch DA0	C2L_VOL[7:0] i	nto Register Ma	ap but do not up	odate volume		
		1 = Latch DAG	C2L_VOL[7:0] i	nto Register Ma	ap and update l	eft and right cha	annels simultar	neously

Figure 32 R10 – DAC2L Digital Volume Control Register

· · · ·	- DAC2R Di	gital Volume C	-	r (DAC2R_VOL	.)	T	1	-T		
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	DAC2R VU		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	DAC2R_VU		
Default	0	0	0	0	0	0	0	0		
Bit #	7	6	5	4	3	2	1	0		
Read										
Write				DAC2R_	VOL[7.0]					
Default	1	1	0	0	1	0	0	0		
					N/A	A = Not Applicat	ole (no functior	n implemented		
Fun	iction				Description					
DAC2R	_VOL[7:0]	DAC2R Digital Volume								
		0000 0000 = -100dB								
		0000 0001 = -99.5dB								
		0000 0010 = -	-99dB							
		0.5dB steps	6							
		1100 1000 =	DdB							
		0.5dB steps	6							
		1101 1111 =	+11.5dB							
		111X XXXX =	+12dB							
DAC	2R_VU	DAC2R Digit	al Volume Upd	late						
		0 = Latch DA	C2R_VOL[7:0] i	into Register M	ap but do not u	pdate volume				
		1 = Latch DA	C2R VOL[7:0]	into Register M	ap and update	left and right ch	annels simulta	neously		

Figure 33 R11 – DAC2R Digital Volume Control Register

R12 (0Ch) – Device En	able Register (ENABLE)					
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	0
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Default	0	0	0	0	0	0	0	0
Bit #	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	DAC2_	
Write	N/A	N/A	N/A	N/A	N/A	N/A	COPY_DAC1	GLOBAL_EN
Default	0	0	0	0	0	0	0	0
					N/A	= Not Applicat	ole (no function	implemented)
Fui	nction				Description			
GLO	BAL_EN	Device Globa	al Enable					
		0 = ADC, DA0	C and PGA ram	p control circui	try disabled			
		1 = ADC, DA0	C and PGA ram	p control circui	try enabled			
DAC2_C	OPY_DAC1	DAC2 Config	uration Contro	bl				
		0 = DAC2 set	tings independe	ent of DAC1				
		1 = DAC2 set	tings are the sa	me as DAC1				

Figure 34 R12 – Device Enable Register

Bit #	15	14	13	12	11	10	9	8		
Read	0	0								
Write	N/A	N/A	ADC_ZCEN	ADC_HPD	ADC_DAT	A_SEL[1:0]	ADCL_INV	ADCR_INV		
Default	0	0	1	0	0	0	0	0		
						-				
Bit #	7	6	5	4	3	2	1	0		
Read	ADC_					A/I [1:0]		MT[1:0]		
Write	LRSWAP	ADC_EN	ADC_LRP	ADC_BCP	ADC_	WL[1:0]	ADC_F	MT[1:0]		
Default	0	0	0	0	1	0	1	0		
					N//	A = Not Applical	ole (no function	implemented		
Fu	nction				Description					
ADC_	FMT[1:0]	ADC Audio I	nterface Forma	at						
		00 = Right Ju	stified							
		01 = Left Just	ified							
		10 = I ² S								
		11 = DSP								
ADC	_WL[1:0]	ADC Audio I	nterface Word	Length						
		00 = 16-bit								
		01 = 20-bit								
		10 = 24-bit								
		11 = 32-bit (not available in Right Justified mode)								
AD	C_BCP	ADC BCLK P	olarity							
		0 = ADCBCL	< not inverted -	data latched o	n rising edge o	f BCLK				
		1 = ADCBCL	< inverted – dat	a latched on fal	lling edge of B	CLK				
AD	C_LRP	ADC LRCLK	Polarity							
		0 = ADCLRC	_K not inverted							
		1 = ADCLRC	_K inverted							
AD	C_EN	ADC Enable								
		0 = ADC disa	bled							
		1 = ADC enal	bled							
ADC	LRSWAP	ADC Left/Rig	ht Swap							
		0 = Normal								
		1 = Swap left	channel data ir	nto right channe	I and vice-vers	а				
ADO	CR INV	ADCL and A	OCR Output Si	gnal Inversion						
	 CL_INV	0 = Output no		•						
	-	1 = Output in	/erted							
ADC DA	TA_SEL[1:0]	ADC Data Ou								
-			-	ht data from AD	OCR (Normal S	stereo)				
				ht data from AD		-				
			-	ght data from Al		-				
			-	ght data from Al						
AD	C_HPD		ss Filter Disal							
	-	•	filter enabled							
		1 = High pass filter disabled								
ADC	_ZC_EN	ADC Digital Volume Control Zero Cross Enable								
				hange volume i						
				volume when da	-					

Figure 35 R13 – ADC Control Register 1

Bit #	15	14	13	12	11	10	9	8				
Read	0	0	0	0	0	0	0	0				
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Default	0	0	0	0	0	0	0	0				
Bit #	7	6	5	4	3	2	1	0				
Read	0	0				-	· ·	, v				
Write	N/A	N/A	AD	DC_BCLKDIV[2	::0]	ADC_SR[2:0]						
Default	0	0										
			N/A = Not Applicable (no function imp									
Fui	nction				Description							
ADC	_SR[2:0]	ADC MCLK:L	RCLK Ratio									
		000 = Auto de	000 = Auto detect									
		001 = reserved										
		010 = reserved										
		011 = 256fs	011 = 256fs									
		100 = 384fs	100 = 384fs									
		101 = 512fs										
		110 = 768fs										
		111 = Reserv	ed									
ADC BC	CLKDIV[2:0]	ADC BCLK R	ate (when AD	C in Master Mo	ode)							
	2.1.2.1.[2.0]		DC BCLK Rate (when ADC in Master Mode) 00 = MCLK / 4									
		1001 = MCLK										
		001 = MCLK	0									
		010 = 32fs	0									
			0									

Figure 36 R14 – ADC Control Register 2

R15 (0Fh)	– ADC Contr	ol Register 3 (/	ADC_CTRL3)					
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	0
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Default	0	0	0	0	0	0	0	0
Bit #	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ADC_MSTR
Default	0	0	0	0	0	0	0	0
					N/A	A = Not Application	le (no function	implemented)
Fui	nction				Description			
ADC	_MSTR	ADC Master	Mode Select					
		0 = Slave mo	de, ADCBCLK a	and ADCLRCL	K are inputs to	WM8595		
		1 = Master me	ode, ADCBCLK	and ADCLRC	LK are outputs	from WM8595		

Figure 37 R15 – ADC Control Register 3

R16 (10h)	 Left ADC 	Digital Volume	Control Regist	ter (ADCL_VO	L)		•				
Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0	0	0	ADCL VU			
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ADCL_VU			
Default	0	0	0	0	0	0	0	0			
Bit #	7	6	5	4	3	2	1	0			
Read	/	0	5	4	3	2	1 1	0			
	ADCL_VOL[7:0]										
Write			_		-	-					
Default	1	1	0	0	0	0	1	1			
					N/A	A = Not Applica	ble (no functio	n implemented			
Fur	nction				Description						
ADCL_	VOL[7:0]	Left ADC Dig	gital Volume								
		0000 0000 = Digital mute									
		0000 0001 =	0000 0001 = -97dB								
		0000 0010 =	-96.5dB								
		0.5dB step	S								
		1100 0011 =	0dB								
		0.5dB step	S								
		1111 1110 =									
		1111 1111 =	+30dB								
ADO	CL_VU	Left DAC Dig	gital Volume U	pdate							
		0 = Latch AD	CL_VOL[7:0] in	ito Register Ma	p but do not up	date volume					
	 0 = Latch ADCL_VOL[7:0] into Register Map but do not update volume 1 = Latch ADCL_VOL[7:0] into Register Map and update left and right channels simultaneously 										

Figure 38 R16 – Left ADC Digital Volume Control Register

Bit #	15	14	13	12	11	10	9	8	
Read	0	0	0	0	0	0	0		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ADCR_VU	
Default	0	0	0	0	0	0	0	0	
						•	1		
Bit #	7	6	5	4	3	2	1	0	
Read	ADCR VOL[7:0]								
Write				ADOI(_	0000				
Default	1	1	0	0	0	0	1	1	
					N/A	A = Not Applicat	ole (no functio	n implemented	
Fun	iction				Description				
ADCK	VOL[7:0]	Right ADC D	igital Volume						
ADOK_		Right ADC D 0000 0000 =	•						
ADOK_	_VOL[7.0]	-	Digital mute						
ADUR_	_VOL[7.0]	0000 0000 =	Digital mute -97dB						
ADOK_	_voc[7.0]	0000 0000 = 0000 0001 =	Digital mute -97dB -96.5dB						
	_voc[7.0]	0000 0000 = 0000 0001 = 0000 0010 =	Digital mute -97dB -96.5dB s						
	_VOL[7.0]	0000 0000 = 0000 0001 = 0000 0010 = 0.5dB step:	Digital mute -97dB -96.5dB s 0dB						
	VOL[7.0]	0000 0000 = 0000 0001 = 0000 0010 = 0.5dB step: 1100 0011 =	Digital mute -97dB -96.5dB s 0dB s						
	_vOL[7.0]	0000 0000 = 0000 0001 = 0000 0010 = 0.5dB step: 1100 0011 = 0.5dB step:	Digital mute -97dB -96.5dB s 0dB s +29.5dB						
		0000 0000 = 0000 0001 = 0000 0010 = 0.5dB steps 1100 0011 = 0.5dB steps 1111 1110 = 1111 1111 =	Digital mute -97dB -96.5dB s 0dB s +29.5dB	Update					
		0000 0000 = 0000 0001 = 0000 0010 = 0.5dB steps 1100 0011 = 0.5dB steps 1111 1110 = 1111 1111 = Right ADC D	Digital mute -97dB -96.5dB s 0dB s +29.5dB +30dB	•	ıp but do not up	date volume			

Figure 39 R17 – Right ADC Digital Volume Control Register

PD, Rev 4.1, April 2010

Production Data

WI	M8	595
----	----	-----

Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	0
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PGA1L_VI
Default	0	0	0	0	0	0	0	0
Bit #	7	6	5	4	3	2	1	0
Read	-					<u> </u>		
Write				PGA1L	_VOL[7:0]			
Default	0	0	0	0	1	1	0	0
					N/.	A = Not Applica	ble (no functio	on implemente
R20 (14h) ·	- PGA1R Vo	olume Control I	Register (PGA	1R_VOL)				
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	0
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PGA1R_V
Default	0	0	0	0	0	0	0	0
Bit #	7	6	5	4	3	2	1	0
Read					<u> </u>			
Write				PGA1R	_VOL[7:0]			
Default	0	0	0	0	1	1	0	0
					N/.	A = Not Applica	ble (no functio	on implemente
R21 (15h) ·	- PGA2L Vo	olume Control F	Register (PGA	2L_VOL)				
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	0
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PGA2L_V
Default	0	0	0	0	0	0	0	0
Bit #	7	6	5	4	3	2	1	0
Read	,	, v	L V				<u> </u>	- V
Write				PGA2L	_VOL[7:0]			
Default	0	0	0	0	1	1	0	0
					N/.	A = Not Applica	ble (no functio	on implemente
R22 (16h) ·	- PGA2R Vo	olume Control	Register (PGA	2R_VOL)				
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	0
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PGA2R_V
Default	0	0	0	0	0	0	0	0
Bit #	7	6	5	4	3	2	1	0
Read							<u> </u>	V
Write				PGA2R	_VOL[7:0]			
441110								

...Continued on next page

Production Data

Function	Description
PGA1L_VOL[7:0]	Input PGA Volume
PGA1R_VOL[7:0]	0000 0000 = +6dB
PGA2L_VOL[7:0]	0000 0001 = +5.5dB
PGA2R_VOL[7:0]	0.5dB steps
	00001100 = 0dB
	1001 1110 = -73.5dB
	1001 1111 = PGA Mute
PGA1L_VU	Input PGA Volume Update
PGA1R_VU	0 = Latch corresponding volume setting into Register Map but do not update volume
PGA2L_VU	1 = Latch corresponding volume setting into Register Map and update all channels simultaneously
PGA2R_VU	

Figure 40 R19-24 – PGA Volume Control Registers

R25 (19h)	- PGA Contr	ol Register 1 (PGA_CTRL1)					
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	0
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Default	0	0	0	0	0	0	0	0
		_						
Bit #	7	6	5	4	3	2	1	0
Read	0	0		PGA2L ZC	PGA1R ZC	PGA1L ZC	ATTACK_	DECAY_
Write	N/A	N/A	PGA2R_ZC	PGAZL_ZC	PGAIR_20	PGAIL_20	BYPASS	BYPASS
Default	0	0	0	0	0	0	0	0
					N/A	a = Not Applicat	ole (no function	implemented)
Fui	nction				Description			
DECAY	_BYPASS	PGA Gain D	ecay Mode					
		0 = PGA gair	n will ramp dowr	ו				
		1 = PGA gair	n will step down					
ATTAC	<_BYPASS	PGA Gain At	tack Mode					
		0 = PGA gair	n will ramp up					
		1 = PGA gair	n will step up					
PGA	A1L_ZC	PGA Gain Ze	ero Cross Enat	ole				
PGA	1R_ZC	0 = PGA gair	n updates occur	immediately				
PGA	2L_ZC	1 = PGA gair	n updates occur	on zero cross				
PGA	2R_ZC	Zero cross m	ust be disabled	to use gain rar	np			

Figure 41 R25 – PGA Control Register 1

R26 (1Ah)	– PGA Cont	rol Register 2 (PGA_CTRL2)					
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	0
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Default	0	0	0	0	0	0	0	0
Bit #	7	6	5	4	3	2	1	0
Read	0	0	0	PGA2R_	PGA2L_	PGA1R_	PGA1L_	MUTE ALL
Write	N/A	N/A	N/A	MUTE	MUTE	MUTE	MUTE	MOTE_ALL
Default	0	1	1	1	1	1	1	0
					N/A	= Not Applicat	ole (no function	implemented)
Fu	nction				Description			
MUT	E_ALL	Master PGA	Mute Control					
		0 = Unmute a	Il output drivers	6				
		1 = Mute all o	utput drivers					
PGA1	L_MUTE	Individual PC	GA Mute Contr	ol				
PGA1	R_MUTE	0 = Unmute o	utput driver					
PGA2	L_MUTE	1 = Mute outp	ut driver					
PGA2	R_MUTE							

Figure 42 R26 – PGA Control Register 2

R27 (1Bh) – Additiona	Control Regis	ter 1 (ADD_CTI	RL1)				
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	0
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Default	0	0	0	0	0	0	0	0
Bit #	7	6	5	4	3	2	1	0
Read	0		PGA_SR[2:0]		AUTO INC	0	0	0
Write	N/A		N/A N/A					
Default	0	1	0	0	1	0	0	0
					N/A	= Not Applicat	le (no function	implemented)
Fui	nction				Description			
AUT	O_INC	2-wire Softw	are Mode Auto	Increment E	nable			
		0 = Auto incre	ement disabled					
		1 = Auto increment enabled						
PGA	_SR[2:0]	Sample Rate	for PGA					
		000 = 32kHz						
		001 = 44.1kH	Z					
		010 = 48kHz						
		011 = 88.2kH	Z					
		100 = 96kHz						
		101 = 176.4k	Hz					
		11X = 192kHz	z					
L		See Table 23	for further infor	mation on PG	A sample rate ve	ersus volume ra	mp rate.	

Figure 43 R27 – Additional Control Register 1

Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0	ADC					
Write	N/A	N/A	N/A	N/A	N/A	SWITCH_EN	ADC_AMF	2_VOL[1:0]			
Default	0	0	0	0	0	0	1	0			
D:4 #		^	-				4	•			
Bit # Read	7	6	5	4	3	2	1	0			
Write		ADCR_	SEL[3:0]			ADCL_S	EL[3:0]				
Default	1	0	0	0	0	0	0	0			
					Ν	I/A = Not Applicab	le (no function	implemented			
Fun	ction				Description	n					
_	SEL[3:0]	ADC Input S	elect								
ADCR_	SEL[3:0]	0000 = IN1L									
		0001 = IN2L									
		0010 = IN3L									
		0011 = IN4L									
		0100 = IN5L									
		0101 = IN6L									
			0110 = Reserved								
		0111 = Reserved									
		1000 = IN1R									
		1001 = IN2R									
		1010 = IN3R									
		1011 = IN4R									
		1100 = IN5R									
		1101 = IN6R									
			1110 = Reserved								
		1111 = Rese		-							
ADC_AMF	P_VOL[1:0]		er Gain Contr	ol							
		00 = 0dB									
		01 = +3dB									
		10 = +6dB									
		11 = +12dB									
ADC_SW	ITCH_EN		witch Control								
			0 = ADC input switches open								
		1.1 = ADC innu	it switches clos	sed							

Figure 44 R30 – Input Control Register 1

Production Data

WM8595

R31 (1Fh)) – Input Cont	rol Register 2 (INPUT_CTRL2	2)						
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	0		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Default	0	0	0	0	0	0	0	0		
Bit #	7	6	5	4	3	2	1	0		
Read	ADCR_AMP_	ADCL_AMP_	0	0						
Write	EN	EN	N/A	N/A	PGA2R_EN	PGA2L_EN	PGA1R_EN	PGA1L_EN		
Default	0	0	0	0	0	0	0	0		
					N/A	= Not Applicat	ole (no function	implemented)		
Fu	nction				Description					
PGA	A1L_EN	Input PGA Er	able Controls	;						
PGA	1R_EN	0 = PGA disal	bled							
PGA	A2L_EN	1 = PGA enab	led							
PGA	2R_EN									
ADCL	_AMP_EN	ADC Input Ar	nplifier Enable	e Controls						
ADCR	_AMP_EN	0 = Amplifier of	disabled							
		1 = Amplifier e	enabled							

Figure 45 R31 – Input Control Register 2

R34 (22h)	– Output Con	trol Register 3		RL)				
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0		VOUT2L EN	
Write	N/A	N/A	N/A	N/A	N/A	VOUI2R_EN	VOUT2L_EN	VOUT IR_EN
Default	0	0	0	0	0	0	0	0
					-			-
Bit #	7	6	5	4	3	2	1	0
Read	VOUT1L EN	APE B	0	0			VOUT1R TRI	
Write	VOUTIL_EN	APE_D	N/A	N/A	VOUI2R_IRI	VOUI2L_IRI	VOUTIR_TRI	VOUTIL_IRI
Default	0	1	0	0	0	0	0	0
					N/A	= Not Applicat	ole (no function	implemented)
Fu	nction				Description			
VOU	T1L_TRI	Output Ampl	ifier Tristate C	ontrol				
VOU	T1R_TRI	0 = Normal op	peration					
VOU.	T2L_TRI	1 = Output an	nplifier tristate e	enable (Hi-Z)				
VOU	T2R_TRI							
A	PE_B	Clamp Outpu	its to Ground					
		0 = clamp act	ive					
		1 = clamp not	active					
VOU	T1L_EN	Output Ampl	ifier Enables					
VOU	T1R_EN	0 = Output an	nplifier disabled	I				
VOU	T2L_EN	1 = Output an	nplifier enabled					
VOU	T2R_EN							

Figure 46 R34 – Output Control Register

Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0	0	0	0			
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Default	0	0	0	0	0	0	0	0			
			_		•						
Bit #	7	6	5	4	3	2	1	0			
Read	VMID	SEL[1:0]	BIAS EN	SOFT_ST	BUFIO EN	FAST EN	VMIDTOG	POBCTRL			
Write		_0[0]	2		20110_211						
Default	0	0	0	1	0	0	0	0			
		1			N/A	= Not Applicat	ole (no function	implemented			
Fun	oction				Description						
POB	BCTRL	Bias Sourc	e for Output An	nplifiers							
		0 = Output amplifiers use master bias									
		1 = Output a	mplifiers use fa	st bias							
VMI	DTOG	VMID Powe	r Down Charac	teristic							
		0 = Slow rar	np								
		1 = Fast ran	ıp								
FAST_EN		Fast Bias E	nable								
		0 = Fast bia	s disabled								
		1 = Fast bia	s enabled								
BUFI	IO_EN	VMID Buffe	r Enable								
		0 = VMID B	uffer disabled								
		1 = VMID Bu	uffer enabled								
SOF	T_ST	VMID Soft F	Ramp Enable								
		0 = Soft ram	p disabled								
		1 = Soft ram	p enabled								
BIAS	S_EN	Master Bias	s Enable								
		0 = Master b	oias disabled								
		1 = Master b	ias enabled								
		Also powers	down VMID1C								
VMID_	SEL[1:0]	VMID Resis	tor String Valu	e Selection (VI	MID2C only)						
		00 = off (no	VMID)								
		01 = 38k									
		10 = 127k									
		11 = 12.5k									
			on is the total r s fixed at 200k.	esistance of th	e string from V	/REF2VDD to	VREF2GND.	The VMID1			

Figure 47 R35 – Bias Control Register

66

Production Data

R36 (24h)	– PGA Con	trol Register 3 (F	PGA_CTRL)						
Bit #	15	14	13	12	11	10	9	8	
Read	0	0	0	0	0		0	0	
Write	N/A	N/A	N/A	N/A	N/A	PGA_UPD	N/A	N/A	
Default	0	0	0	0	0	0	0	0	
	r								
Bit #	7	6	5	4	3	2	1	0	
Read	0	0	0	0				0	
Write	N/A	N/A	N/A	N/A		PGA_SEL[2:0]		N/A	
Default	0	0	0	0	0	0	1	0	
					N/	A = Not Applicab	le (no function	implemented)	
Fu	nction				Description				
PGA_	SEL[2:0]	PGA Ramp C	ontrol Clock	Source					
		000 = LRCLK	1						
		001 = LRCLK	2						
		010 to 110 = I	Reserved						
111 = ADCLRCLK (when ADC is being used in master mode)									
PG	A_UPD	PGA Ramp C	ontrol Clock	Source Mux U	pdate				
		0 = Do not update PGA clock source							
		1 = Update cl	ock source						

Figure 48 R36 – PGA Control Register

R37 (25h)	- Audio Inter	face MUX Con	figuration Reg	jister 1 (AIF_M	UX1)					
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0		0	0		
Write	N/A	N/A	N/A	N/A	N/A	PORT1_UPD	N/A	N/A		
Default	0	0	0	0	0	0	0	0		
Bit #	7	6	5	4	3	2	1	0		
Read	0		RDCLK1 SEL	2.01			0			
Write	N/A	000	RDOLKI_SEL	2.0]	I.	MCLK1_SEL[2:0] N/A				
Default	0	0	0	0	0	0	0	0		
					N/A	A = Not Applicab	le (no function	implemented)		
Fui	nction				Description					
MCLK1	_SEL[2:0]	MCLK1 Pin Function Select								
		000 = Input to	WM8595							
		001 = Output	MCLK2							
		010 to 111 = I	Reserved							
WORDCL	K1_SEL[2:0]	BCLK1 and L	RCLK1 Pins F	unction Selec	t					
		000 = Inputs t	o WM8595							
		001 = Output	BCLK2 and LR	CLK2						
010 to 110 = Reserved										
		111 = Output	ADCBCLK and	ADCBCLK (wh	nen ADC is ma	ster mode)				
POR	T1_UPD	Port 1 Update	e							
		0 = Latch corr	esponding Por	t 1 settings into	Register Map	out do not updat	te			
		1 = Latch corr	esponding Por	t 1 settings into	Register Map	and update all s	imultaneously			

Figure 49 R37 – Audio Interface MUX Configuration Register 1

Production Data

Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0		0	0			
Write	N/A	N/A	N/A	N/A	N/A	PORT2_UPD	N/A	N/A			
Default	0	0	0	0	0	0	0	0			
Bit #	7	6	5	4	3	2	1	0			
Read	0	0 WOR		[2:0]			1	0			
Write	N/A	000	RDCLK2_SEL	[2.0]	MCLK2_SEL[2:0]						
Default	1	0	0	1	0	0	1	0			
					Ν	I/A = Not Applicab	le (no function	implemented)			
Fui	nction				Description	า					
MCLK2	2_SEL[2:0]	MCLK2 Pin F	unction Sele	ct							
		000 = Output	MCLK1								
		001 = Input to	WM8595								
		010 = Output MCLK3									
		011 = Output MCLK4									
		100 = Output MCLK5									
		101 to 111 = Reserved									
WORDCL	.K2_SEL[2:0]	BCLK2 and LRCLK2 Pins Function Select									
			BCLK1 and LF	RCLK1							
		001 = Inputs 1									
		010 = Output BCLK3 and LRCLK3 011 = Output BCLK4 and LRCLK4									
		100 = Output BCLK5 and LRCLK5									
		101 = Output DAC1BCLK and DAC1LRCLK (when DAC1 is in master mode)									
		110 = Output DAC2BCLK and DAC2LRCLK (when DAC2 is in master mode)									
		111 = Output	ADCRCI K and	111 = Output ADCBCLK and ADCBCLK (when ADC is master mode)							
		· · · · ·		d ADCBCLK (w							
POR	T2_UPD	Port 2 Updat	e	<u> </u>		p but do not updat	9				

Figure 50 R38 – Audio Interface MUX Configuration Register 2

Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0					
Write	N/A	N/A	N/A	N/A	N/A	DAC1_UPD	DAC1DIN	I_SEL[2:1]		
Default	0	0	0	0	0	0	0	0		
Deruun	, ,	v		v	Ŭ	v	•	•		
Bit #	7	6	5	4	3	2	1	0		
Read	DAC1DIN_	D.A.G.(0		
Write	SEL[0]	DACT	WORDCLK_S	EL[2:0]	DAC1MCLK_SEL[2:0]					
Default	0	0	0	0	0	0	0	0		
					N	I/A = Not Applicat	le (no function	implemented)		
Function Description										
DAC1MC	LK_SEL[2:0]	DAC1MCLK	Select							
		000 = Use M	CLK1							
		001 = Use M	CLK2							
		010 to 111 =	Reserved							
DAC1V	ORDCLK_	DAC1BCLK	and DAC1LRC	LK Select						
SE	EL[2:0]	000 = Use BCLK1 and LRCLK1								
		001 = Use BCLK2 and LRCLK2								
		010 to 110 = Reserved								
		111 = Use A[DCBCLK and A	DCBCLK (wher	n ADC is mas	ter mode)				
DAC1D	IN_SEL[2:0]	DAC1DIN Se	lect							
		000 = Use DA	ACDAT1							
		001 = Use DA	ACDAT2							
		010 to 100 =	Reserved							
		101 = Use GI	901							
		110 = Use GI	9102							
		111 = Reserv	red							
DAC	C1_UPD	DAC1 Clock	•							
					°	er Map but do not	•			
		1 = Latch cor	responding DA	C1 clock setting	gs into Registe	er Map and updat	e all simultane	ously		

Figure 51 R42 – Audio Interface MUX Configuration Register 3

Production Data

Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0					
Write	N/A	N/A	N/A	N/A	N/A	- DAC2_UPD	1	N_SEL[2:1]		
Default	0	0	0	0	0	0	0	0		
Bit #	7	6	5	4	3	2	1	0		
Read	DAC2DIN_		WORDCLK SI	=1 [2:0]		AC2MCLK SEL[2	0.01	0		
Write	SEL[0]	DACZ	WORDCLK_SI	=[2.0]	D	ACZINICLK_SEL[2	2.0]	N/A		
Default	1	0	0	1	0	0	1	0		
					N	/A = Not Applicab	le (no functior	n implemented)		
Fu	nction				Description	1				
DAC2MC	LK_SEL[2:0]	DAC2MCLK	Select							
		000 = Use M0	CLK1							
		001 = Use M0	CLK2							
		010 to 111 =	Reserved							
DAC2V	ORDCLK_	DAC2BCLK a	and DAC2LRC	LK Select						
SE	EL[2:0]	000 = Use BCLK1 and LRCLK1								
		001 = Use BCLK2 and LRCLK2								
		010 to 110 = Reserved								
		-		DCBCLK (wher	ADC is mast	ter mode)				
DAC2D	IN_SEL[2:0]	DAC2DIN Se								
		000 = Use DA								
		001 = Use DA								
		010 to 100 =								
		101 = Use GF								
		110 = Use GF								
		111 = Reserv								
DAC	C2_UPD	DAC2 Clock	•	00 I I II						
				-		er Map but do not	•			
		1 = Latch con	responding DA	C2 clock setting	js into Registe	er Map and update	e all simultane	eously		

Figure 52 R43 – Audio Interface MUX Configuration Register 4

Bit #	15	14	13	12	11	10	9	8	
Read	0	0	0	0	0		0	0	
Write	N/A	N/A	N/A	N/A	N/A	ADC_UPD	N/A	N/A	
Default	0	0	0	0	0	0	0	0	
Bit #	7	6	5	4	3	2	1	0	
Read	0	100					0		
Write	N/A	ADCV	VORDCLK_SE	L[2:0]	A	ADCMCLK_SEL[2:0]			
Default	0	0	0	0	0	0	0	0	
					N/	A = Not Applicat	le (no function	implemented)	
Fu	nction				Description				
ADCMCL	_K_SEL[2:0]	ADCMCLK S	elect						
		000 = Use M0	CLK1						
		001 = Use M0	CLK2						
		010 to 111 =	Reserved						
ADCW	ORDCLK_	ADCBCLK ar	d ADCLRCLK	Select					
SE	L[2:0]	000 = Use BC	LK1 and LRCL	_K1					
		001 = Use BC	LK2 and LRCL	_K2					
		010 to 110 =	Reserved						
		111 = Output	ADCBCLK and	ADCBCLK (w	hen ADC is ma	aster mode)			
		ADC Clock U	ndato						
ADO	C_UPD	ADC CIUCK U	puale						
ADO	5_0PD		•	C clock setting	s into Register	Map but do not u	update		

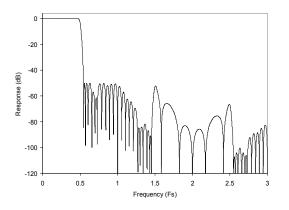
Figure 53 R44 – Audio Interface MUX Configuration Register 5

Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0		0	0		
Write	N/A	N/A	N/A	N/A	N/A	GPIO1_UPD	N/A	N/A		
Default	0	0	0	0	0	0	0	0		
Bit #	7	6	5	4	3	2	1	0		
Read	0	0	0	0		GPIO1_SEL[2:0]		0		
Write	N/A	N/A	N/A	N/A		GFIO1_SEL[2.0]		N/A		
Default	0	0	0	0	1	0	1	0		
					Ν	/A = Not Applicab	le (no function	implemented)		
Fur	nction				Description	1				
GPIO1	_SEL[2:0]	GPIO1 Pin Function Select								
		000 = Source	e DACDAT1							
		001 = Source	e DACDAT2							
		010 = Source	e ADCDAT							
		011 to 100 =	Reserved							
		101 = Input t	o WM8595							
		110 = Source	e GPIO2							
		111 = Source	e ADC Data Out	tput						
GPIC	01_UPD	GPIO1 Update								
		0 = Latch corresponding GPIO1 settings into Register Map but do not update								
		0 = Latch col	responding GP	IOT settings in	to Register Ma	ip but do not upda	le			

Figure 54 R45 – Audio Interface MUX Configuration Register 6

Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0		0	0			
Write	N/A	N/A	N/A	N/A	N/A	- GPIO2_UPD	N/A	N/A			
Default	0	0	0	0	0	0	0	0			
Bit #	7	6	5	4	3	2	1	0			
Read	0	0	0	0		0		0			
Write	N/A	N/A	N/A	N/A	GPIO2_SEL[2:0]		N/A				
Default	0	0	0	0	1	1	0	0			
					N	A = Not Applicab	le (no function	implemented			
Function Description											
GPIO2_SEL[2:0]		GPIO2 Pin Function Select									
		000 = Source DACDAT1									
		001 = Source DACDAT2									
		010 = Source ADCDAT									
		010 000100		011 to 100 = Reserved							
			Reserved								
		011 to 100 =	GPIO1								
		011 to 100 = 101 = Source 110 = Input to	GPIO1	put							
GPIC	02_UPD	011 to 100 = 101 = Source 110 = Input to	e GPIO1 o WM8595 e ADC Data Out	put							
GPIC	02_UPD	011 to 100 = 101 = Source 110 = Input to 111 = Source GPIO2 Upda	GPIO1 5 WM8595 6 ADC Data Out te		o Register Ma	p but do not upda	te				

Figure 55 R46 – Audio Interface MUX Configuration Register 7



DIGITAL FILTER CHARACTERISTICS

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ADC Filter				•	•
Passband	± 0.05dB			0.454fs	
Passband Ripple				0.05	dB
Stopband		0.546fs			
Stopband Attenuation		-60			dB
Group Delay			16		fs
DAC Filter – 32kHz to 9	96kHz				
Passband	± 0.1dB			0.454fs	
Passband Ripple				0.1	dB
Stopband		0.546fs			
Stopband attenuation	f > 0.546fs	-50			dB
Group Delay			10		Fs
DAC Filter - 176.4kHz t	to 192kHz				
Passband	± 0.1dB			0.247fs	
Passband Ripple				0.1	dB
Stopband		0.753fs			
Stopband attenuation	f > 0.546fs	-50			dB
Group Delay			10		Fs

DAC FILTER RESPONSES

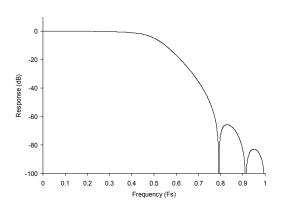


Figure 58 DAC Digital Filter Frequency Response – 192KHz

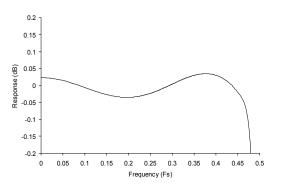


Figure 57 DAC Digital Filter Ripple -44.1, 48 and 96kHz

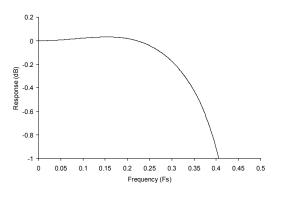
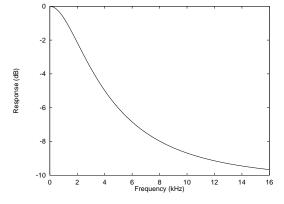



Figure 59 DAC Digital Filter Ripple – 192kHz

DIGITAL DE-EMPHASIS CHARACTERISTICS

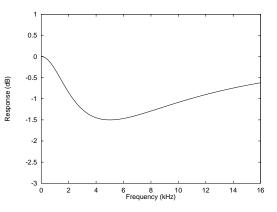
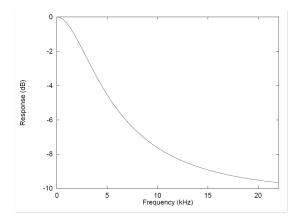



Figure 60 De-Emphasis Frequency Response (32kHz)

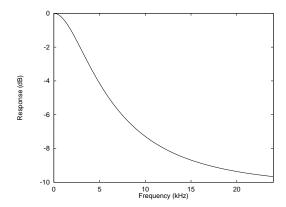


Figure 64 De-Emphasis Frequency Response (48kHz)

Figure 61 De-Emphasis Error (32kHz)

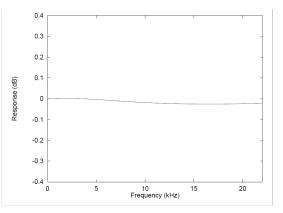
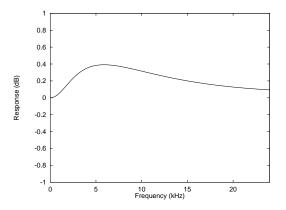



Figure 63 De-Emphasis Error (44.1kHz)

Production Data

ADC FILTER RESPONSES

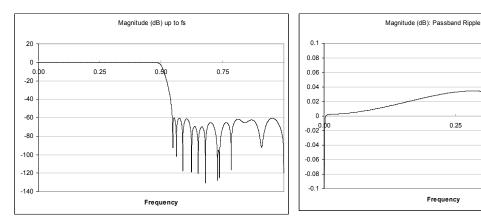


Figure 66 ADC Digital Filter Frequency Response

ADC HIGH PASS FILTER

The WM8595 has a selectable digital high pass filter to remove DC offsets. The filter response is characterised by the following polynomial.

$$H(z) = \frac{1 - z^{-1}}{1 - 0.9995 z^{-1}}$$

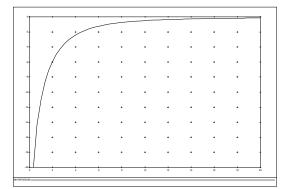
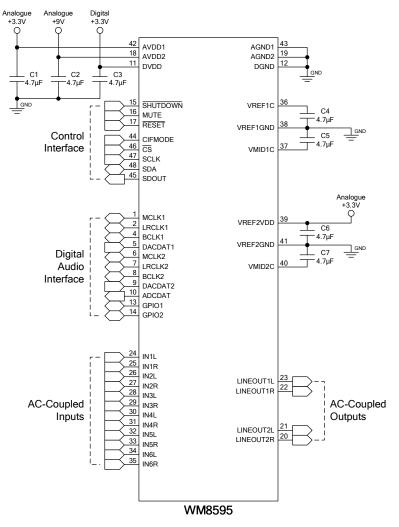



Figure 68 ADC Highpass Filter Response

APPLICATIONS INFORMATION

RECOMMENDED EXTERNAL COMPONENTS

Notes:

- 1. AGND and DGND should ideally share a continuous ground plane. Where this is not possible, it is recommended that AGND and DGND are connected as close to the WM8595 as possible.
- Decoupling capacitors shown are very low-ESR, multilayer ceramic capacitors and should be placed as near to the WM8595 as possible. Equally good audio performance may be obtained using 0.1μF ceramic capacitors near to the WM8595, with a 10μF electrolytic capacitor nearby. Note that power up time is a function of the VMID2C resistor string setting and the decoupling capacitor C7.
- 3. The exposed paddle on the bottom of the QFN package should be connected to AGND

RECOMMENDED ANALOGUE LOW PASS FILTER

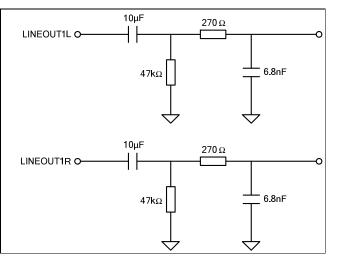


Figure 69 Recommended Analogue Low Pass Filter (shown for VOUT1L/R)

Note: See WAN0176 for AC coupling capacitor selection information.

An external single pole RC filter is recommended (see Figure 69) if the device is driving a wideband amplifier. Other filter architectures may provide equally good results.

RELEVANT APPLICATION NOTES

The following application notes, available from <u>www.wolfsonmicro.com</u>, may provide additional guidance for the use of the WM8595.

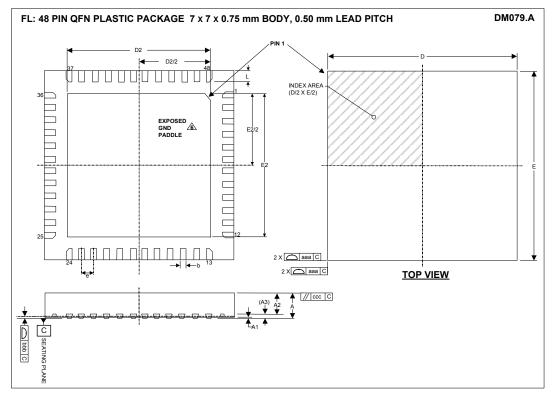
DEVICE PERFORMANCE:

WAN0129 - Decoupling and Layout Methodology for Wolfson DACs, ADCs and CODECs

WAN0144 - Using Wolfson Audio DACs and CODECs with Noisy Supplies

WAN0176 - AC Coupling Capacitor Selection

GENERAL:


WAN0108 - Moisture Sensitivity Classification and Plastic IC Packaging

WAN0109 - ESD Damage in Integrated Circuits: Causes and Prevention

WAN0158 - Lead-Free Solder Profiles for Lead-Free Components

PACKAGE DIMENSIONS

Symbols	Dimensions (mm)						
	MIN	NOM	MAX	NOTE			
A	0.7	0.75	0.8				
A1	0	0.035	0.05				
A2	-	0.55	0.57				
A3		0.203 REF					
b	0.20	0.25	0.30	1			
D		7.00 BSC					
D2	5.55	5.65	5.75				
E		7.00 BSC					
E2	5.55	5.65	5.75				
е		0.5 BSC					
L	0.35	0.4	0.45				
Tolerances of Form and Position							
aaa	0.10						
bbb	0.08						
ccc	0.10						
REF	JEDEC, MO-220						

NOTES: 1. DIMENSION 5 APPLIED TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 mm AND 0.30 mm FROM TERMINAL TIP. 2. ALL DIMENSIONS ARE IN MILLIMETRES 3. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-002. 4. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. 5. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE. 6. REFER TO APPLICATIONS NOTE WAN_0118 FOR FURTHER INFORMATION.

Wolfson Microelectronics plc ("Wolfson") products and services are sold subject to Wolfson's terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement.

Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.

Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty. Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

In order to minimise risks associated with customer applications, the customer must use adequate design and operating safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.

Wolfson's products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer's own risk.

Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party's products or services does not constitute Wolfson's approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document belong to the respective third party owner.

Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is not liable for any unauthorised alteration of such information or for any reliance placed thereon.

Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in Wolfson's standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person's own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person.

ADDRESS

Wolfson Microelectronics plc Westfield House 26 Westfield Road Edinburgh EH11 2QB Tel :: +44 (0)131 272 7000

Fax :: +44 (0)131 272 7001 Email :: <u>sales@wolfsonmicro.com</u>

PD, Rev 4.1, April 2010