Features

- One input to 12 output buffer/drivers
- Supports up to 2 DDR DIMMs or 3 SDRAM DIMMS
- One additional output for feedback
- SMBus interface for individual output control
- Low skew outputs (< 100 ps)
- Supports 266 MHz DDR SDRAM
- Dedicated pin for power management support

- Space-saving 28-pin SSOP package

Functional Description

The W256 is a $3.3 \mathrm{~V} / 2.5 \mathrm{~V}$ buffer designed to distribute high-speed clocks in PC applications. The part has 12 outputs. Designers can configure these outputs to support 3 unbuffered standard SDRAM DIMMs and 2 DDR DIMMs. The W256 can be used in conjunction with the W250-02 or similar clock synthesizer for the VIA Pro 266 chipset.
The W256 also includes an SMBus interface which can enable or disable each output clock. On power-up, all output clocks are enabled (internal pull up).

Pin Summary

Name	Pins	Description
SEL_DDR	28	Input to configure for DDR-ONLY mode or STANDARD SDRAM mode. $1=$ DDR-ONLY mode. $0=$ STANDARD SDRAM mode. When SEL_DDR is pulled high or configured for DDR-ONLY mode, all the buffers will be configured as DDR outputs. Connect VDD3.3_2.5 to a 2.5V power supply in DDR-ONLY mode. When SEL_DDR is pulled LOW or configured for STANDARD SDRAM output, all the buffers will be configured as STANDARD SDRAM outputs. Connect VDD3.3_2.5 to a 3.3V power supply in STANDARD SDRAM mode.
SCLK	16	SMBus clock input
SDATA	15	SMBus data input Reference input from chipset. 2.5V input for DDR-ONLY mode; 3.3V input for STANDARD SDRAM mode.
BUF_IN	10	Feedback clock for chipset. Output voltage depends on VDD3.3_2.5V.
FBOUT	1	Active LOW input to enable Power Down mode; all outputs will be pulled LOW.
PWR_DWN\#	2	Clock outputs. These outputs provide copies of BUF_IN. Voltage swing depends on VDD3.3_2.5 power supply.
DDR[0:5]T_SDRAM $[0,2,4,6,8,10]$	$3,7,12,19,23,27$	Clock outputs. These outputs provide complementary copies of BUF_IN when SEL_DDR is active. These outputs provide copies of BUF_IN when SEL_DDR is inactive. Voltage swing depends on VDD3.3_2.5 pow- er supply.
DDR[0:5]C_SDRAM $[1,3,5,7,9,11]$	$4,8,13,18,22,26$	Connect to $2.5 V$ power supply when W256 is configured for DDR-ONLY mode. Connect to 3.3V power supply, when W256 is configured for stan- dard SDRAM mode.
VDD3.3_2.5	$5,9,14,21,25$	Ground
GND	$6,11,17,20,24$	

Serial Configuration Map

- The Serial bits will be read by the clock driver in the following order:

Byte 0 - Bits 7, 6, 5, 4, 3, 2, 1, 0
Byte 1 - Bits 7, 6, 5, 4, 3, 2, 1, 0

Byte N-Bits 7, 6, 5, 4, 3, 2, 1, 0

- Reserved and unused bits should be programmed to " 0 ".
- SMBus Address for the W256 is:

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	0	1	0	0	1	----

Byte 6: Outputs Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	Pin \#	Description	Default
Bit 7	--	Reserved, drive to 0	0
Bit 6	--	Reserved, drive to 0	0
Bit 5	--	Reserved, drive to 0	0
Bit 4	1	FBOUT	1
Bit 3	27,26	DDR5T_SDRAM10, DDR5C_SDRAM11	1
Bit 2	--	Reserved, drive to 0	1

Byte 6: Outputs Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit 1	23,22	DDR4T_SDRAM8, DDR4C_SDRAM9	1
Bit 0	--	Reserved, drive to 0	1

Byte 7: Outputs Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	Pin \#	Description	Default
Bit 7	--	Reserved, drive to 0	1
Bit 6	19,18	DDR3T_SDRAM6, DDR3C_SDRAM7	1
Bit 5	12,13	DDR2T_SDRAM4, DDR2C_SDRAM5	1
Bit 4	--	Reserved, drive to 0	1
Bit 3	--	Reserved, drive to 0	1
Bit 2	7,8	DDR1T_SDRAM2, DDR1C_SDRAM3	1
Bit 1	--	Reserved, drive to 0	1
Bit 0	3,4	DDR0T_SDRAM0, DDR0C_SDRAM1	1

Maximum Ratings

Supply Voltage to Ground Potential \qquad -0.5 to +7.0 V

DC Input Voltage (except BUF_IN) \qquad -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5$

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Static Discharge Voltage >2000V (per MIL-STD-883, Method 3015)

Operating Conditions

Parameter	Description	Min.	Typ.	Max.	Unit
VDD3.3	Supply Voltage	3.135		3.465	V
VDD2.5	Supply Voltage	2.375		2.625	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature (Ambient Temperature)	0		70	${ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		6		pF
C_{IN}	Input Capacitance		5		pF

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	For all pins except SMBus			0.8	V
V_{IH}	Input HIGH Voltage		2.0			V
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			50	$\mu \mathrm{A}$
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$			50	$\mu \mathrm{A}$
$\mathrm{IOH}^{\text {l }}$	Output HIGH Current	$\begin{aligned} & \mathrm{VDD}=2.375 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} \end{aligned}$	-18	-32		mA
I_{OL}	Output LOW Current	$\begin{aligned} & \hline \mathrm{VDD}=2.375 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V} \end{aligned}$	26	35		mA
V_{OL}	Output LOW Voltage ${ }^{[2]}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{VDD}=2.375 \mathrm{~V}$			0.6	V
V_{OH}	Output HIGH Voltage ${ }^{[2]}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}, \mathrm{VDD}= \\ & 2.375 \mathrm{~V} \end{aligned}$	1.7			V
I_{DD}	Supply Current ${ }^{[2]}$ (DDR-Only mode)	Unloaded outputs, 133 MHz			400	mA
I_{DD}	Supply Current (DDR-Only mode)	Loaded outputs, 133 MHz			500	mA
IDDS	Supply Current	PWR_DWN\# = 0			100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	See Test Circuity (Refer to Figure 1)	0.7		VDD +0.6	V
V_{OC}	Output Crossing Voltage		$\begin{gathered} \hline \text { (VDD/2) } \\ -0.1 \end{gathered}$	VDD/2	$\begin{gathered} \hline \text { (VDD/2) } \\ +0.1 \end{gathered}$	V
$\mathrm{IN}_{\mathrm{DC}}$	Input Clock Duty Cycle		48		52	\%

Notes:
2. Parameter is guaranteed by design and characterization. Not 100% tested in production.

Switching Characteristics ${ }^{[\text {[Figure 3] }}$

Parameter	Name	Test Conditions	Min.	Typ.	Max.	Unit
--	Operating Frequency		66		133	MHz
--	Duty Cycle ${ }^{[2,4]}=\mathrm{t}_{2} \div \mathrm{t}_{1}$	Measured at 1.4 V for 3.3 V outputs Measured at VDD/2 for 2.5 V outputs.	$\begin{aligned} & \mathrm{IN}_{\mathrm{DC}} \\ & -5 \% \end{aligned}$		$\begin{aligned} & \mathrm{IN}_{\mathrm{DC}} \\ & +5 \% \end{aligned}$	\%
t_{3}	SDRAM Rising Edge Rate ${ }^{[2]}$	Measured between 0.4 V and 2.4 V	1.0		2.50	V/ns
t_{4}	SDRAM Falling Edge Rate ${ }^{[2]}$	Measured between 2.4V and 0.4V	1.0		2.50	V/ns
$\mathrm{t}_{3 \mathrm{~d}}$	DDR Rising Edge Rate ${ }^{[2]}$	Measured between 20% to 80% of output (Refer to Figure 1)	0.5		1.50	V/ns
$\mathrm{t}_{4 \mathrm{~d}}$	DDR Falling Edge Rate ${ }^{[2]}$	Measured between 20% to 80% of output (Refer to Figure 1)	0.5		1.50	V/ns
t_{5}	Output to Output Skew ${ }^{[2]}$	All outputs equally loaded			100	ps
t_{6}	SDRAM Buffer HH Prop. Delay ${ }^{[2]}$	Input edge greater than $1 \mathrm{~V} / \mathrm{ns}$	5		10	ns
t_{7}	SDRAM Buffer LLProp. Delay ${ }^{[2]}$	Input edge greater than $1 \mathrm{~V} / \mathrm{ns}$	5		10	ns
t_{8}	SDRAM Buffer LLProp. Delay ${ }^{[2]}$	Input edge greater than $1 \mathrm{~V} / \mathrm{ns}$	5		10	ns

Switching Waveforms

Duty Cycle Timing

All Outputs Rise/Fall Time

OUTPUT

Output-Output Skew

Notes:
3. All parameters specified with loaded outputs.
4. Duty cycle of input clock is 50%. Rising and falling edge rate is greater than $1 \mathrm{~V} / \mathrm{ns}$.

Switching Waveforms (continued)
SDRAM Buffer HH and LL Propagation Delay

Figure 1 shows the differential clock directly terminated by a 120Ω resistor

Figure 1. Differential Signal Using Direct Termination Resistor.

Ordering Information

Ordering Code	Package Type	Operating Range
W256	28-pin SSOP	Commercial

Document \#: 38-01083-*A

Layout Example Single Voltage

FB = Dale ILB1206-300 (300 @ @ 100 MHz)
Cermaic Caps C1 $=10-22 \mu \mathrm{~F} \quad \mathrm{C} 2=.005 \mu \mathrm{~F}$
$(G)=$ VIA to GND plane layer $\quad V=$ VIA to respective supply plane layer
Note: Each supply plane or strip should have a ferrite bead and capacitors All bypass caps $=0.1 \mu \mathrm{~F}$ ceramic

Mechanical Package Outline

28-Pin Small Shrink Outline Package (SSOP, 209 mils)

BOTTOM VIEW

SECTION G-G 10.

1. MAXIMUM DIE THICKNESS ALLOWABLE IS 0.43 mm (017 INCHES)
2. MAXIMUM DIE THICKNESS ALLOWABLE IS 0.43 mm (017 IN
3. "T" IS A REFERENCE DATUM.
4. "D" \& "E"ARE REFERENCE DATUMS AND DO NOT
DO INCLUDE MOLD MISMATCH AND ARE MEASURED
DOINCLUDE MOLD MISMATCH AND ARE MEASURED
AT THE PARTING LINE, MOLD FLASH OR
f. PROTRUSIONS SHALL NOT EXCEED 0.15 mm PER SIDE.
DIMENSION IS THE LENGTH OF TERMINAL
5. DIMENSION IS THE LENGTH OF EREMINAL
6. TERMINAL POSITIONS ARE SHOWN FOR REFERENCE ONLY.
万. FORMED LEADS SHALL BE PLANAR WITH RESPECT TO
ONE ANOTHER WITHIN 0.08 mm AT SEATING PLANE.
DIMENSION D DOES NOT INCLLDE DAMBAR PROTRUSIONINTRUSION
ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 mm TOTAL IN
EXCESS OF b DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR INTRUSION SHALL NOT REDUCE DIMENSION b BY MORE
DAMBAR INTRUSION SHALL NOT REDUCE DIMENSION b BY MORE
THAN 0.07 mm AT LEAST MATERIAL CONDITION.
7. CONTROLLING DIMENSION: MILLIMETERS.
8. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE
LEAD BETWEEN 0.10 AND 0.25 mm FROM LEAD TIPS.
9. THIS PACKAGE OUTLINE DRAWING COMPLIES WITH
HIS TABLE IN MILLIMETERS

THIS TABLE IN INCHES

$\stackrel{s}{\mathrm{y}_{\mathrm{m}}^{5}} \begin{gathered} y_{0} \\ 0 \end{gathered}$	COMMON DIMENSIONS			${ }^{N_{O_{T}}}$	NOTE VARIATIONS	4			$\stackrel{6}{\mathrm{~N}}$	
						D				
	MIN.	NOM.	MAX.			MIN	NOM.	MAX.		
A	. 068	. 073	. 078			AA	239	. 244	. 249	14
A_{1}	. 002	. 005	. 008		AB	239	244	. 249	16	
A_{2}	. 066	. 068	. 070		AC	278	. 284	. 289	20	
b	010	-	. 015	8,10	AD	318	323	. 328	24	
b1	010	. 012	. 013	10	AE	397	402	. 407	28	
c	. 004	-	. 008	10	AF	. 397	. 402	. 407	30	
c1	. 004	. 006	. 006	10						
D	SEE VARIATIONS			4						
E	205	. 209	. 212	4						
e	. 0256 BSC									
H	. 301	. 307	. 311							
L	. 025	. 030	. 037	5						
L1	. 049 REF.									
N	SEE VARIATIONS			6						
${ }_{\circ}^{\text {c }}$	0°	4°	8°							
R	. 004	. 006								

