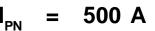
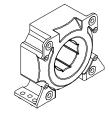
Current Transducer LF 505-S

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

PN	Primary nominal r.m.s.	500		A	
I _P	Primary current, measuring range		0 ± 800		A
$\mathbf{R}_{_{\mathrm{M}}}$	Measuring resistance		$R_{_{Mmin}}$	R _{M ma}	x
	with ± 15 V	@ ± 500 A _{max}	0	60	Ω
		@ ± 800 A _{max}	0	11	Ω
	with ± 18 V	@ ± 500 A _{max}	0	92	Ω
		@ ± 800 A max	0	30	Ω
	with ± 24 V	@ ± 500 A _{max}	5	149	Ω
		@ ± 800 A _{max}	5	65	Ω
I _{SN}	Secondary nominal r.m.s. current		100		mA
κ _N	Conversion ratio		1 : 5000		
V _c	Supply voltage (± 5 %)		± 15	24	V
I _c	Current consumption		24 (@±18V)+I _s mA		
Ň _d	R.m.s. voltage for AC is	3	-	kV	


Accuracy - Dynamic performance data


$f{x}_{_G}$	Overall accuracy @ I_{PN} , T_A = 25°C Linearity		± 0.6 < 0.1		% %
	Offset current @ $I_p = 0$, $T_a = 25^{\circ}C$		Тур	Max ± 0.4	mA
I _о I _{от}	1 8	- 10°C + 70°C	± 0.3	± 0.4	mA
OT	0		10.5	1 0.5	шА
t	Response time $^{1)}$ @ 90 % of $I_{_{\mathrm{PN}}}$		< 1		μs
di/dt	di/dt accurately followed		> 100		A/µs
f	Frequency bandwidth (-1 dB)		DC 100		kHz

General data \mathbf{T}_{A} Ambient operating temperature - 10 .. + 70 \mathbf{T}_{s} - 25 .. + 85 Ambient storage temperature \mathbf{R}_{s} Secondary coil resistance @ **T**_△ = 70°C 70 m Mass 230 Standards 2) EN 50155 EN 50178

Notes : 1) With a di/dt of 100 A/µs

²⁾ A list of corresponding tests is available

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

°C

°C

Ω

g

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Dimensions LF 505-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolerance

- Fastening
- Primary through-hole
- Connection of secondary
- see drawing 30.2 x 30.2 mm MOLEX 5045-03/AG

± 0.5 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.