Features

■ Input voltage from 1.5 to 5.5 V

- Ultra low dropout voltage (200 mV typ. at 500 mA load)
- Very low quiescent current ($20 \mu \mathrm{~A}$ typ. at no load, $100 \mu \mathrm{~A}$ typ. at 500 mA load, $1 \mu \mathrm{~A}$ max in off mode)
- Very low noise without bypass capacitor
- Output voltage tolerance: $\pm 2.0 \% @ 25^{\circ} \mathrm{C}$
- 500 mA guaranteed output current
- Wide range of output voltages available on request: 0.8 V to 4.5 V with 100 mV step and ADJ from 0.8 V
- Logic-controlled electronic shutdown
- Compatible with ceramic capacitor Cout $_{\text {O }}=1 \mu \mathrm{~F}$
- Internal current and thermal limit
- Package DFN6 ($3 \times 3 \mathrm{~mm}$)
- Temperature range: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Description

The LD39050 provides 500 mA maximum current from an input voltage ranging from 1.5 V to 5.5 V with a typical dropout voltage of 200 mV . Stability is provided using ceramic capacitors. The ultra low drop-voltage, low quiescent current and low noise features make it suitable for low power battery-powered applications. Power supply rejection is 65 dB at low frequencies and starts to

roll off at 10 kHz . An Enable logic control function puts the LD39050 in shut-down mode allowing a total current consumption lower than $1 \mu \mathrm{~A}$. The device also includes short-circuit constant current limiting and thermal protection. Typical applications are mobile phones, personal digital assistants (PDAs), cordless phones and similar battery-powered systems.

Table 1. Device summary

Part numbers	Order codes	Output voltages
LD39050XX	LD39050PUR	ADJ from 0.8 V
LD39050XX10	LD39050PU10R	1.0 V
LD39050XX12	LD39050PU12R	1.2 V
LD39050XX25	LD39050PU25R	2.5 V
LD39050XX33	LD39050PU33R	3.3 V

Contents

1 Diagrams 3
2 Pin configuration 4
3 Maximum ratings 5
4 Electrical characteristics 6
5 Typical performance characteristics 10
6 Application information 15
6.1 Power dissipation 16
6.2 Enable function 16
6.3 Power Good function 16
7 Package mechanical data 18
8 Different output voltage versions of the LD39050xx available on request 22
9 Revision history 23

1 Diagrams

Figure 1. Schematic diagram for the LD39050PU

Figure 2. Schematic diagram for the LD39050PUxx

2 Pin configuration

Figure 3. Pin connection (top view)

Table 2. Pin description

Symbol	${\text { Pin } \mathbf{n}^{\circ}}^{\substack{*}}$ Function		
	LD39050PU	LD39050PUxx	
EN	1	1	Enable pin logic input: Low=shutdown, High=active
GND	2	2	Common ground
PG	3	3	Power Good
$V_{\text {OUT }}$	4	4	Output voltage
ADJ	5	-	Adjust pin
$V_{\text {IN }}$	6	6	Input voltage of the LDO
NC	-	5	Not connected
GND	EXP pad		

3 Maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {IN }}$	DC input voltage	-0.3 to 7	V
$\mathrm{~V}_{\text {OUT }}$	DC output voltage	-0.3 to $\mathrm{V}_{1}+0.3(7 \mathrm{~V} \mathrm{max})$	V
EN	Enable pin	-0.3 to $\mathrm{V}_{1}+0.3(7 \mathrm{~V} \mathrm{max})$	V
PG	Power Good pin	-0.3 to 7	V
ADJ	Adjust pin	4	V
$\mathrm{I}_{\text {OUT }}$	Output current	Internally limited	
P_{D}	Power dissipation	Internally limited	
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{OP}	Operating junction temperature range	-40 to 125	${ }^{\circ} \mathrm{C}$

Note: \quad Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All values are referred to GND.

Table 4. Thermal data

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\text {thJA }}$	Thermal resistance junction-ambient	55	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thJc }}$	Thermal resistance junction-case	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Table 5. ESD performance

Symbol	Parameter	Test conditions	Value	Unit
ESD	ESD protection voltage	HBM	2	kV
		MM	0.3	kV

4 Electrical characteristics

$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {EN }}=\mathrm{V}_{\text {IN }}$, unless otherwise specified.

Table 6. Electrical characteristics for the LD39050PU

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{IN}	Operating input voltage		1.5		5.5	V
$\mathrm{V}_{\text {ADJ }}$	$\mathrm{V}_{\text {ADJ }}$ accuracy	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	784	800	816	mV
		$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA},-40^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}$	776	800	824	
$\mathrm{I}_{\text {ADJ }}$	Adjust pin current				1	$\mu \mathrm{A}$
$\Delta \mathrm{V}_{\text {OUT }}$	Static line regulation	$\begin{aligned} & \mathrm{V}_{\text {OUT }}+1 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}, \\ & \mathrm{l}_{\text {OUT }}=1 \mathrm{~mA} \end{aligned}$		0.01		\%/V
$\Delta \mathrm{V}_{\text {OUT }}$	Transient line regulation ${ }^{(1)}$	$\Delta \mathrm{V}_{\mathrm{IN}}=500 \mathrm{mV}, \mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}, \mathrm{t}_{\mathrm{R}}=5$ $\mu \mathrm{s}$		10		mVpp
		$\Delta \mathrm{V}_{\text {IN }}=500 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{t}_{\mathrm{F}}=5 \mu \mathrm{~s}$		10		
$\Delta \mathrm{V}_{\text {OUT }}$	Static load regulation	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}$ to 500 mA		0.002		\%/mA
$\Delta \mathrm{V}_{\text {OUT }}$	Transient load regulation ${ }^{(1)}$	$\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}$ to $500 \mathrm{~mA}, \mathrm{t}_{\mathrm{R}}=5 \mu \mathrm{~s}$		40		mVpp
		$\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}$ to $500 \mathrm{~mA}, \mathrm{t}_{\mathrm{F}}=5 \mu \mathrm{~s}$		40		
$\mathrm{V}_{\text {DROP }}$	Dropout voltage ${ }^{(2)}$	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }} \text { fixed to } 1.5 \mathrm{~V} \\ & 40^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C} \end{aligned}$		200	400	mV
e_{N}	Output noise voltage	$\begin{aligned} & 10 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \mathrm{l}_{\text {OUT }}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {OUT }}=0.8 \mathrm{~V} \end{aligned}$		30		$\mu \mathrm{V}_{\text {RMS }}$
SVR	Supply voltage rejection$\mathrm{V}_{\text {OUT }}=0.8 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}+/-\mathrm{V}_{\text {RIPPLE }} \\ & \mathrm{V}_{\text {RIPPLE }}=0.25 \mathrm{~V} \text {, freq. }=1 \mathrm{kHz} \\ & \mathrm{l}_{\text {OUT }}=10 \mathrm{~mA} \end{aligned}$		65		dB
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}+/-\mathrm{V}_{\text {RIPPLE }} \\ & \mathrm{V}_{\text {RIPPLE }}=0.25 \mathrm{~V} \text {, freq. }=10 \mathrm{kHz} \\ & \mathrm{l}_{\text {OUT }}=100 \mathrm{~mA} \end{aligned}$		62		
I_{Q}	Quiescent current	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$		20		$\mu \mathrm{A}$
		$\mathrm{l}_{\text {OUT }}=0 \mathrm{~mA},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C}$			50	
		$\mathrm{I}_{\text {OUT }}=0$ to 500 mA		100		
		$\begin{aligned} & \mathrm{I}_{\text {OUT }}=0 \text { to } 500 \mathrm{~mA},- \\ & 40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C} \end{aligned}$			200	
		$V_{I N}$ input current in off mode: $V_{E N}=G N D^{(3)}$		0.001	1	
PG	Power Good output threshold	Rising edge		$\begin{aligned} & 0.92^{\star} \\ & \mathrm{V}_{\text {OUT }} \end{aligned}$		V
		Falling edge		$\begin{gathered} 0.8^{*} \\ \mathrm{~V}_{\text {OUT }} \end{gathered}$		
	Power Good output voltage low	Isink $=6 \mathrm{~mA}$ open drain output			0.4	V
$\mathrm{I}_{\text {SC }}$	Short-circuit current	$\mathrm{R}_{\mathrm{L}}=0$	600	800		mA

Table 6. Electrical characteristics for the LD39050PU (continued)

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{EN}	Enable input logic low	$\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, 40^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}$			0.4	V
	Enable input logic high	$\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, 40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C}$	0.9			V
I_{EN}	Enable pin input current	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{IN}}$		0.1	100	nA
t_{ON}	Turn on time ${ }^{(4)}$			30		$\mu \mathrm{~s}$
$\mathrm{~T}_{\text {SHDN }}$	Thermal shutdown	Hysteresis		160		${ }^{\circ} \mathrm{C}$
	Output capacitor	Capacitance (see typical performance characteristics for stability)	1		20	
22	$\mu \mathrm{~F}$					

1. All transient values are guaranteed by design, not production tested
2. Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply for output voltages below 1.5 V
3. PG pin floating
4. Turn-on time is time measured between the enable input just exceeding V_{EN} high value and the output voltage just reaching 95% of its nominal value
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{OUT}(\mathrm{NOM})}+1 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\mathrm{OUT}}=1 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{IN}}$, unless otherwise specified.

Table 7. Electrical characteristics for the LD39050PUxx

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{IN}	Operating input voltage		1.5		5.5	V
$\mathrm{V}_{\text {OUT }}$	V OUT accuracy	$\begin{aligned} & \mathrm{V}_{\text {OUT }}>1.5 \mathrm{~V} \text {, } \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$	-2.0		2.0	\%
		$\begin{aligned} & \mathrm{V}_{\text {OUT }}>1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C} \end{aligned}$	-3.0		3.0	
		$\mathrm{V}_{\text {OUT }} \leq 1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}$		± 20		mV
		$\begin{aligned} & \mathrm{V}_{\text {OUT }} \leq 1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C} \end{aligned}$		± 30		
$\Delta \mathrm{V}_{\text {OUT }}$	Static line regulation	$\begin{aligned} & \mathrm{V}_{\text {OUT }}+1 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}, \\ & \mathrm{l}_{\text {OUT }}=1 \mathrm{~mA} \end{aligned}$		0.01		\%/V
$\Delta \mathrm{V}_{\text {OUT }}$	Transient line regulation ${ }^{(1)}$	$\Delta \mathrm{V}_{\text {IN }}=500 \mathrm{mV}, \mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{t}_{\mathrm{R}}=5 \mu \mathrm{~s}$		10		mVpp
		$\Delta \mathrm{V}_{\text {IN }}=500 \mathrm{mV}$, $\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{t}_{\mathrm{F}}=5 \mu \mathrm{~s}$		10		
$\Delta \mathrm{V}_{\text {OUT }}$	Static load regulation	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}$ to 500 mA		0.002		\%/mA
$\Delta \mathrm{V}_{\text {OUT }}$	Transient load regulation ${ }^{(1)}$	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}$ to $500 \mathrm{~mA}, \mathrm{t}_{\mathrm{R}}=5 \mu \mathrm{~s}$		40		mVpp
		$\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}$ to $500 \mathrm{~mA}, \mathrm{t}_{\mathrm{F}}=5 \mu \mathrm{~s}$		40		
V ${ }_{\text {DROP }}$	Dropout voltage ${ }^{(2)}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=500 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}>1.5 \mathrm{~V} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C} \end{aligned}$		200	400	mV
e_{N}	Output noise voltage	10 Hz to $100 \mathrm{kHz}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$,		30		$\mu \mathrm{V}_{\text {RMS }}$
SVR	Supply voltage rejection$\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}(\mathrm{NOM})+0.5 \mathrm{~V}+/-\mathrm{V}_{\text {RIPPLE }} \\ & \mathrm{V}_{\text {RIPPLE }}=0.1 \mathrm{~V}, \text { freq. }=1 \mathrm{kHz} \\ & \mathrm{l}_{\text {OUT }}=10 \mathrm{~mA} \end{aligned}$		65		dB
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {OUT }}(\mathrm{NOM})+0.5 \mathrm{~V}+/-\mathrm{V}_{\text {RIPPLE }} \\ & \mathrm{V}_{\text {RIPPLE }}=0.1 \mathrm{~V}, \text { freq. }=10 \mathrm{kHz} \\ & \mathrm{l}_{\text {OUT }}=100 \mathrm{~mA} \end{aligned}$		62		
I_{Q}	Quiescent current	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$		20		$\mu \mathrm{A}$
		$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA},-40^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}$			50	
		$\mathrm{l}_{\text {OUT }}=0$ to 500 mA		100		
		$\mathrm{I}_{\text {OUT }}=0$ to $500 \mathrm{~mA}-40^{\circ} \mathrm{C}<\mathrm{T}_{j}<125^{\circ} \mathrm{C}$			200	
		$V_{\text {IN }}$ input current in off mode: $\mathrm{V}_{\mathrm{EN}}=\mathrm{GND}$		0.001	1	
PG	Power Good output threshold	Rising edge		$\begin{aligned} & 0.92^{*} \\ & \mathrm{~V}_{\text {OUT }} \end{aligned}$		V
		Falling edge		$\begin{gathered} 0.8^{\star} \\ \mathrm{V}_{\text {OUT }} \end{gathered}$		
	Power Good output voltage low	Isink $=6 \mathrm{~mA}$ open drain output			0.4	V
$\mathrm{I}_{\text {Sc }}$	Short-circuit current	$\mathrm{R}_{\mathrm{L}}=0$	600	800		mA

Table 7. Electrical characteristics for the LD39050PUxx (continued)

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{EN}	Enable input logic low	$\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$ to $5.5 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}$			0.4	V
	Enable input logic high	$\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$ to $5.5 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}$	0.9			V
I_{EN}	Enable pin input current	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{IN}}$		0.1	100	nA
t_{ON}	Turn on time ${ }^{(4)}$			30		$\mu \mathrm{~s}$
$\mathrm{~T}_{\text {SHDN }}$	Thermal shutdown	Hysteresis		160		C
	Output capacitor	Capacitance (see typical performance characteristics for stability)	1		20	
22	$\mu \mathrm{~F}$					

1. All transient values are guaranteed by design, not production tested
2. Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply for output voltages below 1.5 V
3. PG pin floating
4. Turn-on time is time measured between the enable input just exceeding V_{EN} high value and the output voltage just reaching 95% of its nominal value

5 Typical performance characteristics

Figure 4. $\quad V_{A D J}$ accuracy

Figure 5. $V_{\text {OUT }}$ accuracy

Figure 6. Dropout voltage vs. temperature

Figure 7. Dropout voltage vs. temperature

Figure 8. Dropout voltage vs. output current
Figure 9. Short-circuit current vs. dropout voltage

Figure 10. Output voltage vs. input voltage

Figure 11. Quiescent current vs. temperature

Figure 12. Quiescent current vs. temperature

Figure 13. Quiescent current in off mode vs. temperature

Figure 14. Load regulation

Figure 15. Line regulation

Figure 16. Line regulation

Figure 17. Supply voltage rejection vs. temperature

Figure 18. Supply voltage rejection vs. temperature

Figure 19. Supply voltage rejection vs. temperature

Figure 20. Supply voltage rejection vs. temperature

Figure 21. Supply voltage rejection vs. frequency

Figure 22. Supply voltage rejection vs. frequency

Figure 23. Noise output voltage vs. frequency

Figure 24. Enable voltage vs. temperature

Figure 25. Enable voltage vs. temperature

Figure 26. Load transient

Figure 27. Load transient

Figure 28. Load transient

Figure 29. Line transient

Figure 30. Startup transient

$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\text {IN }}=$ from 0 V to 5.5 V , $\mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}, \mathrm{C}_{\text {IN }}=\mathrm{C}_{\mathrm{OUT}}=1$ $\mu \mathrm{F}, \mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$

Figure 31. Enable transient

V_{EN} from 0 V to $2 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=10$ $\mathrm{mA}, \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}$

Figure 33. ESR required for stability with ceramic capacitors

6 Application information

The LD39050 is an ultra low dropout linear regulator. It provides up to 500 mA with a low 200 mV dropout. The input voltage range is from 1.5 V to 5.5 V . The device is available in fixed and adjustable output versions.

The regulator is equipped with internal protection circuitry, such as short-circuit current limiting and thermal protection.

The regulator is designed to be stable with ceramic capacitors on the input and the output. The expected values of the input and output ceramic capacitors are from $1 \mu \mathrm{~F}$ to $22 \mu \mathrm{~F}$ with $1 \mu \mathrm{~F}$ typical. The input capacitor must be connected within 0.5 inches of the $\mathrm{V}_{\text {IN }}$ terminal. The output capacitor must also be connected within 0.5 inches of output pin. There is no upper limit to the value of the input capacitor.

Figure 34 and Figure 35 illustrate the typical application schematics:
Figure 34. Application schematic for fixed version

Figure 35. Application schematic for adjustable version

For the adjustable version, the output voltage can be adjusted from 0.8 V up to the input voltage minus the voltage drop across the PMOS (dropout voltage), by connecting a resistor divider between the ADJ pin and the output, thus allowing remote voltage sensing.
The resistor divider should be selected using the following equation:
$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\text {ADJ }}\left(1+\mathrm{R}_{1} / \mathrm{R}_{2}\right)$ with $\mathrm{V}_{\text {ADJ }}=0.8 \mathrm{~V}$ (typ.)
It is recommended to use resistors with values in the range of $10 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega$. Lower values can also be suitable, but will increase current consumption.

6.1 Power dissipation

An internal thermal feedback loop disables the output voltage if the die temperature rises to approximately $160^{\circ} \mathrm{C}$. This feature protects the device from excessive temperature and allows the user to push the limits of the power handling capability of a given circuit board without risk of damaging the device.
It is very important to use a good PC board layout to maximize power dissipation. The thermal path for the heat generated by the device is from the die to the copper lead frame through the package leads and exposed pad to the PC board copper. The PC board copper acts as a heat sink. The footprint copper pads should be as wide as possible to spread and dissipate the heat to the surrounding ambient. Feed-through vias to inner or backside copper layers are also useful in improving the overall thermal performance of the device.

The power dissipation of the device depends on the input voltage, output voltage and output current, and is given by:
$P_{D}=\left(V_{\text {IN }}-V_{\text {OUT }}\right) I_{\text {OUT }}$
The junction temperature of the device is:
$T_{J _M A X}=T_{A}+R_{\text {thJA }} \times P_{D}$
where:
$\mathrm{T}_{\mathrm{J} _ \text {MAX }}$ is the maximum junction of the die, $125^{\circ} \mathrm{C}$;
T_{A} is the ambient temperature;
$\mathrm{R}_{\text {thJA }}$ is the thermal resistance junction-to-ambient.

6.2 Enable function

The LD39050 features an enable function. When the EN voltage is higher than 2 V the device is ON, and if it is lower than 0.8 V the device is OFF. In shutdown mode, consumption is lower than $1 \mu \mathrm{~A}$.

The EN pin does not have an internal pull-up, which means that it cannot be left floating if it is not used.

6.3 Power Good function

Most applications require a flag showing that the output voltage is in the correct range.
The Power Good threshold depends on the adjust voltage. When the adjust is higher than $0.92^{*} \mathrm{~V}_{\mathrm{ADJ}}$, the Power Good (PG) pin goes to high impedance. If the adjust is below
$0.80 * \mathrm{~V}_{\text {ADJ }}$ the PG pin goes to low impedance. If the device is functioning well, the Power Good pin is at high impedance. If the output voltage is fixed using an external or internal resistor divider, the Power Good threshold is $0.92^{*} \mathrm{~V}_{\text {OUT }}$.
The use of the Power Good function requires an external pull-up resistor, which must be connected between the PG pin and $\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUT }}$. The typical current capability of the PG pin is up to 6 mA . The use of a pull-up resistor for $P G$ in the range of $100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ is recommended. If the Power Good function is not used, the PG pin must remain floating.

$7 \quad$ Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

DFN6 ($3 \times 3 \mathrm{~mm}$) mechanical data

Dim.	mm.			inch.		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	0.80	0.90	1.00	0.031	0.035	0.039
A1	0	0.02	0.05	0	0.001	0.002
A3		0.20			0.008	
b	0.23	0.30	0.38	0.009	0.012	0.015
D	2.90	3.00	3.10	0.114	0.118	0.122
D2	2.23	2.38	2.48	0.088	0.094	0.098
E	2.90	3.00	3.10	0.114	0.118	0.122
E2	1.50	1.65	1.75	0.059	0.065	0.069
e		0.95			0.037	
L	0.30	0.40	0.50	0.012	0.016	0.020

Tape \& reel QFNxx/DFNxx (3x3) mechanical data

Dim.	mm.			inch.		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
T			18.4		0.130	
Ao		3.3			0.130	
Bo		1.1			0.043	
Ko		4			0.157	
Po		8			0.315	
P						

Figure 36. DFN6 (3x3) footprint recommended data

8 Different output voltage versions of the LD39050xx available on request

Table 8. Options available on request

Order codes	Output voltages
LD39050PU105R	1.05 V
LD39050PU15R	1.5 V
LD39050PU18R	1.8 V

9 Revision history

Table 9. Document revision history

Date	Revision	Changes
$11-M a r-2009$	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

