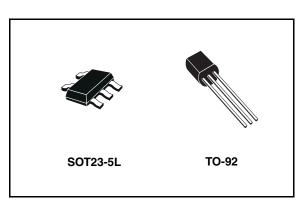


LD2979 series


Very low drop voltage regulators with inhibit

Features

- Very low dropout voltage (0.2V typ. at 50mA load)
- Very low quiescent current (typ. 500µA at 50mA load)
- Output current up to 50mA
- Logic-controlled electronic shutdown
- Output voltages of 3.0; 3.3; 3.8; 5.0V
- Internal current and thermal limit
- Supply voltage rejection: 63dB (typ)
- Only 1µF for stability
- Selection at 25°C
- Temperature range: -25°C to 125°C
- Package available: SOT23-5L and TO-92

Description

The LD2979 series are very Low Drop regulators available in SOT23-5L and TO-92.

The very low drop-voltage and the very low quiescent current make them particularly suitable for low noise, low power applications and in battery powered systems.

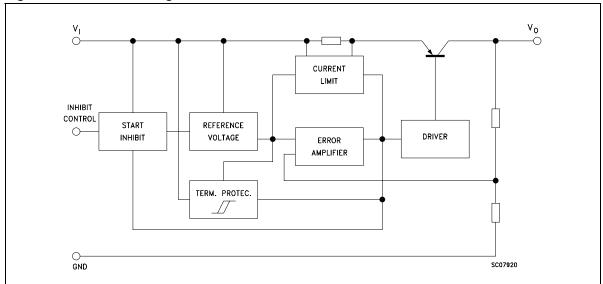
Shutdown Logic Control function is available on five pin version (TTL compatible). This means that when the device is used as local regulator, it is possible to put a part of the board in standby, decreasing the total power consumption.

Order codes

Part number						
	Output voltage					
SOT23-5L	TO92 ⁽¹⁾	TO-92 (Ammopak) ⁽¹⁾	Output voltage			
LD2979M30TR	LD2979Z30TR (2)	LD2979Z30AP ⁽²⁾	3.0 V			
LD2979M33TR	LD2979Z33TR ⁽²⁾	LD2979Z33AP	3.3 V			
LD2979M38TR	LD2979Z38TR ⁽²⁾	LD2979Z38AP ⁽²⁾	3.8 V			
LD2979M50TR	LD2979Z50TR ⁽²⁾		5.0 V			

- 1. Please note that in these cases pins are shaped according to Tape & Reel specifications.
- 2. Available on request.

June 2007 Rev. 13 1/17


Contents

1	Diagram	. 3
2	Pin configuration	. 4
3	Maximum ratings	. 5
4	Electrical characteristics	. 6
5	Typical characteristics	. 8
6	Package mechanical data	11
7	Revision history	16

LD2979 series Diagram

1 Diagram

Figure 1. Schematic diagram

Pin configuration LD2979 series

2 Pin configuration

Figure 2. Pin connections (top view)

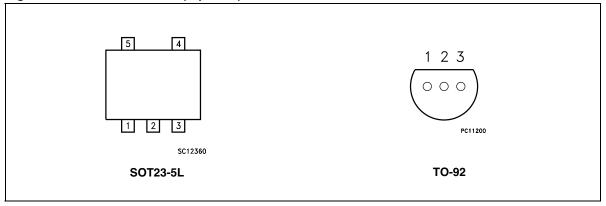


Table 1. Pin description

Cumbal	Name and function	Pin number		
Symbol	Name and function	SOT23-5L	TO-92	
V _I	Input voltage	1	3	
GND	Ground	2	2	
INHIBIT	Control switch ON/OFF (1)	3		
NC	Not to be connected	4		
V _O	Output voltage	5	1	

Only for the version in SOT23-5L package: Inhibit pin is not internally pulled-up then it must not be left floating. Connect to a positive voltage higher than 2V to able the device.

LD2979 series Maximum ratings

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
VI	DC Input voltage	16	V
V _{INH}	DC Inhibit input voltage	V _{IN}	V
Io	Output current	Internally limited	
P _{TOT}	Power dissipation	Internally limited	
T _{STG}	Storage temperature range	-40 to 150	°C
T _{OP}	Operating junction temperature range	-25 to 125	°C

Note: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Electrical characteristics LD2979 series

4 Electrical characteristics

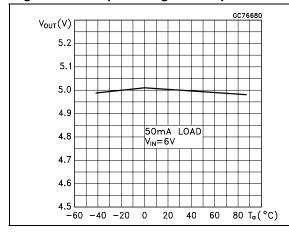
Table 3. Electrical characteristics for LD2979 (refer to the test circuits, $T_a = 25$ °C, $V_{IN} = V_{O(NOM)} + 1V$, $I_O = 1$ mA, $V_{INH} = 2V$ (1), $C_O = 1$ µF, unless otherwise specified).

$\begin{array}{c} V_{O} \\ V_{O} \\ \\ V_{O} \\ \\ \\ \\ V_{O} \\ \\ \\ \\ V_{O} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	2.907 2.964 3.060 3.120 3.366 3.432 3.876 3.952	v v v	
$V_{O} = \frac{V_{IO} = 1 \text{ to } 50 \text{mA}, T_{a} = -25 \text{ to } 125^{\circ}\text{C}}{V_{IN} = 4 \text{ V}} = \frac{2.736}{3} = 2.73$	3.060 3.120 3.366 3.432 3.876	V	
$\begin{array}{c} V_{O} & \text{Output voltage} \\ \hline V_{O} & \text{Output current limit} \\ \hline V_{O} & Output curren$	3.120 3.366 3.432 3.876		
$\begin{array}{c} I_{O} = 1 \text{ to } 50 \text{mA, } T_{a} = -25 \text{ to } 125^{\circ}\text{C} & 2.880 & 3 \\ \hline V_{O} & \text{Output voltage} & V_{IN} = 4.3 \text{ V} & 3.234 & 3.3 & 3 \\ \hline V_{O} & \text{Output voltage} & V_{IN} = 4.8 \text{ V} & 3.724 & 3.8 & 3 \\ \hline V_{O} & \text{Output voltage} & V_{IN} = 4.8 \text{ V} & 3.724 & 3.8 & 3 \\ \hline V_{O} & \text{Output voltage} & V_{IN} = 6 \text{ V} & 4.9 & 5 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.9 & 5 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 & 4.8 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 & 4.8 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 & 4.8 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & \text{Output current limit} & 100 & 4.8 & 4.8 \\ \hline V_{O} & Output current$	3.366 3.432 3.876		
$\begin{array}{c} V_{O} & \text{Output voltage} \\ \\ V_{IN} = 6 \text{ V} \\ \\ I_{O} = 1 \text{ to } 50 \text{mA}, \ T_{a} = -25 \text{ to } 125^{\circ}\text{C} \\ \\ I_{O} = 1 \text{ to } 50 \text{mA}, \ T_{a} = -25 \text{ to } 125^{\circ}\text{C} \\ \\ I_{O} = 1 \text{ to } 50 \text{mA}, \ T_{a} = -25 \text{ to } 125^{\circ}\text{C} \\ \\ I_{O} = 1 \text{ to } 50 \text{mA}, \ T_{a} = -25 \text{ to } 125^{\circ}\text{C} \\ \\ I_{O} = 1 \text{ to } 50 \text{mA}, \ T_{a} = -25 \text{ to } 125^{\circ}\text{C} \\ \\ I_{O} = 0 $	3.432 3.876	V	
$V_{O} = \frac{V_{IO} = 1 \text{ to } 50 \text{mA}, T_{a} = -25 \text{ to } 125^{\circ}\text{C}}{V_{IN} = 4.8 \text{ V}} = \frac{3.168}{3.724} = \frac{3.8}{3.8} = \frac{3}{3}$ $V_{O} = \frac{V_{IN} = 4.8 \text{ V}}{I_{O} = 1 \text{ to } 50 \text{mA}, T_{a} = -25 \text{ to } 125^{\circ}\text{C}} = \frac{3.648}{3.648} = \frac{3}{3}$ $V_{IN} = 6 \text{ V} = \frac{4.9}{I_{O} = 1 \text{ to } 50 \text{mA}, T_{a} = -25 \text{ to } 125^{\circ}\text{C}} = \frac{4.8}{3.648} = \frac{3}{3}$ $I_{O} = 1 \text{ to } 50 \text{mA}, T_{a} = -25 \text{ to } 125^{\circ}\text{C}} = \frac{4.8}{3.648} = \frac{3}{3}$ $I_{O} = 1 \text{ to } 50 \text{mA}, T_{a} = -25 \text{ to } 125^{\circ}\text{C}} = \frac{4.8}{3.648} = \frac{3}{3.648} = \frac{3}{3$	3.876	v	
V_{O} Output voltage $I_{O} = 1 \text{ to } 50 \text{mA}, T_{a} = -25 \text{ to } 125 ^{\circ}\text{C}$ 3.648 3 V_{O} Output voltage $V_{IN} = 6 \text{ V}$ 4.9 5 $I_{O} = 1 \text{ to } 50 \text{mA}, T_{a} = -25 \text{ to } 125 ^{\circ}\text{C}$ 4.8 I_{O} Output current limit 100 $V_{IN} = V_{O(NOM)} + 1 \text{V to } 16 \text{V}, I_{O} = 1 \text{mA}$ 00 $T_{a} = -25 \text{ to } 125 ^{\circ}\text{C}$ 00 $I_{O} = 0$ 80			
	3 952	V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.002	v	
$I_{O} = 1 \text{ to } 50\text{mA}, T_{a} = -25 \text{ to } 125^{\circ}\text{C} \qquad 4.8$ $I_{O} = 1 \text{ to } 50\text{mA}, T_{a} = -25 \text{ to } 125^{\circ}\text{C} \qquad 4.8$ $I_{O} = 1 \text{ to } 50\text{mA}, T_{a} = -25 \text{ to } 125^{\circ}\text{C} \qquad 100$ $I_{O} = 1 \text{ to } 100\text{mA}, T_{a} = -25 \text{ to } 125^{\circ}\text{C} \qquad 100$ $I_{O} = 0 \qquad 100\text{mA}, T_{a} = -25 \text{ to } 125^{\circ}\text{C} \qquad 100\text{mA}$ $I_{O} = 1 \text{ to } 100\text{mA}, T_{a} = -25 \text{ to } 125^{\circ}\text{C} \qquad 100\text{mA}$ $I_{O} = 0 \qquad 100\text{mA}, T_{a} = -25 \text{ to } 125^{\circ}\text{C} \qquad 100\text{mA}$	5.1	V	
ΔV_{O} Line regulation $V_{IN} = V_{O(NOM)} + 1V \text{ to } 16V, I_{O} = 1\text{mA}$ C_{O} $C_{$	5.2	v	
Line regulation $T_{a}=-25 \text{ to } 125^{\circ}\text{C}$ $I_{O}=0$ $I_{O}=0$ 80		mA	
$T_a = -25 \text{ to } 125^{\circ}\text{C}$	0.028	9/ N/	
L 0 T 05 to 10500	0.064	%/V _{IN}	
Ouisecont current (On Io = 0, T ₂ = -25 to 125°C	110		
Quiescent current (On IO = 0, I _a = -25 to 125°C	170		
	700	μΑ	
$I_{\rm d}$ $I_{\rm O} = 50 {\rm mA}, T_{\rm a} = -25 {\rm to} \ 125 {\rm °C}$	1300	İ	
Quiescent current (Off V _{INH} < 0.18 V 0			
Mode) ⁽¹⁾ V _{INH} < 0.18 V, T _a = -25 to 125°C	1	μA	
SVR Supply voltage rejection $I_O = 50$ mA, $C_{OUT} = 10\mu$ F, $f = 120$ Hz 63		dB	
I _O = 0 6	12		
I _O = 0, T _a = -25 to 125°C	18	İ	
I _O = 1mA 30	60	İ	
$I_O = 1$ mA, $T_a = -25$ to 125 °C	90		
V_d Dropout voltage $I_O = 10 \text{mA}$ 100	200	mV	
$I_{O} = 10 \text{mAT}_{a} = -25 \text{ to } 125^{\circ}\text{C}$	300		
I _O = 50mA 200	400		
I _O = 50mA, T _a = -25 to 125°C	600	L	
V _{IL} Inhibit input logic low Device Off, T _a = -25 to 125°C (*)	000		
V _{IH} Inhibit input logic high Device On, T _a = -25 to 125°C (*)	0.18	V	

Table 3. Electrical characteristics for LD2979 (refer to the test circuits, $T_a = 25^{\circ}C$, $V_{IN} = V_{O(NOM)} + 1V$, $I_O = 1$ mA, $V_{INH} = 2V$ (1), $C_O = 1$ µF, unless otherwise specified).

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I.	Inhibit input current	$V_{INH} = 0 V^{(1)}$		0	-1	^
I _I Innibit input	innibit input current	V _{INH} = 5V, T _a = -25 to 125°C		5	15	μΑ
eN	Output noise voltage (RMS)	BW= 300Hz to 50KHz, C _O = 10μF		160		μV

^{1.} Only for types in SOT23-5L



5 Typical characteristics

(unless otherwise specified $T_A = 25^{\circ}C$)

Figure 3. Output voltage vs temperature

Figure 4. Output voltage vs input voltage

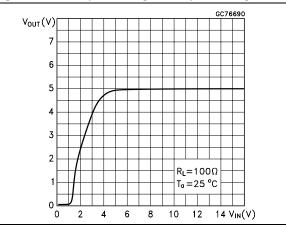
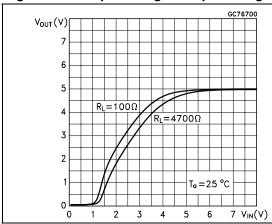



Figure 5. Output voltage vs input voltage

Figure 6. Dropout voltage vs output current

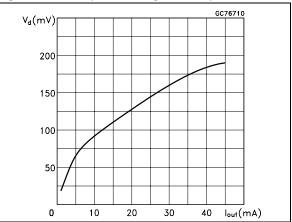
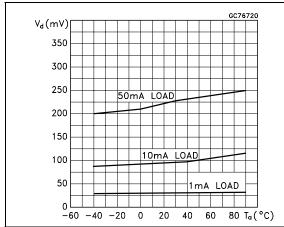



Figure 7. Dropout voltage vs temperature

Figure 8. Quiescent current vs temperature

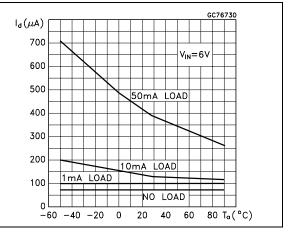
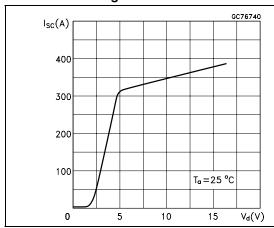



Figure 9. Short circuit current vs dropout voltage

Figure 10. Inhibit voltage vs temperature

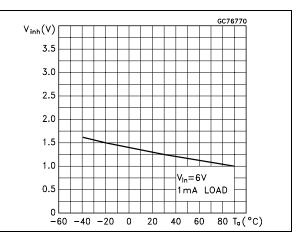
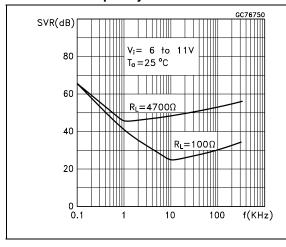



Figure 11. Supply voltage rejection vs frequency

Figure 12. Load transient response

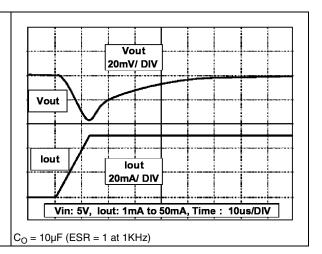
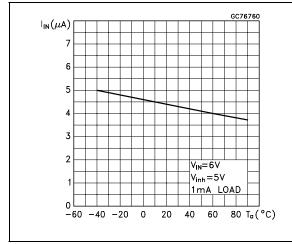
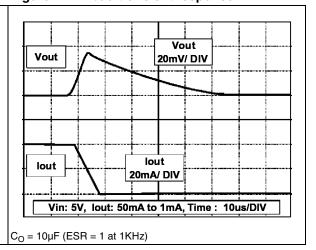
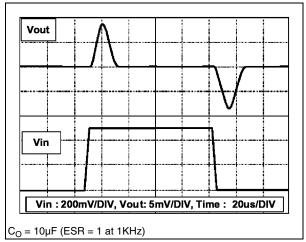




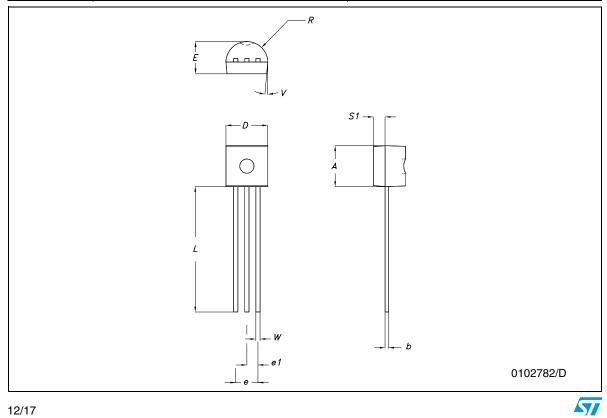
Figure 13. Inhibit current vs temperature


Figure 14. Load transient response

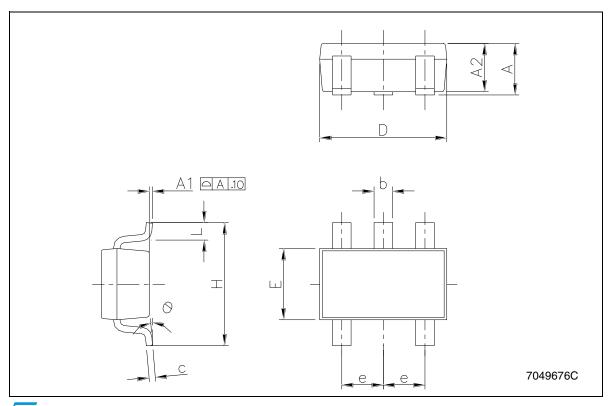
4

Figure 15. Line transient response

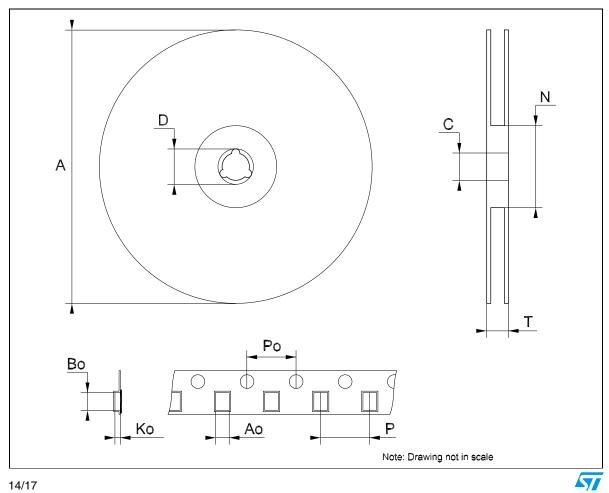
577


6 Package mechanical data

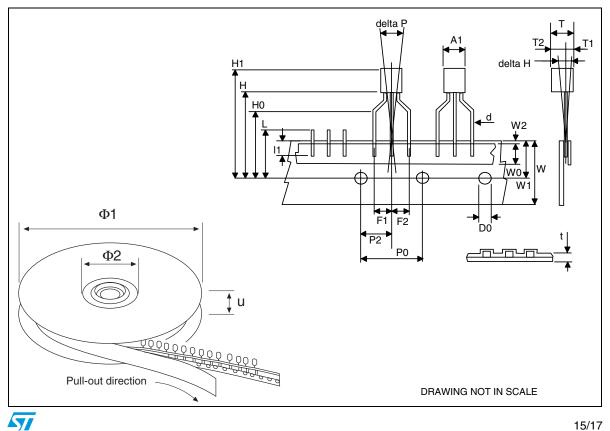
In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.


TO-92 MECHANICAL DATA

DIM	mm.			mils		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.32		4.95	170.1		194.9
b	0.36		0.51	14.2		20.1
D	4.45		4.95	175.2		194.9
E	3.30		3.94	129.9		155.1
е	2.41		2.67	94.9		105.1
e1	1.14		1.40	44.9		55.1
L	12.7		15.49	500.0		609.8
R	2.16		2.41	85.0		94.9
S1	0.92		1.52	36.2		59.8
W	0.41		0.56	16.1		22.0
α		5°			5°	


SOT23-5L MECHANICAL DATA

DIM.	mm.			mils		
DIW.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	0.90		1.45	35.4		57.1
A1	0.00		0.10	0.0		3.9
A2	0.90		1.30	35.4		51.2
b	0.35		0.50	13.7		19.7
С	0.09		0.20	3.5		7.8
D	2.80		3.00	110.2		118.1
E	1.50		1.75	59.0		68.8
е		0.95			37.4	
Н	2.60		3.00	102.3		118.1
L	0.10		0.60	3.9		23.6



Tape	& Reel	SOT23-xL	MECHANICA	L DATA
------	--------	----------	------------------	--------

DIM.	mm.			inch		
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	3.13	3.23	3.33	0.123	0.127	0.131
Во	3.07	3.17	3.27	0.120	0.124	0.128
Ko	1.27	1.37	1.47	0.050	0.054	0.0.58
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	3.9	4.0	4.1	0.153	0.157	0.161

DIM		mm.		inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A1		4.80			0.189	
Т		3.80			0.150	
T1		1.60			0.063	
T2		2.30			0.091	
d		0.48			0.019	
P0	12.5		12.9	0.492		0.508
P2	5.65		7.05	0.222		0.278
F1, F2	2.44	2.54	2.94	0.096	0.100	0.116
delta H		±2			0.079	
W	17.5	18.00	19.0	0.689	0.709	0.748
W0	5.7		6.3	0.224		0.248
W1	8.5		9.25	0.335		0.364
W2		0.50			0.20	
Н		18.50	18.70		0.728	0.726
H0	15.50		16.50	0.610		0.650
H1		25.00			0.984	
D0	3.8		4.2	0.150		0.165
t		0.90			0.035	
L1		3			0.118	
delta P		±1			0.039	
u		50			1.968	
Φ1		360			14.173	
Φ2		30			1 181	

Revision history LD2979 series

7 Revision history

Table 4. Revision history

Date	Revision	Changes			
15-Mar-2005	10	Add tape & reel for TO-92.			
03-Jul-2006	03-Jul-2006 11 Order codes has been updated and new template.				
16-May-2007	12	Order codes has been updated.			
08-Jun-2007	13	Order codes has been updated.			

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

