FEATURES

－ 83 MHz Data Rate
－12－bit Data and Coefficients
－On－board Memory for 256
Coefficient Sets
L LF Interface ${ }^{\mathrm{TM}}$ Allows All 256 Coef－ ficient Sets to be Updated Within Vertical Blanking
\square Selectable 16－bit Data Output with User－Defined Rounding and Limit－ ing
\square Seven 3K x 12－bit，Programmable Two－Mode Line Buffers
\square Separate Input Port for Odd and Even Field Filtering
－ 8 Filter Taps
Cascadable for More Filter Taps
Supports Interleaved Data Streams
3．3 Volt Power Supply
－ 5 Volt Tolerant I／O
－ 100 Lead PQFP

DESCRIPTION

The LF3330 filters digital images in the vertical dimension at real－time video rates．The input and coefficient data are both 12 bits and in two＇s comple－ ment format．The output is also in two＇s complement format and may be rounded to 16 bits．

The filter is an 8－tap FIR filter with all required line buffers contained on－ chip．The line buffers can store video lines with lengths from 4 to 3076 pixels．

Multiple LF3330s can be cascaded together to create larger vertical filters．

Due to the length of the line buffers， interleaved data can be fed directly into the device and filtered without separating the data into individual
data streams．The number of inter－ leaved data sets that the device can handle is limited only by the length of the on－chip line buffers．If the inter－ leaved video line has 3076 data values or less，the filter can handle it．

The LF3330 contains enough on－board memory to store 256 coefficient sets． The LF Interface ${ }^{\mathrm{TM}}$ allows all 256 coef－ ficient sets to be updated within verti－ cal blanking．
Selectable 16－bit data output with user－defined rounding and limiting minimizes the constraints put on coef－ ficient sets for various filter imple－ mentations．

SIGNAL DEFINITIONS

Figure 1. LF3330 Functional Block Diagram

LF3330

Power

VCC and GND
+3.3 V power supply. All pins must be connected.

Clock

CLK — Master Clock
The rising edge of CLK strobes all enabled registers.

Inputs

DIN11-0 — Data Input
DIN11-0 is the 12-bit registered data input port. Data is latched on the rising edge of CLK.

VB11-0 — Field Filtering Data Input

VB11-0 is the 12-bit registered data input port used only when implementing Odd and Even Field Filtering (see Functional Description section for a full discussion). Data is latched on the rising edge of CLK.

CF11-0 - Coefficient Input

CF11-0 is used to load data into the coefficient banks and configuration/ control registers. Data present on CF11-0 is latched into the LF Interface ${ }^{\mathrm{TM}}$ on the rising edge of CLK when LD is LOW (see the LF Interface ${ }^{\mathrm{TM}}$ section for a full discussion).

CA7-0 — Coefficient Address

CA7-0 determines which row of data in the coefficient banks is fed to the multipliers. CA7-0 is latched into the Coefficient Address Register on the rising edge of CLK when CEN is LOW.

Outputs

DOUT15-0 — Data Output

DOUT15-0 is the 16-bit registered data output port.

Figure 2. Input Formats
Input Data

11	10	9

2^{11}
(Sign)

2^{10} $2^{9} \quad 2$| 2^{2} | 2^{1} | 2^{0} |
| :---: | :---: | :---: |

Coefficient Data

11	10	9	2	1	0
2^{0} $($ Sign $)$	2^{1}	2^{2}	2^{9}	2^{10}	2^{11}

SLCT4-0	S_{15}	S_{14}	S_{13}	-••	S8	S_{7}	-••	S_{2}	S_{1}	So
00000	F_{15}	F_{14}	F_{13}	. .	F_{8}	F_{7}	\cdots	F_{2}	F1	Fo
00001	F_{16}	F_{15}	F_{14}		F9	F_{8}		F3	F_{2}	F_{1}
00010	F_{17}	F_{16}	F_{15}	\cdots	F_{10}	F_{9}	\cdots	F4	F3	F_{2}
-	-	-	-		-	-		-	-	
-	-	-	-		-	-		-	-	.
01110	F_{29}	F_{28}	F_{27}		F_{22}	F_{21}	.	F_{16}	F_{15}	F_{14}
01111	F30	F_{29}	F_{28}		F_{23}	F_{22}		F_{17}	F_{16}	F_{15}
10000	F31	F30	F_{29}		F_{24}	F_{23}		F_{18}	F_{17}	F_{16}

COUT11-0 - Cascade Data Output

COUT11-0 is a 12 -bit cascade output port. COUT11-0 on one device should be connected to DIN11-0 of another LF3330.

Controls

LD - Coefficient Load
When LD is LOW, data on CF11-0 is latched into the LF Interface ${ }^{\mathrm{TM}}$ on the rising edge of CLK. When LD is HIGH, data can not be latched into the LF Interface ${ }^{\mathrm{TM}}$. When enabling the LF Interface ${ }^{\mathrm{TM}}$ for data input, a HIGH to LOW transition of LD is required in order for the input circuitry to function properly. Therefore, LD mustbe set HIGH immediately after power up to ensure proper operation of the input circuitry (see the LF Interface ${ }^{\mathrm{TM}}$ section for a full discussion).

PAUSE - LF Interface ${ }^{\text {TM }}$ Pause

Figure 3. Accumulator Format

Accumulator Output

When PAUSE is HIGH, the LF Interface ${ }^{\mathrm{TM}}$ loading sequence is halted until PAUSE is returned to a LOW state. This effectively allows the user to load coefficients and control registers at a slower rate than the master clock (see the LF Interface ${ }^{\mathrm{TM}}$ section for a full discussion).

CEN - Coefficient Address Enable

When CEN is LOW, data on CA7-0 is latched into the Coefficient Address Register on the rising edge of CLK. When CEN is HIGH, data on CA7-0 is not latched and the register's contents will not be changed.

LF3330

Table 2.	Configuration Register $\mathbf{0}$ - Address 200H	
Bits	FUnction	Description
$11-0$	Line Buffer Length	See Line Buffer Description Section

Table 3.		Configuration Register $\mathbf{1}$ - Address 201H	
Bits	FUnction	Description	
0	Line Buffer Mode	$0:$ Delay Mode $1:$ Recirculate Mode	
1	Line Buffer Load	$0:$ Normal Load $1:$ Parallel Load	
2	Odd and Even Field	$0:$ VB Port Disabled	
	Filtering Port Enable	$1:$ VB Port Enabled	
3	Odd and Even Field Filtering Line Buffer Enable	$0:$ VB Line Buffer Disabled	
$1:$ VB Line Buffer Enabled			

Table 4.	Configuration Register 2 - Address 202H	
bits	FUnction	Description
0	Limit Enable	$0:$ Limiting Disabled $1:$ Limiting Enabled
$11-1$	Reserved	Must be set to "0"

Table 5.		Configuration Register 3 - Address 203H	
bits	FUnction	Description	
0	Cascade Mode	$0:$ First Device $1:$ Cascaded Device	
$11-1$	Reserved	Must be set to "0"	

ACC - Accumulator Control
When ACC is HIGH, the accumulator is enabled for accumulation and the accumulator output register is disabled for loading. When ACC is LOW, no accumulation is performed and the accumulator output register is enabled for loading. ACC is latched on the rising edge of CLK.

SHEN - Shift Enable

SHEN enables or disables the loading of data into the input/cascade registers and the linebuffers. When SHEN is LOW, data is loaded into the input/ cascade registers and shifted through
the line buffers on the rising edge of CLK. When SHEN is HIGH, data can not be loaded into the input/cascade registers or shifted through the line buffers and their contents will not be changed.

RSL3-0 — Round/Select/Limit Control

RSL3-0 determines which of the sixteen user-programmable round/ select/limit registers are used in the round/select/limit circuitry. A value of 0 on RSL3-0 selects round/select/ limit register 0 . A value of 1 selects round/select/limit register 1 and so on. RSL3-0 is latched on the rising edge of CLK (see the round, select,

and limit sections for a complete discussion).

OED - DOUT Output Enable
When OED is LOW, DOUT15-0 is enabled for output. When OED is HIGH, DOUT15-0 is placed in a highimpedance state.

OEC - COUT Output Enable
When OEC is LOW, COUT $15-0$ is enabled for output. When OEC is HIGH, COUT15-0 is placed in a highimpedance state.

FUNCTIONAL DESCRIPTION

LF3330

Line Buffers

The maximum delay length of each line buffer is 3076 cycles and the minimum is 4 cycles. Configuration Register 0 (CR0) determines the delay length of the line buffers. The line buffer length is equal to the value of CR 0 plus 4 . A value of 0 for CR0 sets the line buffer length to 4 . A value of 3072 for CR0 sets the line buffer length to 3076. Any values for CR0 greater than 3072 are not valid.

The line buffers have two modes of operation: delay mode and recirculate mode. Bit 0 of Configuration Register 1 determines which mode the line buffers are in. In delay mode, the data input to the line buffer is delayed by an amount determined by CR0. In recirculate mode, the output of the line buffer is routed back to the input of the line buffer allowing the line buffer contents to be read multiple times.

Bit 1 of Configuration Register 1 allows the line buffers to be loaded in parallel. When Bit 1 is " 1 ", the input register (DIN11-0) loads all seven line buffers in parallel. This allows all
the line buffers to be preloaded with data in the amount of time it normally takes to load a single line buffer.

Odd and Even Field Filtering

The LF3330 is capable of odd and even field filtering. Bit 2 of Configuration Register 1 enables the VB Data Input port required for odd and even field filtering. Bit 3 of the same configuration register enables the line buffer in the VB Data path. Line buffer length is set to the length written to Configuration Register 0. If line buffer parallel load is enabled and odd and even field filtering is enabled, the data for the VB line buffer comes from the VB Data Input port.

Interleaved Data

The LF3330 is capable of handling interleaved data. The number of data sets it can handle is determined by the number of data values contained in a video line. If the interleaved video line has 3076 data values or less, the LF3330 can handle it no matter how many data sets are interleaved together.

Cascading

A cascade port is provided to allow cascading of multiple devices for more filter taps (see Figure 5). COUT11-0 of one device should be connected to DIN11-0 of another device. As many LF3330s as desired may be cascaded together. However, the outputs of the LF3330s must be added together with external adders.

The first line buffer on a cascaded device must have its length shortened by two delays. This is to account for the added delays of the input register on the device and the cascade output register from the previous LF3330. If Bit 0 of Configuration Register 3 is set to " 1 ", the length of the first line buffer will be reduced by two. This will make its effective length the same as the other line buffers on the device. If Bit 0 of Configuration Register 3 is set to " 0 ", the length of the first line buffer will be the same as the other line buffers. When cascading devices, the first LF3330 should have Bit 0 of Configuration Register 3 set to " 0 ". Any LF3330s cascaded after the first LF3330 should have Bit 0 of Configu-

LF3330
ration Register 3 set to " 1 ". When not cascading, Bit 0 of Configuration Register 3 should be set to " 0 ".

It is important to note that the first multiplier on all cascaded devices should not be used. This is because the first multiplier does not have a line buffer in front of it. The coefficient value sent to the first multiplier on a cascaded device should be " 0 ".

Rounding

The filter output may be rounded by adding the contents of one of the sixteen round registers to the filter output (see Figure 4). Each round register is 32 bits wide and user-programmable. This allows the filter's output to be rounded to any precision required. Since any 32-bit value may be programmed into the round regis-
ters, the device can support complex rounding algorithms as well as standard half-LSB rounding. RSL3-0 determines which of the sixteen round registers are used in the rounding operation. A value of 0 on RSL $3-0$ selects round register 0 . A value of 1 selects round register 1 and so on. RSL3-0 may be changed every clock cycle if desired. This allows the rounding algorithm to be changed every clock cycle. This is useful when filtering interleaved data. If rounding is not desired, a round register should be loaded with 0 and selected as the register used for rounding. Round register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Output Select

The word width of the filter output is 32 bits. However, only 16 bits may be
sent to DOUT15-0. The select circuitry determines which 16 bits are passed (see Table 1). There are sixteen select registers which control the select circuitry. Each select register is 5 bits wide and user-programmable. RSL3-0 determines which of the sixteen select registers are used in the select circuitry. Select register 0 is chosen by loading a 0 on RSL3-0. Select register 1 is chosen by loading a 1 on RSL3-0 and so on. RSL3-0 may be changed every clock cycle if desired. This allows the 16-bit window to be changed every clock cycle. This is useful when filtering interleaved data. Select register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Limiting

An output limiting function is provided for the output of the filter.

Figure 6. Coefficient Bank Loading Sequence

W1: Coefficient Set 1 written to coefficient banks during this clock cycle.
W2: Coefficient Set 2 written to coefficient banks during this clock cycle.
W3: Coefficient Set 3 written to coefficient banks during this clock cycle.

Figure 7. Configuration/Control Register Loading Sequence

W1: Configuration Register loaded with new data on this rising clock edge.
W2: Select Register loaded with new data on this rising clock edge.
W3: Round Register loaded with new data on this rising clock edge.
W4: Limit Register loaded with new data on this rising clock edge.

The limit registers determine the valid range of output values when limiting is enabled (Bit 0 in Configuration Register 2). There are sixteen 32-bit limit registers. RSL3-0 determines which limit register is used during the limit operation. A value of 0 on RSL3-0 selects limit register 0 . A value of 1 selects limit register 1 and so on. Each limit register contains both an upper and lower limit value. If the value fed to the limiting circuitry is less than the lower limit, the lower limit value is passed as the filter output. If the value fed to the limiting circuitry is greater than the upper limit, the upper limit value is passed as the filter output. RSL3-0 may be changed every clock cycle if desired. This allows the limit range to be changed every clock cycle. This is useful when filtering interleaved data. When loading limit
values into the device, the upper limit must be greater than the lower limit. Limit register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Coefficient Banks

The coefficient banks store the coefficients which feed into the multipliers in the filter. There is a separate bank for each multiplier. Each bank can hold 256 12-bit coefficients. The banks are loaded using the LF Interface ${ }^{\mathrm{TM}}$. Coefficient bank loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

Configuration and Control Registers

The configuration registers determine how the LF3330 operates. Tables 2 through 5 show the formats of the four configuration registers. There are three types of control registers: round,
select, and limit. There are sixteen round registers. Each round register is 32 bits wide. RSL3-0 determines which round register is used for rounding.

There are sixteen select registers. Each select register is 5 bits wide. RSL3-0 determines which select register is used for the select circuitry.

There are sixteen limit registers. Each limit register is 32 bits wide and stores both an upper and lower limit value. The lower limit is stored in bits 15-0 and the upper limit is stored in bits 31-16. RSL3-0 determines which limit register is used for limiting when limiting is enabled. Configuration and control register loading is discussed in the LF Interface ${ }^{\mathrm{TM}}$ section.

LF Interface ${ }^{\text {TM }}$

The LF Interface ${ }^{\mathrm{TM}}$ is used to load

Figure 8. Coefficient Bank Loading Sequence with PAUSE Implementation

Figure 9. Configuration and Select Register Loading Sequence with PAUSE Implementation

W1: Configuration Register loaded with new data on this rising clock edge.
W2: Select Register loaded with new data on this rising clock edge.

LF3330
data into the coefficient banks and configuration/control registers. LD is used to enable and disable the LF Interface ${ }^{\mathrm{TM}}$. When LD goes LOW, the LF Interface ${ }^{\mathrm{TM}}$ is enabled for data input. The first value fed into the
interface on CF11-0 is an address which determines what the interface is going to load. The three most significant bits (CF11-9) determine if the LF Interface ${ }^{\text {TM }}$ will load coefficient banks
or configuration/ control registers (see Table 6). The nine least significant bits (CF8-0) are the address for whatever is to be loaded (see Tables 7 through
9). For example, to load address 15 of the coefficient banks, the first data

Figure 10. Round Register Loading Sequence with PAUSE Implementation

W1: Round Register loaded with new data on this rising clock edge.

Figure 11. Limit Register Loading Sequence with PAUSE Implementation

W1: Limit Register loaded with new data on this rising clock edge.

value into the LF Interface ${ }^{\mathrm{TM}}$ should be 00 FH . To load limit register 10 , the first data value should be E0AH. The first address value should be loaded into the interface on the same clock cycle that latches the HIGH to LOW transition of LD (see Figures 6 and 7).

The next value(s) loaded into the interface are the data value(s) which will be stored in the bank or register defined by the address value. When loading coefficient banks, the interface will expect eight values to be loaded into the device after the address value. The eight values are coefficients 0 through 7. When loading configuration or select registers, the interface will expect one value after the address value. When loading round or limit registers, the interface will expect four values after the address value. Figures 6 and 7 show the data loading sequences for the coefficient banks and configuration/control registers.

PAUSE allows the user to effectively slow the rate of data loading through the LF Interface ${ }^{\mathrm{TM}}$. When PAUSE is HIGH, the LF Interface ${ }^{\mathrm{TM}}$ is held until

Table 6. CF11-9 Decode
11109 DESCRIPTION

0	0	0	Coefficient Banks

$\begin{array}{llll}0 & 0 & 1 & \text { Configuration Registers }\end{array}$
$\begin{array}{llll}0 & 1 & 1 & \text { Select Registers }\end{array}$
$\begin{array}{lll}1 & 0 & 1\end{array}$ Round Registers
$\begin{array}{lll}1 & 1 & 1\end{array}$ Limit Registers
PAUSE is returned to a LOW. Figures 8 through 11 display the effects of PAUSE while leading coefficient and control data.

Table 10 shows an example of loading data into the coefficient banks. The following data values are written into address 10 of coefficient banks 0 through 7: $210 \mathrm{H}, 543 \mathrm{H}, \mathrm{C} 76 \mathrm{H}, 9 \mathrm{E} 3 \mathrm{H}$, $701 \mathrm{H}, 832 \mathrm{H}, \mathrm{F} 20 \mathrm{H}, 143 \mathrm{H}$. Table 11 shows an example of loading data into a configuration register. Data value 003 H is written into Configuration Register 2. Table 12 shows an example of loading data into a round register. Data value 7683F4A2H is written into round register 12. Table 13 shows an example of loading data into a select register. Data value 00FH is loaded into select register 2. Table 14 shows an example of loading data

Table 7. Round Registers	
REGIStER	ADDRESS (HEX)
0	A00
1	A01
\vdots	\vdots
14	A0E
15	AOF

Table 8. Select Registers	
Register	AdDress (Hex)
0	600
1	601
\vdots	\vdots
14	60 E
15	60 F

Table 9. Limit Registers	
Register	Address (HEX)
0	E00
1	E01
\vdots	\vdots
14	E0E
15	EOF

Table 11. Configuration Register Loading Format

CF11	CF10	CF9	CF8	CF7	CF6	CF5	CF4	CF3	CF2	CF1	CF0	
1st Word - Address	0	0	1	0	0	0	0	0	0	0	1	0
2nd Word - Data	0	0	0	0	0	0	0	0	0	0	1	1

Table 12. Round Register Loading Format

	CF_{11}	CF_{10}	CF9	CF8	CF7	CF6	CF_{5}	CF_{4}	CF_{3}	CF_{2}	CF_{1}	CF_{0}
1st Word - Address	1	0	1	0	0	0	0	0	1	1	0	0
2nd Word - Data	R	R	R	R	1	0	1	0	0	0	1	0^{\star}
3rd Word - Data	R	R	R	R	1	1	1	1	0	1	0	0
4th Word - Data	R	R	R	R	1	0	0	0	0	0	1	1
5th Word - Data	R	R	R	R	$0^{\star *}$	1	1	1	0	1	1	0

$\mathrm{R}=$ Reserved. Must be set to " 0 ".

* This bit represents the LSB of the Round Register.
** This bit represents the MSB of the Round Register.

LF3330
into limit register 7. Data value 3 B 60 H is loaded as the lower limit and 72 A 4 H is loaded as the upper limit.

It takes 9S clock cycles to load S coefficient sets into the device. Therefore, it takes 2304 clock cycles to load all 256 coefficient sets. Assuming an 83 MHz clock rate, all 256 coefficient sets can be updated in less than $27.7 \mu \mathrm{~s}$, which is well within vertical blanking time. It takes 5S clock cycles to load S round or limit registers. Therefore, it takes 160 clock cycles to update all round and limit registers. Assuming an 83 MHz clock rate, all round/limit registers can be updated in $1.92 \mu \mathrm{~s}$.

The coefficient banks and configuration/control registers are not
loaded with data until all data values for the specified address are loaded into the LF Interface ${ }^{\mathrm{TM}}$. In other words, the coefficient banks are not written to until all eight coefficients have been loaded into the LF Interface ${ }^{\mathrm{TM}}$. A round register is not written to until all four data values are loaded.

After the last data value is loaded, the interface will expect a new address value on the next clock cycle. After the next address value is loaded, data loading will begin again as previously discussed. As long as data is loaded into the interface, LD must remain LOW. After all desired coefficient banks and configuration/ control registers are loaded with data, the LF Interface ${ }^{\mathrm{TM}}$ must be disabled. This
is done by setting LD HIGH on the clock cycle after the clock cycle which latches the last data value. It is important that the LF Interface ${ }^{\mathrm{TM}}$ remain disabled when not loading data into it.

Table 13. Select Register Loading Format

| | CF11 $_{11}$ | CF10 $_{10}$ | CF9 | CF8 | CF7 | CF $_{6}$ | CF $_{5}$ | CF $_{4}$ | CF3 $_{3}$ | CF2 $_{2}$ | CF $_{1}$ | CF $_{0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1st Word - Address | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 2nd Word - Data | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |

Table 14. Limit Register Loading Format

	CF_{11}	CF10	CF9	CF8	CF7	CF6	CF5	CF4	CF3	CF2	CF1 $_{1}$	CF0
1st Word - Address	1	1	1	0	0	0	0	0	0	1	1	1
2nd Word - Data	R	R	R	R	0	1	1	0	0	0	0	0
3rd Word - Data	R	R	R	R	0^{*}	0	1	1	1	0	1	1
4th Word - Data	R	R	R	R	1	0	1	0	0	1	0	0
5th Word - Data	R	R	R	R	$0^{* *}$	1	1	1	0	0	1	0

$\mathrm{R}=$ Reserved. Must be set to " 0 ".

* This bit represents the MSB of the Lower Limit.
** This bit represents the MSB of the Upper Limit.

LF3330

Operating Conditions To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$3.00 \mathrm{~V} \leq \mathrm{V} c \mathrm{C} \leq 3.60 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$3.00 \mathrm{~V} \leq \mathrm{Vcc} \leq 3.60 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 4)						
Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{IOH}=-4 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4	V
ViH	Input High Voltage		2.0		5.5	V
VIL	Input Low Voltage	(Note 3)	0.0		0.8	V
IIX	Input Current	Ground \leq VIN \leq Vcc ((ote 12)			± 10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vout \leq Vcc (Note 12)			± 10	$\mu \mathrm{A}$
IcC1	Vcc Current, Dynamic	(Notes 5, 6)			240	mA
IcC2	Vcc Current, Quiescent	(Note 7)			1	mA
Cin	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF
Cout	Output Capacitance	$\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			10	pF

LF3330

SWITCHING CHARACTERISTICS

Сомм	cial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)	Notes	10 (n						
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max
tCYC	Clock Cycle Time	25		18		15		12	
tPW	Clock Pulse Width	10		8		7		5	
ts	Input Setup Time	8		6		5		4	
t H	Input Hold Time	0.5		0.5		0.5		0.5	
tDD	Data Output Delay		13		9		10		8
tDC	Cascade Data Output Delay		13		9		10		9
tols	Three-State Output Disable Delay (Note 11)		15		11		12		10
tena	Three-State Output Enable Delay (Note 11)		15		11		12		10

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $\mathbf{+ 1 2 5}{ }^{\circ} \mathrm{C}$) Notes 9, 10 (ns)							
Symbol	Parameter	LF3330-					
		25*		18*		15*	
		Min	Max	Min	Max	Min	Max
tCYC	Clock Cycle Time	25		18		15	
tPW	Clock Pulse Width	10		8		7	
ts	Input Setup Time	8		6		5	
tH	Input Hold Time	0.5		0.5		0.5	
tDD	Data Output Delay		13		9		10
tDC	Cascade Data Output Delay		13		9		10
tDIS	Three-State Output Disable Delay (Note 11)		15		11		12
tena	Three-State Output Enable Delay (Note 11)		15		11		12

Switching Waveforms: Data I/O

*Discontinued Spefd Gbade

LF3330

Commercial Operating Range ($\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)									
Symbol	Parameter	LF3330-							
		25*		18*		15		12	
		Min	Max	Min	Max	Min	Max	Min	Max
tCFS	Coefficient Input Setup Time	8		6		5		5	
tCFH	Coefficient Input Hold Time	0		0		0		0	
tLS	Load Setup Time	8		7		6		4	
t나	Load Hold Time	0		0		0		0	
tPS	PAUSE Setup Time	8		6		5		4	
tPH	PAUSE Hold Time	0.5		0.5		0.5		0.5	

Military Operating Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

Symbol	Parameter	LF3330-					
		25*		18*		15*	
		Min	Max	Min	Max	Min	Max
tCFS	Coefficient Input Setup Time	8		6		5	
tCFH	Coefficient Input Hold Time	0		0		0	
tLS	Load Setup Time	8		7		6	
tLH	Load Hold Time	0		0		0	
tPS	PAUSE Setup Time	8		6		5	
tPH	PAUSE Hold Time	0.5		0.5		0.5	

Switching Waveforms: LF Interface ${ }^{\text {TM }}$

LF3330

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . The device can withstand indefinite operation with inputs or outputs in the range of -0.5 V to +5.5 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ supply voltage
$\mathrm{F}=$ clock frequency
6. Tested with outputs changing every cycle and no load, at a 40 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed
but not 100\% tested.
9. AC specifications are tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V . Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.

This device has high-speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages on a test fixture should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-
case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the $\pm 200 \mathrm{mV}$ level from the measured steady-state output voltage with $\pm 10 \mathrm{~mA}$ loads. The balancing voltage, VTH, is set at 3.0 V for Z -to- 0 and 0 -to-Z tests, and set at 0 V for Z -to- 1 and 1-to-Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.

Figure B. Threshold Levels

VoL* Measured VoL with $\mathrm{IOH}=-10 \mathrm{~mA}$ and $\mathrm{IOL}=10 \mathrm{~mA}$ VoH* Measured Voh with $\mathrm{IOH}=-10 \mathrm{~mA}$ and $\mathrm{IOL}=10 \mathrm{~mA}$

LF3330

