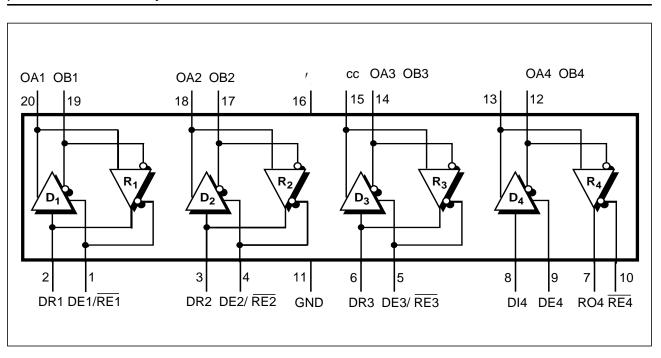


SP495

Quad Differential RS-485 Transceiver


- Pinout for SCSI Interface
- Meets EIA-485 Standard for Multipoint Bus Transmission
- +5V-Only Power Supply Required
- Receiver Fail-Safe Mode
- Low Power BiCMOS Technology
- Glitch-Free Power-Up/Down
- Available in 20-Pin Plastic SOIC
- Pin Compatible with DS36954

DESCRIPTION...

Now available in Lead Free.

The **SP495** is a quad differential line driver/receiver meeting both RS-485 and RS-422 standards at data rates beyond 10Mbps. The **SP495** features three half-duplex transceivers suitable for data bus connections and a fourth full-duplex transceiver with independent driver, receiver enables. Ideal for use as a control bus transceiver. A complete SCSI initiator or target interface can be implemented using five **SP495**s. Propagation Delay Skew is tightly specified to aid in parallel interface designs. The **SP495** is available in a 20-pin plastic SOIC package for operation over the commercial and industrial temperature ranges. For PLCC availability, please consult factory.

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V	+7V
Input Voltages	
Logic	0.5V to (V _{cc} +0.5V)
Drivers	0.5V to (V _{cc} +0.5V)
Receivers	15V
Output Voltages	
Logic	0.5V to (V _{cc} +0.5V)
	8V to 12.5V
Receivers	0.5V to (V _{cc} +0.5V)
Storage Temperature	65°C to +150°C
Power Dissipation	

SPECIFICATIONS

 $\rm T_{_{MIN}}$ to $\rm T_{_{MAX}}$ and $\rm V_{_{CC}}$ = 5V \pm 5% unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
DRIVER DC Characteristics Differential Output Voltage	GND		V _{cc}	Volts	Unloaded; $R = \infty$; see Figure 1
Differential Output Voltage	2		V _{cc}	Volts	With Load; $R = 50\Omega$; (RS-422); see Figure 1
Differential Output Voltage Change in Magnitude of Driver Differential Output Voltage for	1.5		V _{cc}	Volts	With Load; $R = 27\Omega$; (RS-485); see Figure 1
Complimentary States Driver Common-Mode	0.2			Volts	R = 27Ω or R = 50Ω ; see Figure 1
Output Voltage Input High Voltage	2.0		3	Volts Volts	$R = 27\Omega$ or $R = 50\Omega$; see Figure 1 Applies to DRx, DEx/ REx
Input Low Voltage Input Current Driver Short-Circuit Current			0.8 ±10	Volts μA	Applies to DRx, DEx/ REx Applies to DRx, DEx/ REx
$V_{OUT} = HIGH$ $V_{OUT} = LOW$			±250 ±250	mA mA	$\begin{array}{l} -7V \leq V_O \leq 10V \\ -7V \leq V_O \leq 10V \end{array}$
DRIVER AC Characteristics					
Maximum Driver Data Rate Driver Input to Output	10 20	30	60	Mbps ns	$R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100$ pF t _{PLH} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100$ pF; see Figures 3 and 6
Driver Input to Output	20	30	60	ns	t_{PHL} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100 pF$; see Figures 3 and 6
Driver Skew		10		ns	see Figures 3 and 6
Driver Rise or Fall Time	3	15	40	ns	From 10% to 90%; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100$ pF; see Figures 3 and 6
Driver Enable to Output HIGH		40	70	ns	$C_{L1}^{L1} = C_{L2}^{L2} = 100 \text{pF}$; see Figures 4 and 7; S_2 closed
Driver Enable to Output LOW		40	70	ns	$C_{L1} = C_{L2} \stackrel{?}{=} 100 \text{pF}$; see Figures 4 and 7; S_1 closed
Driver Disable Time from LOW		40	70	ns	$C_{14} = C_{12} = 15 pF$; see Figures
Driver Disable Time from HIGH		40	70	ns	4 and 7; S_1 closed $C_{L1} = C_{L2} = 15 pF$; see Figures 4 and 7; S_2 closed
RECEIVER DC Characteristics					
Differential Input Threshold Input Hysteresis	-0.2	70	+0.2	Volts mV	$-7V \le V_{CM} \le 12V$ $V_{CM} = 0V$
Output Voltage HIGH	3.5	-		Volts	$I_0 = -4mA, V_{ID} = +200mV$

SPECIFICATIONS (continued)

 $T_{_{MIN}}$ to $T_{_{MAX}}$ and $V_{_{CC}}$ = 5V \pm 5% unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
RECEIVER					
DC Characteristics					
Output Voltage LOW Three State (high impedance)			0.4	Volts	I _O = +4mA, V _{ID} = -200mV
Output Current		±0.5	10	μA	$0.4V \le V_0 \le 2.4V$; DEx/ $\overline{REx} = 5V$
Input Resistance	12	15		kΩ	$-7V \le V_{CM} \le 12V$
Input Current (A, B); $V_{IN} = 12V$			±1.0	mA	$ \begin{array}{l} DE = 0\breve{V}, \breve{V}_{CC} = 0V \text{ or } 5.25V, V_{IN} = 12V \\ DE = 0V, V_{CC} = 0V \text{ or } 5.25V, V_{IN} = -7V \end{array} $
Input Current (A, B); $V_{IN} = -7V$			-0.8	mA	$DE = 0V, V_{CC} = 0V \text{ or } 5.25V, V_{IN} = -7V$
Short-Circuit Current			85	mA	$0V \le V_0 \le V_{CC}$
RECEIVER					
AC Characteristics	10			Mana	
Maximum Data Rate Receiver Input to Output	10	60	200	Mbps	DEx/REx = 0V
Receiver input to Output		00	200	ns	$t_{PLH}; R_{DIFF} = 54\Omega, C_{L1} = C_{L2} = 100 \text{pF}; Figures 3 & 8$
Receiver Input to Output		60	200	ns	t_{PHL} ; $R_{DIFF} = 54\Omega$,
		00	200		$C_{L1} = C_{L2}^{=} 100 \text{pF}; Figures 3 \& 8$
Diff. Receiver Skew It _{PLH} -t _{PHL} I		13		ns	$R_{DIFF} = 54\Omega; C_{L1} = C_{L2} = 100 pF;$
					Figures 3 & 8
Receiver Enable to Output LOW		45	70	ns	C _{RL} = 15pF; <i>Figures 2 and 9;</i> S ₁ closed
Receiver Enable to Output HIGH		45	70	ns	C _{RL} = 15pF; <i>Figures 2 and 9;</i> S ₂ closed
Receiver Disable from LOW		45	70	ns	$C_{RL} = 15pF$; <i>Figures 2 and 9</i> ; S_1 closed
Receiver Disable from HIGH		45	70	ns	C_{RL} = 15pF; <i>Figures 2 and 9;</i> S ₂ closed
POWER REQUIREMENTS					
Supply Voltage	+4.75		+5.25	Volts	
Supply Current		2	5	mA	DEx/ $\overline{\text{REx}}$, DRx = 0V or V _{CC}
ENVIRONMENTAL AND					
MECHANICAL					
Operating Temperature					
Commercial (_C_)	0		+70	°C	
Industrial (_E_)	-40		+85	°C ℃	
Storage Temperature Package	-65		+150		
Plastic LCC (_L)					
Δ					
				Receiv	ror Test Point 1k
≥ ^ĸ				Outo	

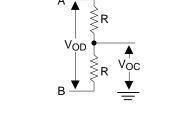


Figure 1. Driver DC Test Load Circuit

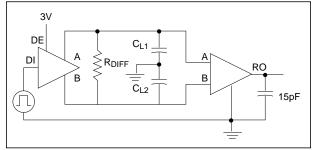


Figure 3. Driver/Receiver Timing Test Circuit

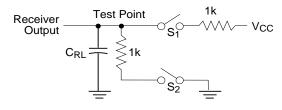


Figure 2. Receiver Timing Test Load Circuit

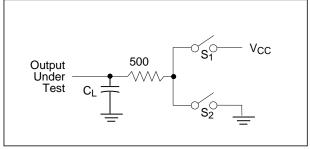


Figure 4. Driver Timing Test Load #2 Circuit

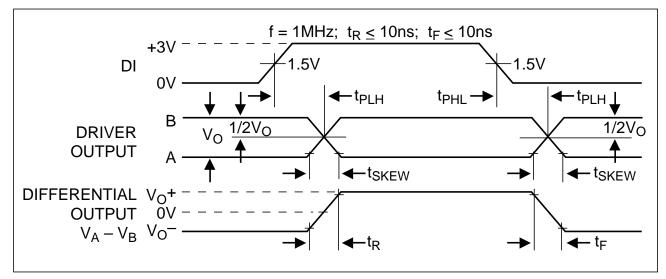


Figure 6. Driver Propagation Delays

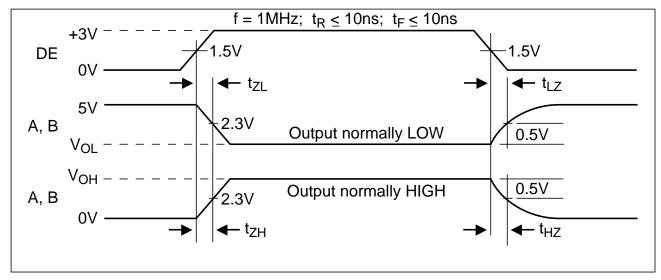


Figure 7. Driver Enable and Disable Times

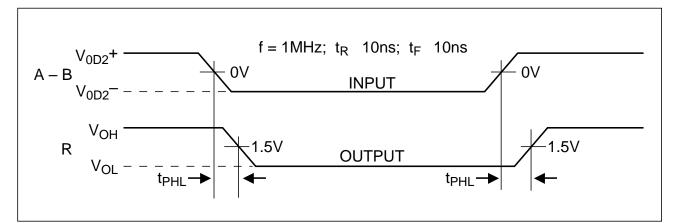


Figure 8. Receiver Propagation Delays

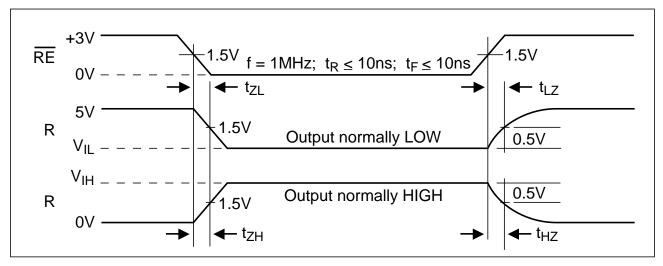


Figure 9. Receiver Enable and Disable Times

DESCRIPTION

General Description...

The **SP495** is a quad differential transceiver that meets the requirements of RS-485, RS-422, and differential SCSI at data rates to beyond 10Mbps. Fabricated with a proprietary Sipex BiCMOS process, the **SP495** requires only a fraction of the power of older bipolar designs.

The **SP495** features three half-duplex transceivers suitable for data bus connections and a fourth full-duplex transceiver with independent enables ideal for use as a control bus transceiver. A complete SCSI initiator or target interface can be implemented using five **SP495**s.

The RS-485 standard is ideal for multi-drop applications and for long-distance interfaces. RS-485 allows up to 32 drivers and 32 receivers to be connected to a single data bus, making it an ideal choice for multi-drop applications. Since the cabling can be as long as 4,000 feet, RS-485 transceivers are specified for operation with a wide (-7V to +12V) common mode range to accommodate ground potential differences. Because RS-485 is a low impedance differential interface, data is virtually immune to noise in the transmission line.

Drivers...

The differential drivers for the **SP495** have typical output voltage swings (no load) of 0 to +5Volts. With loading to the RS-485 specification (54 Ω), drivers must maintain outputs greater than 1.5V.

The three half-duplex drivers of the **SP495** have independent Driver Enable control lines which are active HIGH. A logic HIGH on DEx (pins 1, 4, or 5 of the **SP495**) will enable the addressed differential driver output. A logic LOW on DEx will tri-state the driver output and enable the receiver. The fourth driver is controlled by its own DE4 Enable line and can be used in half duplex or full-duplex modes.

Receivers...

The differential receivers for the **SP495** have an input sensitivity of ± 200 mV. Input impedance is typically $15k\Omega$ ($12k\Omega$ minimum). A wide common mode range of -7V to +12V allows for large ground potential differences between widely separated systems. These receivers are equipped with a fail-safe feature which guarantees that the receiver output will be in a HIGH state when the input is left unconnected (note: this feature operates with <u>floating</u> inputs, not terminated inputs).

Like the half-duplex drivers, the three half-duplex receivers of the **SP495** have independent Receiver Enable control lines which are active LOW. A logic LOW on $\overline{\text{REx}}$ (pins 1, 4, or 5 of the **SP495**) enables the differential receivers. A logic HIGH on $\overline{\text{REx}}$ tri-states the receivers. The fourth receiver is controlled by its own RE4 Enable line and can be used in half-duplex or full-duplex modes.

Downloaded from Elcodis.com electronic components distributor

ORDERING INFORMATION

Model	Temperature Range	Package
SP495CT	0°C to +70°C	20-Pin SOIC
SP495ET	40°C to +85°C	20-Pin SOIC
For PLCC availability, please consult factory.		

Now available in Lead Free. To order add "-L' to the part number. Example: SP488A = normal, SP488A-L = Lead free

Sipex Corporation

Headquarters and Sales Office 22 Linnell Circle Billerica, MA 01821 TEL: (978) 667-8700 FAX: (978) 670-9001 e-mail: sales@sipex.com

Sales Office 233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 934-7500 FAX: (408) 935-7600

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.

SP495