

QUAD PRECISION CMOS VOLTAGE COMPARATOR WITH OPEN DRAIN DRIVER

GENERAL DESCRIPTION

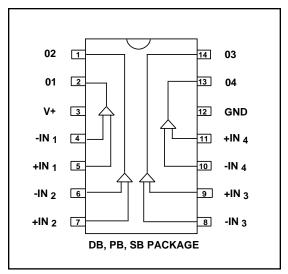
The ALD4301A/ALD4301 is a monolithic high performance quad voltage comparator built with advanced silicon gate CMOS technology. It features very high typical input impedance of $10^{12}\Omega$; low input bias current of 10pA; fast response time of 300ns; very low power dissipation of $55\mu\text{A}$ per comparator; high output drive and single +5V or dual $\pm5\text{V}$ power supply operation.

The input voltage range includes ground, making this comparator ideal for low level signal detection with high source impedance. The outputs are open-drain configuration, allowing maximum application flexibility. The outputs can be connected to a higher external voltage than V+ and used in a wired-OR connection with other open drain circuits such as ALD2301/ALD2303. They can also be used with push-pull output types such as ALD2302/ALD4302 voltage comparators simultaneously with open drain comparators using a common V+. The ALD4301A/ALD4301 is ideal for a great variety of voltage comparator applications, especially detection circuits requiring very low input currents and low standby power, yet retaining high output current capability.

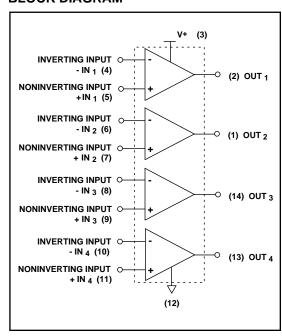
FEATURES

- · Fanout of 30 LS TTL loads
- Low supply current of 55μA/comparator typical
- Pinout/Functional equivalent to LM393 types
- Extremely low input bias currents -- 10pA typical
- · Virtually eliminates source impedance effects
- Low operating supply voltage of 3V to 12V
- Single +5V and dual supply ±5V operation
- High speed for both large signal and low level signals -- 300ns typical for TTL inputs
- · CMOS, NMOS and TTL compatible
- · Wired-OR open drain outputs
- High output sinking current -- 60mA typical
- Low supply current spikes
- High gain

ORDERING INFORMATION


Operating Temperature Range *									
-55°C to +125°C	0°C to +70°C	0°C to +70°C							
14-Pin	14-Pin	14-Pin							
CERDIP	Small Outline	Plastic Dip							
Package	Package (SOIC)	Package							
ALD 4301ADB	ALD4301ASB	ALD4301APB							
ALD 4301DB	ALD4301SB	ALD4301PB							

^{*} Contact factory for industrial temperature range


APPLICATIONS

- High source impedance voltage comparison circuits
- Dual/Quad limit window comparator
- · Power supply voltage monitor
- · Photo-detector sensor circuit
- Relay or LED driver
- Oscillators
- · Battery operated instruments
- · Remote signal detection

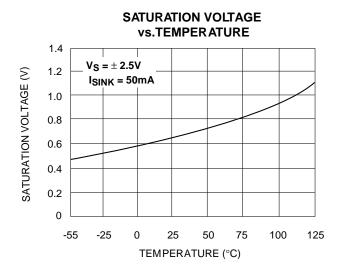
PIN CONFIGURATION

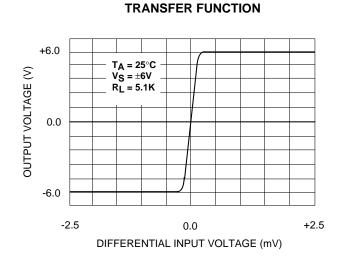
BLOCK DIAGRAM

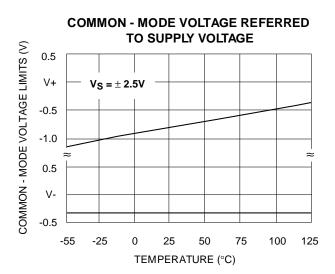
© 2005 Advanced Linear Devices, Inc. 415 Tasman Drive, Sunnyvale, California 94089 -1706 Tel: (408) 747-1155 Fax: (408) 747-1286 http://www.aldinc.com

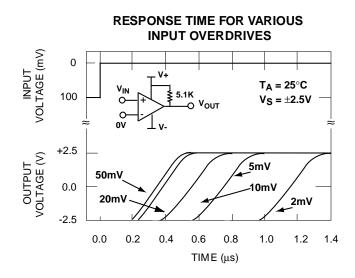
ABSOLUTE MAXIMUM RATINGS

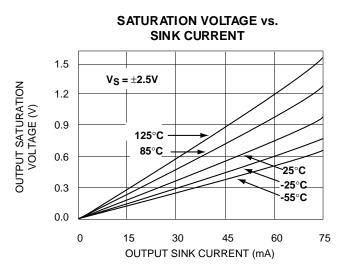
Supply voltage, V+	13.2V
Differential input voltage range	-0.3V to V++0.3V
Power dissipation	600 mW
Operating temperature range PB, SB package	0°C to +70°C
DB package	55°C to +125°C
Storage temperature range	65°C to +150°C
Lead temperature, 10 seconds	+260°C

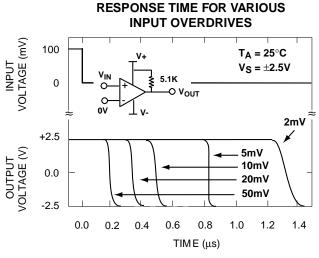

OPERATING ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ V+= +5V unless otherwise specified

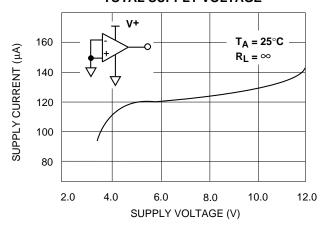

		4301A		4301			Test		
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Conditions
Voltage Supply	V+	3 ±1.5		12 ±6	3 ±1.5		12 ±6	V V	Single supply Dual supplies
Supply Current	Is		220	350		220	350	μА	No load
Voltage Gain	A _{VD}	50	150		50	150		V/mV	R _{LOAD} ≥ 15KΩ
Input Offset Voltage	Vos			5			10	mV	$R_{LOAD} \ge 1.5K\Omega$
Input Offset Current 1	los		0.1	30		0.1	30	pA	
Input Bias Current 1	lΒ		0.1	30		0.1	30	pA	
Common Mode Input Voltage Range ²	VICR	-0.3		V+-1.5	-0.3		V+ -1.5	V	
Low Level Output Voltage	V _{OL}		0.15	0.4		0.15	0.4	V	I _{SINK} =12mA V _{INPUT} =1V Differential
Low Level Output Current	l _{OL}	24	60		24	60		mA	V _{OL} =1.0V
High Level Leakage Current	I _{LH}		0.1	20		0.1	20	nA	V _{OH} = 5.0 V
Response Time ²	t _{RP}		650			650		ns	$R_L = 5.1 \text{K}\Omega$ $C_L = 15 \text{pF}$ 100mV Input $Step/5 \text{mV}$ $Overdrive$
			300			300		ns	$RL = 5.1K\Omega$ $C_L = 15pF$ $TTL- Level Input$ $Step$

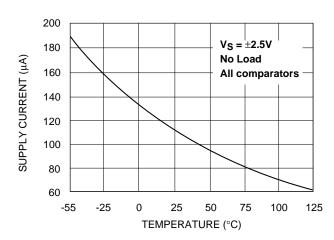

Notes:


- ¹ Consists of junction leakage currents
- ² Sample tested parameters

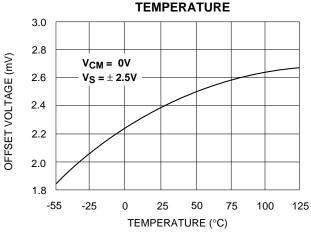

TYPICAL PERFORMANCE CHARACTERISTICS



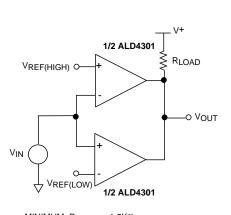



ALD4301A/ALD4301 Advanced Linear Devices

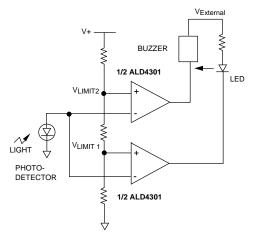
TYPICAL PERFORMANCE CHARACTERISTICS


TOTAL SUPPLY CURRENT vs. TOTAL SUPPLY VOLTAGE

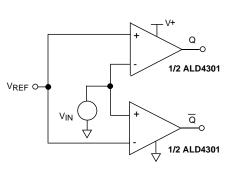
SUPPLY CURRENT vs. TEMPERATURE



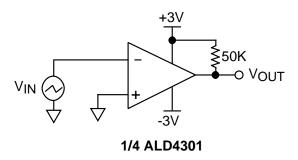
INPUT OFFSET VOLTAGE vs.


TYPICAL APPLICATIONS

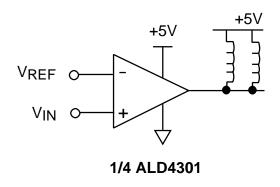
QUAD LIMIT WINDOW COMPARATOR


MINIMUM $R_{LOAD} = 1.5K\Omega$ OUTPUT HIGH FOR $V_{IN} < V_{REF(HIGH)}$ AND $V_{IN} > V_{REF(LOW)}$

QUAD LIMIT PHOTO-DETECTOR MONITOR


LED turns on as photo-detector voltage reaches V $_{LIMIT1}$. Both LED and horn turns on as photo-detector voltage reaches V $_{LIMIT2}$. V $_{\rm EXTERNAL}$ = +12V V+ = +5V.

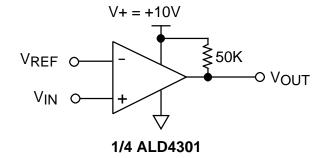
VOLTAGE COMPARATOR WITH COMPLEMENTARY OUTPUTS



TYPICAL APPLICATIONS

ZERO CROSSING DETECTOR

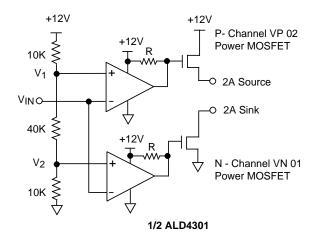
MULTIPLE RELAY DRIVE


VOLTAGE LEVEL TRANSLATOR

DOUBLE DUAL LIMIT WINDOW COMPARATOR

 VL_1 and VH_1 first limit window send warning VL_2 and VH_2 second limit window execute system cutoff

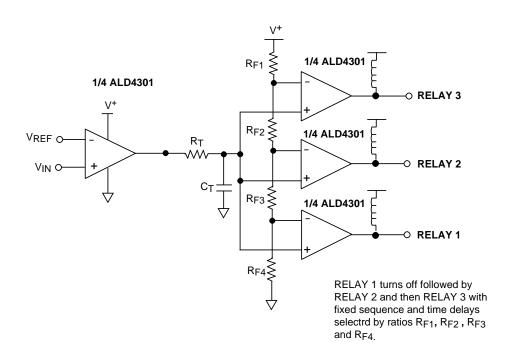
ALD4301


$$V_{REF} = 1.4V$$
 for TTL input

$$V_{REF} = \frac{V^{+}}{2}$$
 for CMOS input

Output $V_{\mbox{OUT}}$ swings from rail-to-rail

TYPICAL APPLICATIONS


PUSH-PULL COMPLEMENTARY POWER MOSFET DRIVER

 $R \ge 50 \text{ K}\Omega$

This circuit eliminates crossover current in the complementary power transistors. The outputs can be used to source and sink different loads or tied together to provide push-pull drive of the same load.

TIME DELAY GENERATOR

Design & Operating Notes:

- 1. In order to minimize stray oscillation, all unused inputs must be tied to ground.
- 2. The input bias and offset currents are essentially input protection diode reverse bias leakage currents, and are typically less than 1 pA at room temperature. These currents are a function of ambient temperature, and would have to be considered in applications where very high source impedance or high accuracy are involved.
- 3. The high output sinking current of 60mA for each output offers flexibility in many applications, as a separate buffer or driver would not be necessary to drive the intended load. However, as the circuit normally operates close to ambient temperature due to its very low power consumption, thermal effects caused by large output current transients must be considered in certain applications.

ALD4301A/ALD4301

Advanced Linear Devices