

3.3V - 5V PROGRAMMABLE RS-232/RS-485/RS-422 SERIAL TRANSCEIVER

MARCH 2010 REV. 1.0.0

GENERAL DESCRIPTION

The SP336E is a monolithic serial multi-transceiver device that contains both RS-232 and RS-485/RS-422 line drivers and receivers. The configuration of the SP336E can be reconfigured into eight operating modes including RS-232 only (4TX/4RX), RS-485/ RS-422 only (2TX/2RX) full or half duplex, two RS-232/RS-485 mixed modes. two shutdown modes and a diagnostic loop-back mode. Modes may be selected at any time by changing the logic state of the three MODE pins. The device can implement a dualmode serial port, mixed mode ports or as an interface signal translator. The Exar charge pumps deliver true RS-232 driver output voltages from a single power supply at either 3.3V or 5V. The SP336E requires only four 0.1µF capacitors for charge pump. A slew rate control pin configures driver outputs for either high data rate or slew-controlled data rates. Slewcontrolled outputs minimize problems with reflections and ringing on long or un-terminated cables. All RS-485 receivers or transceivers feature high impedance which allow up to 256 transceivers on a shared bus. When configured in RS-485/RS-422 mode, each driver may be individually enabled or put into tri-state, simplifying use on shared buses or bidirectional communication. All receivers have advanced failsafe protection to prevent oscillation when inputs are unconnected. In RS-232 mode each receiver input has a 5k ohm pull-down to ground. Differential Receivers will default to output logic 1 if inputs are floating, shorted or open but terminated. All driver outputs and receiver inputs are protected against ESD strikes up to +/-15,000 volts.

FEATURES

- 3.3V or 5V Single Supply Operation
- Robust +/-15kV ESD Protection (IEC 61000-4-2 Air Gap)
- Software Selectable Mode Selection
- Up to 4 Drivers, 4 Receivers RS-232/V.28
- Up to 2 Drivers, 2 Receivers RS-485/RS-422
 - Full or Half Duplex Configurations
 - 1/8th Unit Load, up to 256 receivers on bus
- Mixed RS-232/RS-485 modes
- Pin Programmable Slew Rate for Reduced EMI
- RS-485 Advanced Failsafe on Open, Short or Terminated Lines
- Diagnostic Loop-Back Function
- 28 Pin SOIC or TSSOP Packaging

TYPICAL APPLICATIONS

- Factory Automation Equipment
- Security Networks
- Industrial/Process Control Networks
- Point-Of-Sales Equipment
- Gaming Machines
- Serial Protocol Translators (ex. RS-232 to RS-485/ RS-422)
- Embedded Industrial PC's
- Building Environmental Control Systems (ex. HVAC)
- Cable Repeaters / Port Extenders / Hubs

FIGURE 1. TYPICAL RS-232 APPLICATION CIRCUIT

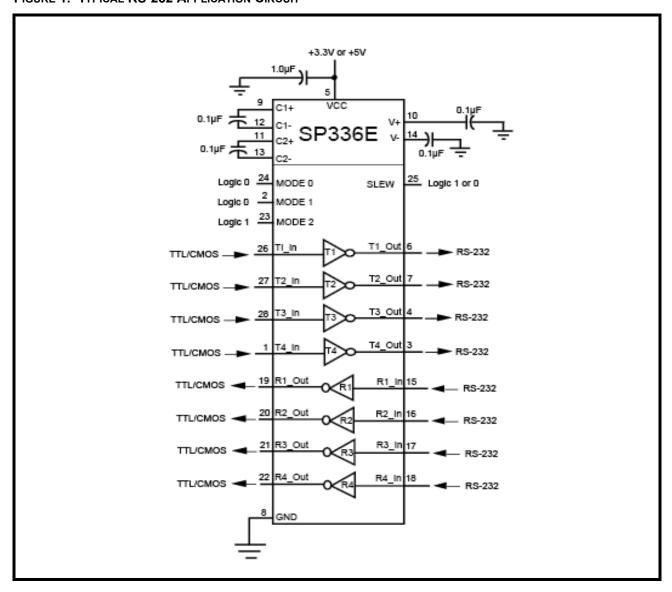
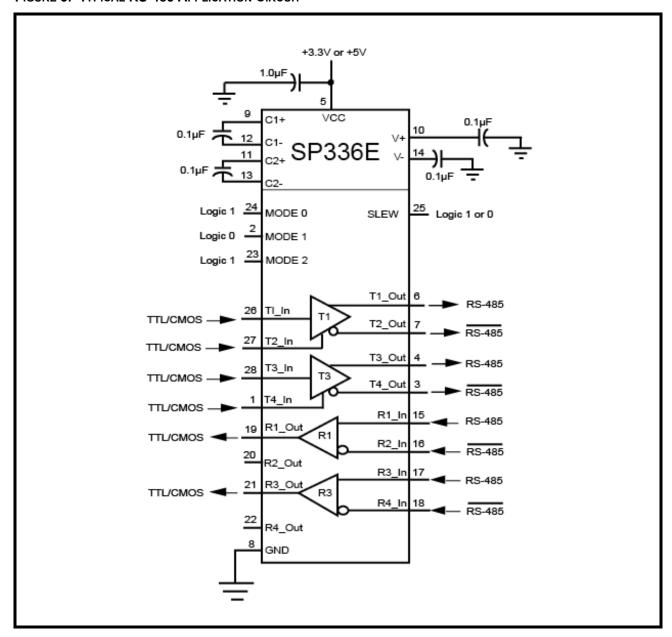


FIGURE 2. PIN OUT ASSIGNMENT



ORDERING INFORMATION

PART NUMBER	Package	OPERATING TEMPERATURE RANGE	DEVICE STATUS
SP336ECT-L	28-pin SOIC-W	0°C to +70°C	Active
SP336ECY-L	28-pin TSSOP	0°C to +70°C	Active
SP336EET-L	28-pin SOIC-W	-40°C to +85°C	Active
SP336EEY-L	28-pin TSSOP	-40°C to +85°C	Active

FIGURE 3. TYPICAL RS-485 APPLICATION CIRCUIT

PIN DESCRIPTIONS

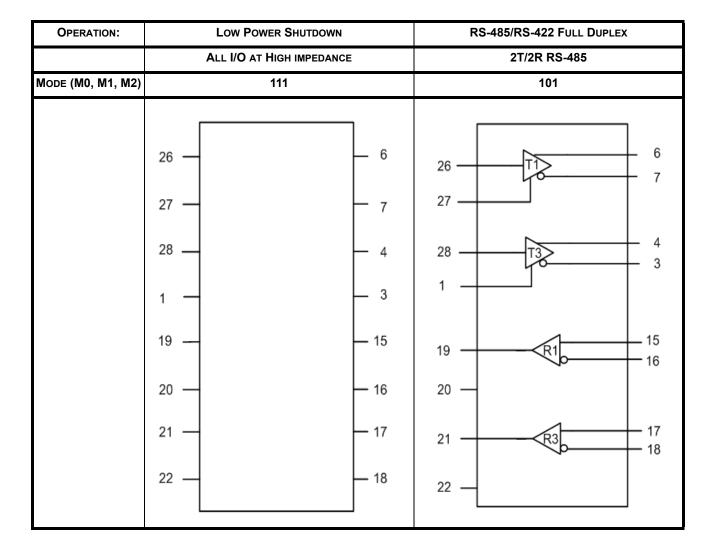
Pin Assignments

PIN NUMBER	PIN NAME	Түре		DESCRIPTION					
PIN NUMBER	PIN NAME	TYPE	SINGLE ENDED	FULL-DUPLEX	HALF-DUPLEX				
1	T4_ln	I	T4 Driver TTL input.	T3 Driver Enable Active High.	T3 Driver Enable Active High, R3 Enable Active Low.				
2	Mode_1	I		Mode Configuration pin 1					
3	T4_Out	0	T4 Driver Output.	T3(A) Output.	T3(A) Output, R3(A) Input.				
4	T3_Out	0	T3 Driver Output.	T3(B) Output.	T3(B) Output, R3(B) Input.				
5	Vcc	Pwr		Power Supply Voltage.					
6	T1_Out	0	T1 Driver Output.	T1(A) Output.	T1(A) Output, R1(A) Input.				
7	T2_Out	0	T2 Driver Output.	T1(B) Output.	T1(B) Output, R1(B) Input.				
8	GND	Pwr	Ground.						
9	C1+	Pmp	Positive	terminal of positive flying	capacitor.				
10	V+	Pmp		Vdd storage capacitor.					
11	C2+	Pmp	Positive t	Positive terminal of negative flying capacitor.					
12	C1-	Pmp	Negative terminal of positive flying capacitor.						
13	C2-	Pmp	Negative	terminal of negative flying	capacitor.				
14	V-	Pmp		Vss storage capacitor.					
15	R1_In	I	R1 Receiver Input.	R1(A) Receiver Input.	High Impedance.				
16	R2_In	I	R2 Receiver Input.	R1(B) Receiver Input.	R2 Receiver Input.				
17	R3_In	I	R3 Receiver Input.	R3(A) Receiver Input.	High Impedance.				
18	R4_In	I	R4 Receiver Input.	R3(B) Receiver Input.	R4 Receiver Input.				
19	R1_Out	I		R1 Receiver Output.					
20	R2_Out	I	R2 Receiver Output.	High Impedance.	R2 Receiver Output.				
21	R3_Out	I		R3 Receiver Output.					
22	R4_Out	I	R4 Receiver Output.	High Impedance.	R4 Receiver Output.				
23	Mode_2	I		Mode Configuration pin 2					
24	Mode_0	I		Mode Configuration pin 0					
25	SLEW	I	Slew Rate Control. Logic Low input will limit driver slew from either RS-232 or RS-485 to 250kbps.						
26	T1_ln	I		T1 Driver Input.					

SP336E

Pin Assignments

PIN NUMBER	PIN NAME	Түре	DESCRIPTION					
I IN NOMBER	I IN MANIE	11172	SINGLE ENDED	FULL-DUPLEX	HALF-DUPLEX			
27	T2_In	I	T2 Driver Input.	T1 Driver Enable Active High.	T1 Driver Enable Active High and R1 Receiver Enable Active Low.			
28	T3_In	I		T3 Driver Input.				


Pin type: I=Input, O=Output, Pwr=Power supply, Pmp = Charge pump.

MODE CONFIGURATION

OPERATION:	RS-232 Mode	MIXED-PROTOCOL FULL DUPLEX		
	4T/4R RS-232	2T/2R RS-232 & 1T/1R RS-485		
MODE (M0, M1, M2)	001	011		
	26	26 T1 6		
	27 T2 7	27 T2 7		
	28 T3 4	28		
	1 74	1		
	19 ————————————————————————————————————	19 ————————————————————————————————————		
	20 ————————————————————————————————————	20 ————————————————————————————————————		
	21 ————————————————————————————————————	21 R3 17 18		
	22 18	22 —		

MODE CONFIGURATION (CONTINUED)

OPERATION:	LOOP-BACK TXIN TO RXOUT		MIXED-PRO	TOCOL HALF DUPLEX
	TXOUT AND RXIN HIGH IMPEDA	ANCE	2T/3R RS-232 & 1T/1R RS-48	
MODE (M0, M1, M2)	000			010
	26 T1 27 T2 28 T3 1 T4 19 R1 20 R2 21 R3 22 R4	- 6 - 7 - 4 - 3 - 15 - 16 - 17 - 18	26 ————————————————————————————————————	F1 15 16 R2 16 17 18

MODE CONFIGURATION (CONTINUED)

OPERATION:	Low Power, 4 RX A	CTIVE	RS-485/F	RS-485/RS-422 HALF DUPLEX		
	DRIVERS AT HIGH IMPE	DANCE	4T/2R RS-485 & 2R RS-232			
MODE (M0, M1, M2)	110			100		
	26 — 27 — 28 — 1 — 19 — 20 — R2 21 — R3 22 — R4	- 6 - 7 - 4 - 3 - 15 - 16 - 17 - 18	26 ————————————————————————————————————	R1 6 7 7 8 4 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections to the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability and cause permanent damage to the device.

Supply Voltage V _{CC}	+6.0V
Receiver Input V _{IN} (DC Input Voltage)	-15V to +15V
Input Voltage at TTL input Pins	-0.3V to Vcc + 0.5V
Driver Output Voltage (from Ground)	-7.5V to +12.5V
Short Circuit Duration, TXout to GND	Continuous
Storage Temperature Range	-65°C to + 150°C
Lead Temperature (soldering, 10s)	+300°C
Power Dissipation 28-pin SOIC-W (derate 17mW/°C above +70°C)	938mW
Power Dissipation 28-pin TSSOP (derate 12mW/°C above +70°C)	657mW

CAUTION:

ESD (Electrostatic Discharge) sensitive device. Permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. Personnel should be properly grounded prior to handling this device. The protective foam should be discharged to the destination socket before devices are removed.

ELECTRICAL CHARACTERISTICS

UNLESS OTHERWISE NOTED: VCC = +3.3V +/-5% OR +5.0V +/-5%; TA = TMIN TO TMAX. TYPICAL VALUES ARE AT Vcc = 3.3V, TA = +25 $^{\circ}C$.

SYMBOL	PARAMETERS	MIN.	TYP.	Max.	Units	Conditions			
DC CHARAC	DC CHARACTERISTICS								
I _{CC}	Supply Current (RS-232)		2	30	mA	No Load, MODE = 001.			
I _{CC}	Supply Current (RS-485)		6.5	20	mA	No Load, MODE = 101.			
I _{CC}	Vcc Shutdown Current		1	20	μΑ	MODE = 111.			
TRANSMITT	ER and LOGIC INPUT PINS: Pins 1, 2	23, 24,	25, 26, 2	7, 28					
V _{IH}	Logic Input Voltage HIGH	2.0			V	Vcc = 3.3V.			
V _{IH}	Logic Input Voltage HIGH	2.4			V	Vcc = 5.0V.			
V _{IL}	Logic Input Voltage LOW			8.0	V				
I _{IL}	Logic Input Pull-up Current			+/-15	μΑ				
V _{HYS}	Logic Input Hysteresis		0.5		V				
RS-232 and	RS-485/422 RECEIVER OUTPUTS: Pir	ns 19, 20	, 21, 22	l					
V _{OH}	Receiver Output Voltage HIGH	Vcc- 0.6			٧	I _{OUT} = -1.5mA.			
V _{OL}	Receiver Output Voltage LOW			0.4	V	I _{OUT} = 2.5mA.			
I _{OSS}	Receiver Output Short-Circuit Current		+/-20	+/-60	mA	0 < Vo < Vcc.			

UNLESS OTHERWISE NOTED: VCC = +3.3V +/-5% OR +5.0V +/-5%; TA = TMIN TO TMAX. TYPICAL VALUES ARE AT VCC = 3.3V, TA = $+25^{\circ}C$.

SYMBOL	PARAMETERS	MIN.	TYP.	Max.	Units	Conditions
l _{OZ}	Receiver Output Leakage Current		+/- 0.05	+/-1	μА	Receivers Disabled.
SINGLE-ENI	DED RECEIVER INPUTS (RS-232)	ı				
	Input Voltage Range	-15		+15	V	
	Input Threshold Low	0.6	1.2		V	V _{CC} = 3.3V.
		8.0	1.5		V	V _{CC} = 5.0V.
	Input Threshold HIGH		1.5	2.0	V	V _{CC} = 3.3V.
			1.8	2.4	V	V _{CC} = 5.0V.
	Input Hysteresis		0.5		V	
	Input Resistance	3	5	7	kΩ	
DIFFERENT	IAL RECEIVER INPUTS (RS-485 / RS-4	422)	•	•		
R _{IN}	Receiver Input Resistance	96			kΩ	$-7V \le V_{CM} \le +12V$.
V_{TH}	Receiver Differential Threshold Voltage	-200	-125	-50	mV	
ΔV_{TH}	Receiver Input Hysteresis		30		mV	V _{CM} = 0V.
I _{IN}	Input Current			125	μΑ	DE = 0V, V _{IN} = 12V, Full-Duplex.
				-100	μΑ	DE = 0V, V _{IN} = -7V, Full-Duplex.
SINGLE-ENI	DED DRIVER OUTPUTS (RS-232)	l		1		I
V _O	Output Voltage Swing	+/-5.0	+/-5.4		٧	Output Loaded with $3\text{k}\Omega$ to GND.
				+/-6.0	V	No Load Output.
	Short Circuit Current			+/-60	mA	V _O = 0V.
	Power Off Impedance	300	10M		Ω	$Vcc = 0V; V_O = +/-2V.$
DIFFERENT	IAL DRIVER OUTPUTS (RS-485 / RS-4	22)	I	1	l	
V _{OD}	Differential Driver Output (Tx_Out)	2		Vcc	V	$R_L = 100\Omega$ (RS-422), Figure 4.
		1.5		Vcc	V	R_L = 54Ω (RS-485), Figure 4.
		1.5		Vcc	V	V _{CM} = -7V, Figure 5.
		1.5		Vcc	V	V _{CM} = +12V, Figure 5.
ΔV _{OD}	Change In Magnitude of Differential Output Voltage	-0.2		+0.2	٧	R _L = 54Ω or 100Ω, Figure 4.
V _{OC}	Driver Common Mode Output Voltage			3	V	R _L = 54Ω or 100Ω, Figure 4.
ΔV _{OC}	Change In Magnitude of Common Mode Output Voltage			0.2	٧	R _L = 54 Ω or 100 Ω , Figure 4.
	Driver Output Short Circuit Current			+/-250	mA	V = +12V to -7V, Figure 6.
I _O	Output Leakage Current			+/-100	μА	DE = 0V or Shutdown, V_O = +12V to -7V.

3.3V - 5V PROGRAMMABLE RS-232/RS-485/RS-422 SERIAL TRANSCEIVER

Unless otherwise noted: Vcc = +3.3V + /-5% or +5.0V + /-5%; TA = TMIN to TMAX. Typical values are at Vcc = 3.3V, TA = $+25^{\circ}C$.

SYMBOL	PARAMETERS	Min.	TYP.	Max.	Units	Conditions
ESD PROTEC	CTION	•	•	•	•	
	ESD Protection for Rx_In and		+/-15		kV	IEC 61000-4-2 Air Discharge.
	Tx_Out pins		+/-8		kV	IEC 61000-4-2 Contact Discharge.
			+/-15		kV	Human Body Model.
	All Other Pins		+/-2		kV	Human Body model.
TIMING CHA	RACTERISTICS					
RS-232 (SLE	W = GND, 250kbps, ONE TRANSMIT	TER SWI	TCHING)		
	Maximum Data Rate	250			kbps	$R_L = 3k\Omega$, $C_L = 1000pF$.
t _{PHL} , t _{PLH}	Receiver Propagation Delay		100		ns	C _L = 150pF.
t _{PHL} -t _{PLH}	Receiver Skew		50		ns	C _L = 150pF.
t _{PHL} -t _{PLH}	Driver Skew		100		ns	
t _{THL,} t _{TLH}	Transition-Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V	6		30	V/µs	Vcc = 3.3V, T_A =25°C, R_L = 3k Ω to 7k Ω , C_L = 150pF to 1000pF, Figures 20 and 21.
RS-232 (SLE	W = Vcc, 1Mbps, ONE TRANSMITTE	RSWITC	HING)			
	Maximum Data Rate	1			Mbps	$R_L = 3k\Omega, C_L = 250pF.$
t _{PHL} , t _{PLH}	Receiver Propagation Delay		100		ns	C_L = 150pF, Figures 22 and 23.
t _{PHL} -t _{PLH}	Receiver Skew		50		ns	C _L = 150pF.
t _{PHL} -t _{PLH}	Driver Skew		25		ns	
t _{THL} , t _{TLH}	Transition-Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V		90		V/µs	Vcc = 3.3V, R_L = 3k Ω to 7k Ω , C_L = 150pF to 1000pF.
RS-485/RS-42		NSMITT	ER SWI	CHING)		<u> </u>
	Maximum Data Rate			250	kbps	R_{DIFF} = 54 Ω , C_L = 50pF.
t _{DPHL} , t _{DPLH}	Differential Output Propagation Delay Time	250		1500	ns	Figures 7 and 8.
t _{R,} t _F	Driver Rise and Fall Time	200		1500	ns	Figures 7 and 8.
t _{DPHL} - t _{DPLH}	Driver Propagation Delay Skew			200	ns	Figures 7 and 8.
t _{DZH} , t _{DZL}	Driver Output Enable Time			900	ns	Figures 9, 10, 11 and 12.
t _{DHZ} , t _{DLZ}	Driver Output Disable Time			900	ns	Figures 9, 10, 11 and 12.
t _{PHL} , t _{PLH}	Receiver Propagation Delay			150	ns	Figures 13 and 14.
t _{ZH}	Receiver Enable to Output High		50		ns	Figures 15 and 16.
t _{ZL}	Receiver Enable to Output Low		50		ns	Figures 15 and 17.
t _{HZ}	Receiver Output High to Disable		50		ns	Figures 15 and 18.

SP336E

3.3V - 5V PROGRAMMABLE RS-232/RS-485/RS-422 SERIAL TRANSCEIVER

REV. 1.0.0

UNLESS OTHERWISE NOTED: VCC = +3.3V +/-5% OR +5.0V +/-5%; TA = TMIN TO TMAX. TYPICAL VALUES ARE AT VCC = 3.3V, TA = $+25^{\circ}C$.

SYMBOL	PARAMETERS	Min.	TYP.	Max.	Units	Conditions			
t_LZ	Receiver Output Low to Disable		50		ns	Figures 15 and 19.			
RS-485/RS-42	RS-485/RS-422 (SLEW = Vcc, 10Mbps, ONE TRANSMITTER SWITCHING)								
	Maximum Data Rate			10	Mbps	R_{DIFF} = 54 Ω , C_L = 50pF.			
t _{DPHL} , t _{DPLH}	Differential Output Propagation Delay Time		60	120	ns	Figures 7 and 8.			
$t_{R,}t_{F}$	Driver Rise and Fall Time		10	25	ns	Figures 7 and 8.			
t _{DPHL} -	Driver Propagation Delay Skew			10	ns	Figures 7 and 8.			
t _{DZH} , t _{DZL}	Driver Output Enable Time			900	ns	Figures 9, 10, 11 and 12.			
t_{DHZ}, t_{DLZ}	Driver Output Disable Time			900	ns	Figures 9, 10, 11 and 12.			
t _{PHL} , t _{PLH}	Receiver Propagation Delay			150	ns	Figures 13 and 14.			
t _{ZH}	Receiver Enable to Output High		32		ns	Figures 15 and 16.			
t _{ZL}	Receiver Enable to Output Low		32		ns	Figures 15 and 17.			
t _{HZ}	Receiver Output High to Disable		40		ns	Figures 15 and 18.			
t_{LZ}	Receiver Output Low to Disable		40		ns	Figures 15 and 19.			

1.0 FUNCTION TABLES

The SP336E drivers and receivers may be configured to operate as either standard RS-485/RS-422 or RS-232 devices. RS-485/RS422 drivers have differential outputs and receivers have differential inputs. RS-232 drivers and receivers are single-ended with inverting outputs.

TABLE 1: R-485/RS-422 FULL DUPLEX: MODE 011 (T3, R3), MODE 101 (T1, T3, R1, R3)

	Driv	Rece	IVERS		
Inp	uts	Outputs		Inputs	Output
Tx_EN	Tx_In	Tx(A) Tx(B)		Rx(A) - Rx(B)	RxOut
1	1	0	1	> -50mV	1
1	0	1 0		≤ -200mV	0
0	Х	Hig	h-Z	Open / Shorted	1

TABLE 2: R-485/RS-422 HALF DUPLEX: MODE 010 (T3, R3), MODE 100 (T1, T3, R1, R3)

TRANSMITTING				Receiving		
Inputs		Outputs		Inputs		Outputs
DE/RE	TxIn	Tx(A)	Tx(B)	DE/RE	Rx(A) - Rx(B)	RxOut
1	1	0	1	1	х	High-Z
1	0	1	0	1	х	High-Z
0 x			0	> -50mV	1	
	Х	High-Z	High-Z	0	≤ -200mV	0
				0	Open / Shorted	1

TABLE 3: RS-232 MODE 001 (ALL TX AND RX), MODES 011, 010 (T1, T2, R1, R2), MODE 110 (R1-R4)

DRIV	/ERS	Receivers		
Input	Output	Input	Output	
0	≥ 5V	≥ 3V	0	
1 ≤ -5V		≤ -3V	1	
Open	≤ - 5V	Open	1	

FIGURE 4. RS-485 DRIVER DC TEST CIRCUIT

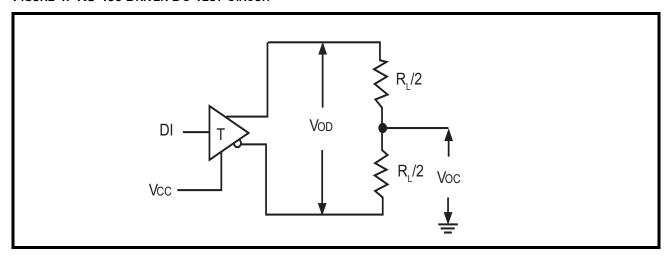


FIGURE 5. RS-485 DRIVER COMMON MODE LOAD TEST

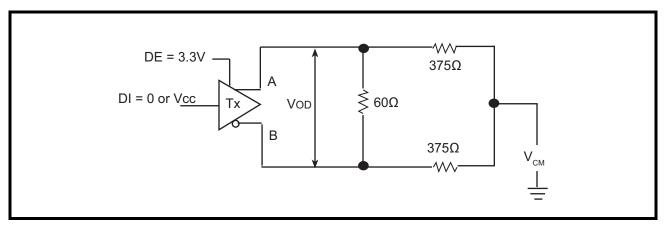


FIGURE 6. RS-485 DRIVER OUTPUT SHORT CIRCUIT TEST

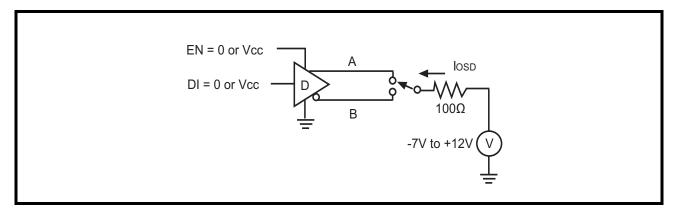


FIGURE 7. RS-485 DRIVER PROPAGATION DELAY TEST CIRCUIT

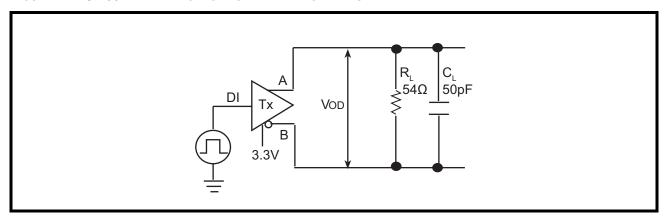


FIGURE 8. RS-485 DRIVER TIMING DIAGRAM

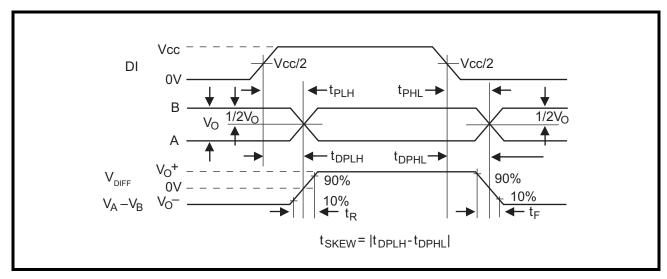


FIGURE 9. RS-485 DRIVER ENABLE AND DISABLE TEST CIRCUIT

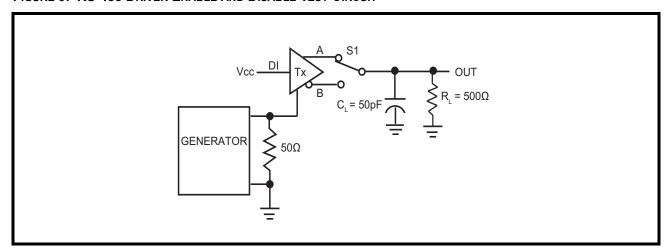


FIGURE 10. RS-485 DRIVER ENABLE AND DISABLE TIMING DIAGRAM

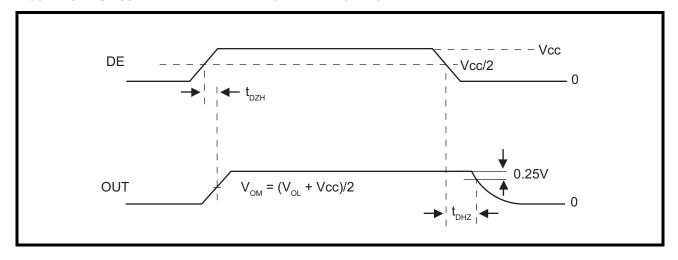


FIGURE 11. RS-485 DRIVER ENABLE AND DISABLE TEST CIRCUIT 2

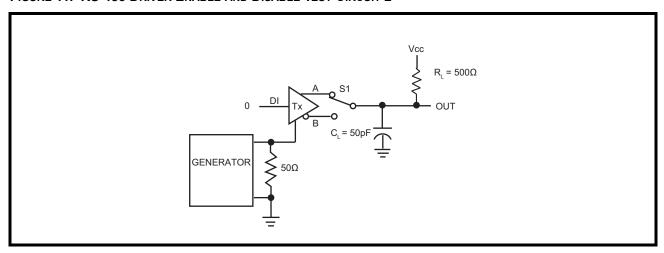


FIGURE 12. RS-485 DRIVER ENABLE AND DISABLE TIMING DIAGRAM 2

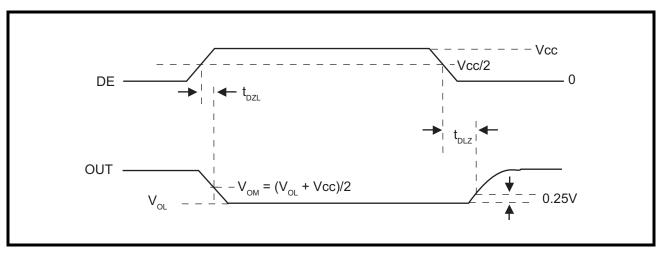


FIGURE 13. RS-485 RECEIVER PROPAGATION DELAY TEST CIRCUIT

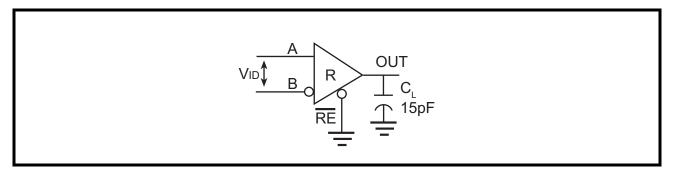


FIGURE 14. RS-485 RECEIVER PROPAGATION DELAY TIMING DIAGRAM

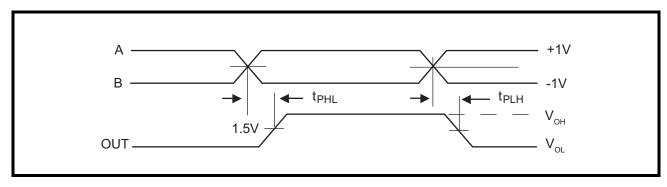


FIGURE 15. RS-485 RECEIVER ENABLE AND DISABLE TIMES TEST CIRCUIT

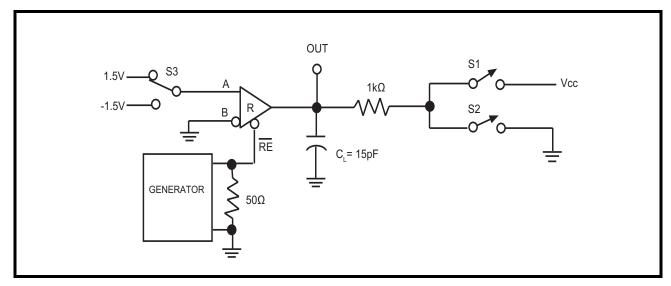


FIGURE 16. RS-485 RECEIVER ENABLE AND DISABLE TIMES TIMING DIAGRAM 1

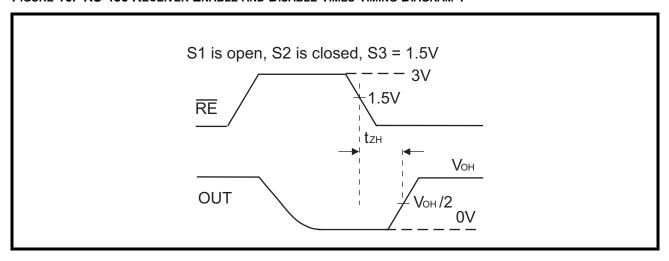


FIGURE 17. RS-485 RECEIVER ENABLE AND DISABLE TIMES TIMING DIAGRAM 2

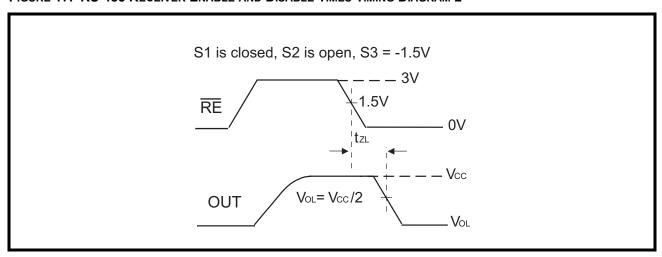


FIGURE 18. RS-485 RECEIVER ENABLE AND DISABLE TIMES TIMING DIAGRAM 3

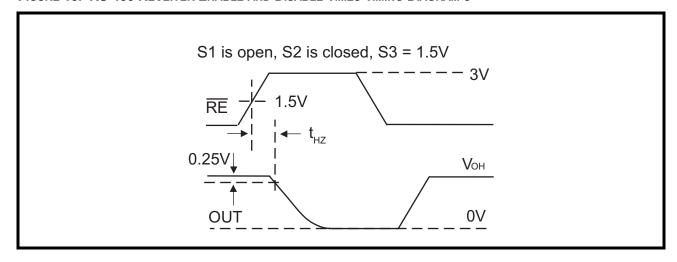


FIGURE 19. RS-485 RECEIVER ENABLE AND DISABLE TIMES TIMING DIAGRAM 4

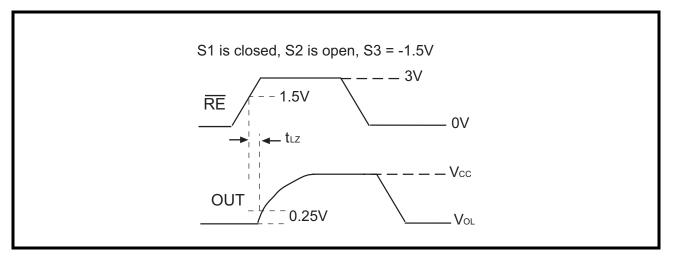


FIGURE 20. RS-232 DRIVER OUTPUT SLEW RATE TEST CIRCUIT

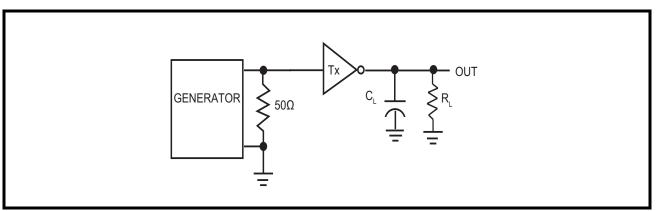


FIGURE 21. RS-232 DRIVER OUTPUT SLEW RATE TIMING DIAGRAM

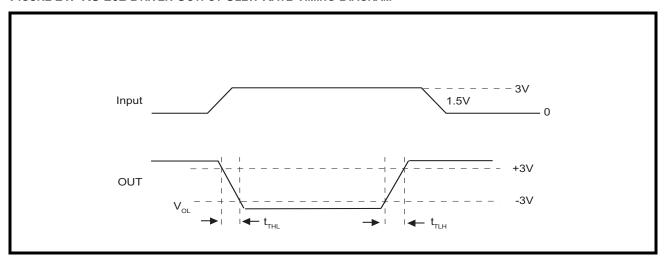


FIGURE 22. RS-232 RECEIVER PROPAGATION DELAY TEST CIRCUIT

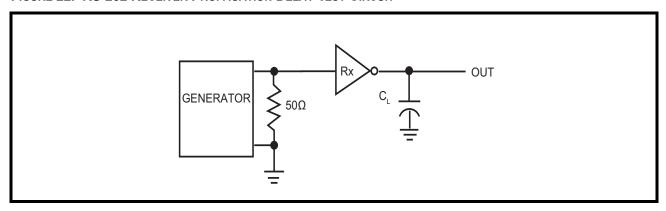
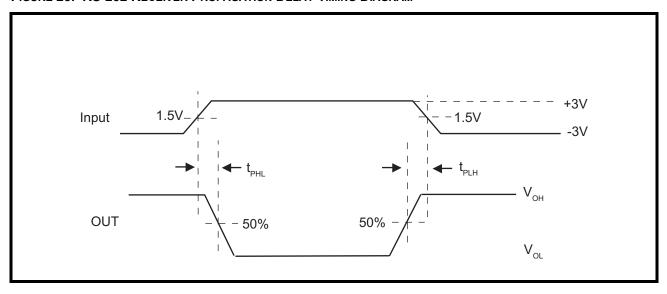
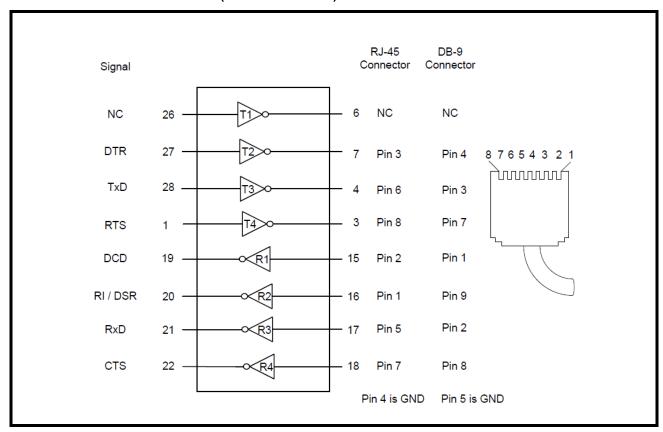



FIGURE 23. RS-232 RECEIVER PROPAGATION DELAY TIMING DIAGRAM

2.0 SUGGESTED APPLICATION DIAGRAMS

The SP336E supports all signals used in RS-232 over an 8 pin modular jack (RJ-45) as defined in TIA/EIA-561. For DTE serial port only three drivers are required. Driver_1 is not used in this configuration and its driver input should be tied to high or low.


SP336E may also be used to implement a standard serial port over a DB-9 connector (TIA/EIA-574 or the standard IBM serial port). In that case either DSR or RI signal can be supported. Both DSR and RI are used mainly for dial-up connections and are typically not needed on dedicated lines. If both signals are required, add a discrete transceiver such as SP3220E.

An alternative implementation would be to use the SP336E to emulate the functionality of two dual-channel RS-232 transceivers (2 x SP232's or equivalent).

Loop-Back

Changing from RS-232 mode (MODE 001) to loop-back mode (MODE 000) duplicates the function of an external loop-back plug. Loop-back can be used to test serial port functionality or to diagnose faults.

FIGURE 24. RS-232E SERIAL PORT (EIA-561 / EIA-574)

RS-232 to RS-485 Translator

SP336E can be used to implement a single-chip RS-232 to RS-485 translator function. Both full-duplex (4-wire RS-485) and half-duplex (2-wire RS-485) configurations are shown. RS-485 is capable of communicating on data cables up to 4000 feet (1200 meter) which makes it an ideal interface for extending the reach of short-range serial ports like RS-232. The configurations shown can be used to connect directly to existing PC type RS-232 serial ports to enable extended-reach communication.

The RTS signal (circuit CA or 105) is used as a transmit direction control signal for half-duplex. The ON condition puts the repeater into transmit mode and inhibits receive. On a half-duplex channel RxD should be held in MARK state (binary 1) when receiver 3 is inactive. Driver 1 on the SP336E can be used to generate DSR or CTS signal to indicate to the host terminal that the translator is powered-on and ready.

Shutdown Modes

SP336E features two shutdown modes. In mode 111 (full shutdown) all drivers and receivers are at high impedance. In mode 110, all drivers are tri-state but all four receivers remain active. In modes 101 and 100 two differential receivers can be kept active while the differential drivers are tri-stated using the Tx EN inputs.

FIGURE 25. RS-232 / RS-485 TRANSLATOR FULL-DUPLEX CABLE-EXTENDER (MODE 011)

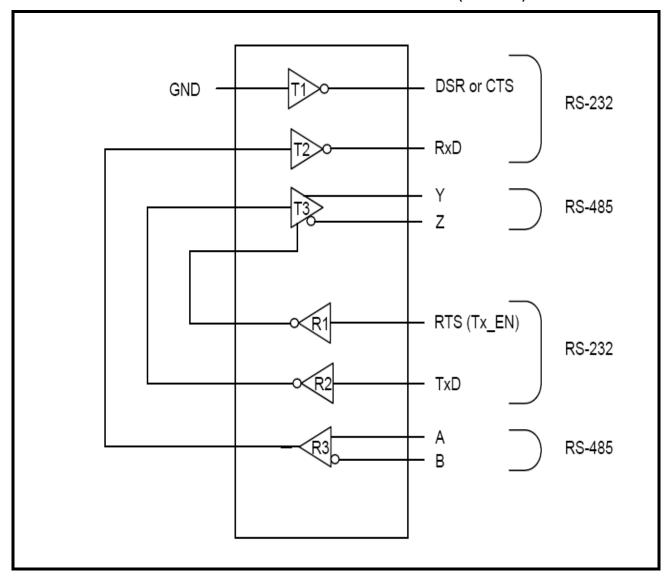
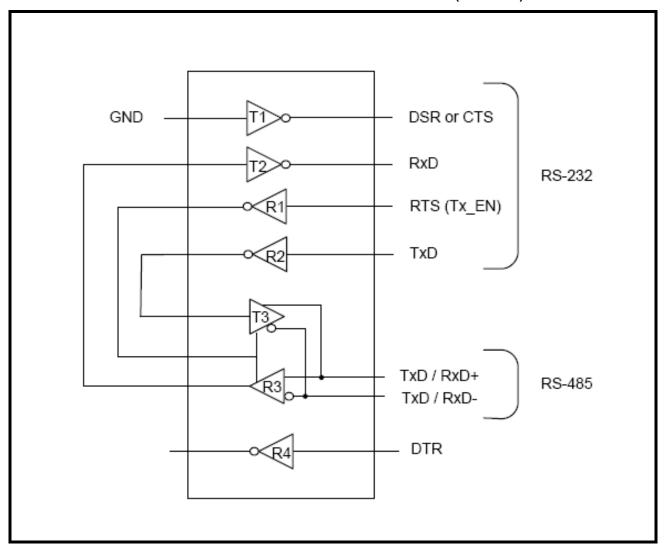



FIGURE 26. RS-232 / RS-485 TRANSLATOR HALF-DUPLEX CABLE-EXTENDER (MODE 010)

Bus Repeater

Mode 101 can be used as a bus-repeater to extend the reach of an RS-422 bus. This configuration is best suited for point-to-point or multi-drop communications because the drivers are always active and echoing data from their corresponding receiver.

For applications where multiple nodes are allowed to transmit, some type of bus arbitration should be used. One technique would be to use SP336E in conjunction with external decoder logic, packet buffers and node address fields embedded in the data stream. Receiving the correct node address triggers Tx_EN to pass data onward.

Mode 100 could implement a repeater / gateway to partition or extend RS-485 networks. Direction Control determines when data is forwarded to or from segments A and B.

FIGURE 27. RS-422 BUS-REPEATER (MODE 101)

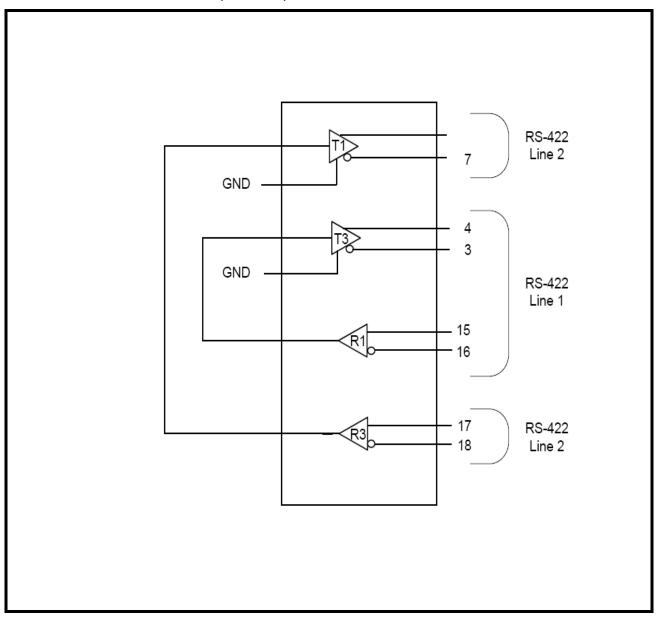


FIGURE 28. RS-485 BUS-REPEATER (MODE 100)

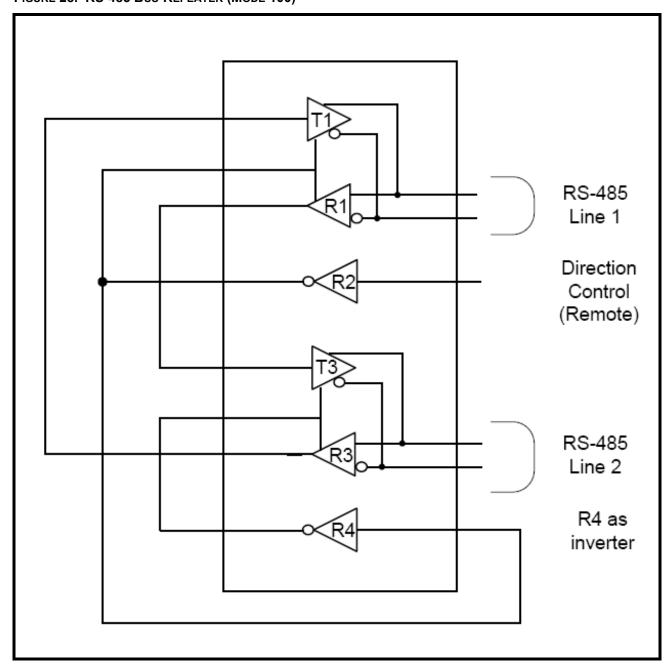


FIGURE 29. 28 PIN SOICW PACKAGE OUTLINE DRAWING

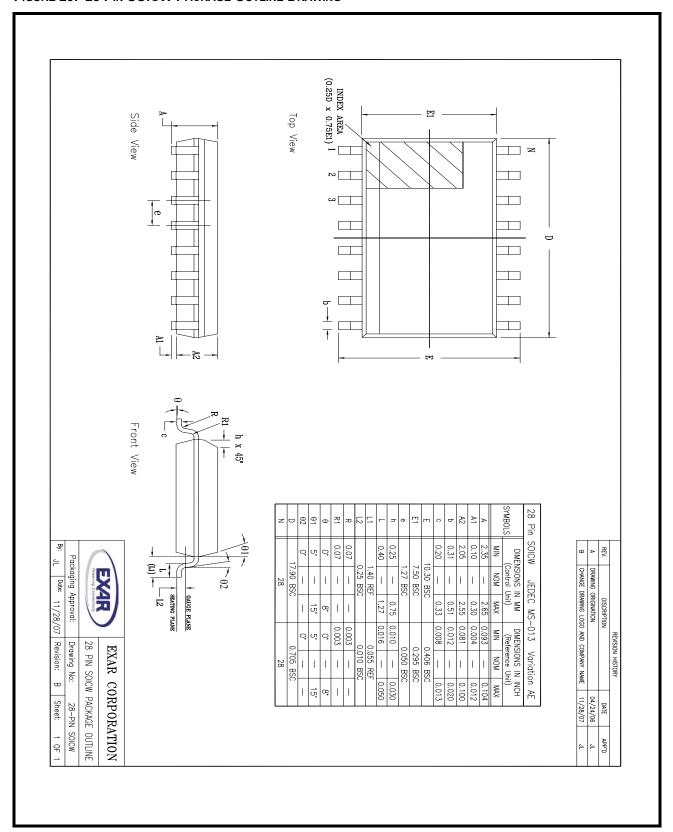
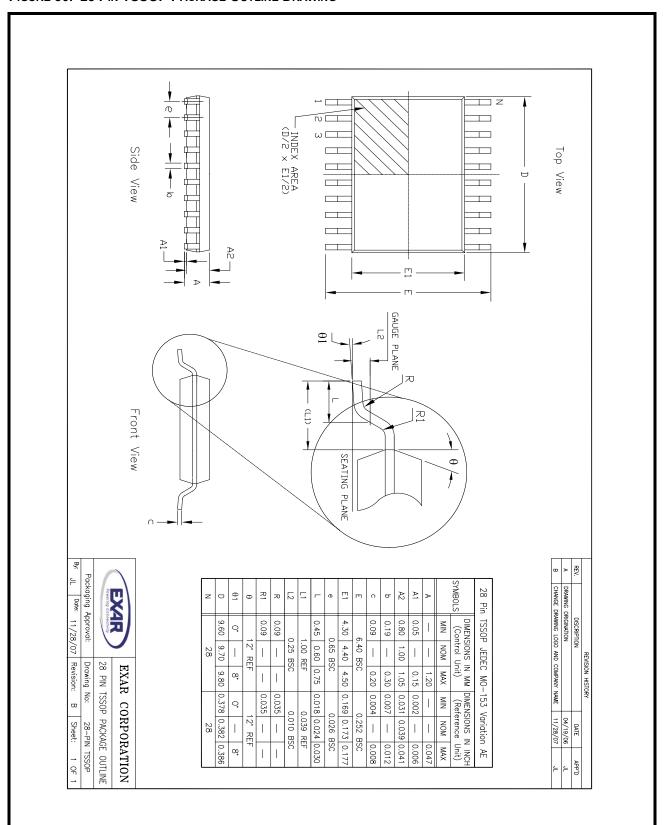



FIGURE 30. 28 PIN TSSOP PACKAGE OUTLINE DRAWING

3.3V - 5V PROGRAMMABLE RS-232/RS-485/RS-422 SERIAL TRANSCEIVER

REV. 1.0.0

REVISION HISTORY

DATE	REVISION	DESCRIPTION	
March 2010	1.0.0	Production Release.	

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2010 EXAR Corporation

Datasheet March 2010.

Send your UART technical inquiry with technical details to hotline: uarttechsupport@exar.com.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.