National Semiconductor

December 1996

LMC272 CMOS Dual Low Cost Rail to Rail Output Operational Amplifier

General Description

The LMC272 is a CMOS dual operational amplifier with rail-to-rail output swing and an input common voltage range that extends below the negative supply. Other performance characteristics include low voltage operation, low bias current, excellent channel-to-channel isolation, good bandwidth performance and a competitive price.

These devices are available in MSOP package which is about half the size of a SO-8 device. This enables the designer to fit the device in extremely small applications.

The LMC272C is a direct replacement for TLC272C with performance which meets or exceeds the TLC272C's guaranteed limits in the commercial temperature range when operating from a supply of 2.7V to 15V (see Electrical Characteristics table for details).

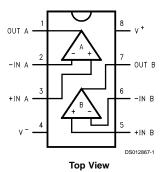
These features make this cost effective device ideal for new designs as well as for upgrading existing designs. Applications include hand-held analytic instruments, transducer amplifiers, sample and hold circuits, etc.

Features

(Typical unless otherwise noted) $V_S = 5V$, $T_A = 25$ °C

■ Output Swing to within 60 mV of supply rail (10 kΩ load)

Unity gain-bandwidth: 2.0 MHz
 Wide supply voltage: 2.7V to 15V
 Characterized for: 2.7V, 5V, 10V
 Low supply current: 0.975 mA/amplifier
 Input voltage range: -0.3V to 4.2V


Applications

- Portable instruments
- Upgrade for TLC272C and TS272C
- Photodetector preamplifiers

■ High voltage gain: 90 dB

- D/A converters
- Filters

Connection Diagram

Ordering Information

Package	Ordering	NSC Drawing	Package	Supplied as
	Information	Number	Marking	
8-pin Molded DIP	LMC272CN	N08E	LMC272CN	Rails
8-pin SO-8	LMC272CM	M08A	LMC272CM	Rails
	LMC272CMX	M08A	LMC272CM	2.5k Tape and Reel
MSOP	LMC272CMM	MUA08A	A07	Rails
	LMC272CMMX	MUA08A	A07	3k Tape and Reel

© 1999 National Semiconductor Corporation

DS012867

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

ESD Tolerance (Note 2) 2 kV

Differential Input Voltage ±Supply Voltages

Voltage at Input/Output Pin (V+)+0.3V, (V-)-0.3V

Supply Voltage (V+ - V-): 16V

Current at Input Pin (Note 10) +5 mA

Current at Input Pin (Note 10) ±5 mA
Current at Output Pin (Note 3)
(Note 7) ±30 mA

(Note 7)
Lead Temperature

(soldering, 10 sec.) 260°C

Storage Temp. Range -65°C to $+150^{\circ}\text{C}$ Junction Temperature (Note 4) 150°C

Operating Ratings(Note 1)

Supply Voltage $2.5 \text{V} \le \text{V}_{\text{S}} \le 15 \text{V}$

Junction Temperature Range

LMC272C $0^{\circ}\text{C} \le \text{T}_{\text{J}} \le +70^{\circ}\text{C}$

Thermal Resistance (θ_{JA})

N Package, 8-pin Molded DIP 115° C/W M Package, 8-pin Surface Mount 177° C/W MSOP Package 235° C/W

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = 2.7V, V^- = 0V, V_{CM} = V_O = $V^+/2$, R_L to ground, and R_L > 1 M Ω . **Boldface** limits apply at the temperature extremes

			Тур	LMC272C	
Symbol	Parameter	Conditions	(Note 5)	Limit	Units
				(Note 6)	
Vos	Input Offset Voltage	$V_{O} = 1.4V, R_{S} = 50, V_{CM} = 0V, R_{L} = 10k$	1.40	7	mV
				9	max
TCV _{os}	Temp. Coefficient of	$T_A = 0$ °C to 70 °C	3.9		μV/°C
	Input Offset Voltage				
I _B	Input Bias Current		1	64	pА
					max
Ios	Input Offset Current		0.5	32	pА
					max
CMRR	Common Mode	$V_{CM} = -0.2V \text{ to } 1.2V$	77	65	dB
	Rejection Ratio			60	min
PSRR	Power Supply	V+ = 2.7V to 5V, V _O = 1.4V	75	65	dB
	Rejection Ratio			60	min
V _{CM}	Input Common-Mode	CMRR ≥ 50 dB	1.7	1.5	V
	Voltage Range			1.2	min
			-0.3	-0.2	V
				-0.2	max
A _V	Large Signal Voltage	$V_{\rm O}$ = 0.25V to 2.45V, $R_{\rm L}$ = 10k	88		dB
	Gain				
Vo	Output Swing	$R_{L} = 10 \text{ k}\Omega, V_{ID} = 100 \text{ mV}$	2.64	2.55	V
		(Note 11)			min
		$V_{ID} = -100 \text{ mV}$	0	20	mV
		(Note 11)		25	max
I _{sc}	Output Short Circuit	Sourcing, V _{ID} = 100 mV	3.7		mA
	Current	(Note 11)			
		Sinking, V _{ID} = −100 mV	2.5		mA
		(Note 11)			
Is	Total Supply Current		1.60	2.5	mA
				3.0	max

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = 2.7V, V^- = 0V, V_{CM} = V_O = $V^+/2$, R_L to ground and R_L > 1 M Ω . **Boldface** limits apply at the temperature extremes

			Тур	LMC272C	
Symbol	Parameter	Conditions	(Note 5)	Limit	Units
				(Note 6)	
SR	Slew Rate (Note 8)	$A_V = +1, R_L = 10 \text{ k}\Omega,$			
		$VI = 1 V_{PP}, C_{L} = 20 pF$	1.7		V/µs
		(Note 12)			
GBW	Unity Gain Frequency	$VI = 10 \text{ mV}_{PP}, C_L = 20 \text{ pF}$	1.9		MHz
		(Note 12)			
φ _m	Phase Margin	$VI = 10 \text{ mV}_{PP}, C_L = 20 \text{ pF}$	39		Deg
		(Note 12)			
e _n	Input-Referred	$f = 1 \text{ kHz}, R_S = 20\Omega$	27		nV
	Voltage Noise				$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
in	Input-Referred	f = 1 kHz	0.0015		pA
	Current Noise				$\frac{pA}{\sqrt{Hz}}$
f _{max}	Full Power Bandwidth	$V_{S} = 10V, C_{L} = 20 \text{ pF}, R_{L} = 20 \text{ k}\Omega$	120		kHz
	Amp-to-Amp Isolation	(Note 9)	150		dB
THD	Total Harmonic	$A_V = +1, V_{IN} = 0.7V_{PP}$	0.035		%
	Distortion	f = 1 kHz			

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = 5V, V^- = 0V, V_{CM} = V_O = $V^+/2$, R_L to ground and R_L > 1 M Ω . **Boldface** limits apply at the temperature extremes

Symbol	Parameter	Conditions	Typ (Note 5)	LMC272C Limit	Units
Cymbol	T drameter	Conditions	(14010-0)	(Note 6)	Omis
Vos	Input Offset Voltage	$V_{O} = 1.4V, R_{S} = 50,$	1.75	7	mV
		$R_{L} = 10k, V_{CM} = 0V$		9	max
TCVos	Temp. Coefficient of	$T_A = 0^{\circ}C \text{ to } 70^{\circ}C$	3.3		μV/°C
	Input Offset Voltage				
I _B	Input Bias Current		1	64	pА
					max
Ios	Input Offset Current		0.5	32	pА
					max
CMRR	Common Mode	$V_{CM} = -0.2V \text{ to } 3.5V$	77	65	dB
	Rejection Ratio			60	min
PSRR	Power Supply	V+ = 5V to 10V, V _O = 1.4V	88	65	dB
	Rejection Ratio			60	min
V _{CM}	Input Common-Mode	CMRR ≥ 50 dB	4.2	4	V
	Voltage Range			3.5	min
			-0.3	-0.2	V
				-0.2	max
A _V	Large Signal Voltage	$V_{\rm O}$ = 0.25V to 2V, $R_{\rm L}$ = 10k	90	80	dB
	Gain			72	min
Vo	Output Swing	$R_{L} = 10 \text{ k}\Omega, V_{ID} = 100 \text{ mV}$	4.94	4.85	V
		(Note 11)		4.75	min
		V _{ID} = -100 mV	0	20	mV
		(Note 11)		25	max
I _{sc}	Output Short Circuit	Sourcing, V _{ID} = 100 mV	16		mA
	Current	(Note 11)			
		Sinking, V _{ID} = −100 mV	16		mA
		(Note 11)			
Is			1.95	3.2	mA
				3.6	max

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = 5V, V^- = 0V, V_{CM} = V_O = $V^+/2$, R_L to ground and R_L > 1 M Ω . **Boldface** limits apply at the temperature extremes

			Тур	LMC272C	
Symbol	Parameter	Conditions	(Note 5)	Limit	Units
				(Note 6)	
SR	Slew Rate (Note 8)	$A_V = +1, R_L = 10 \text{ k}\Omega,$			V/µs
		$VI = 1 V_{PP}, C_L = 20 pF$	2.5		
		(Note 12)			
		$A_V = +1, R_L = 10 \text{ k}\Omega,$			
		$VI = 2.5 V_{PP}, C_{L} = 20 pF$	2.5		
		(Note 12)			
GBW	Unity Gain Frequency	VI = 10 mV, C _L = 20 pF	2.0		MHz
		(Note 12)			
φ _m	Phase Margin	VI = 10 mV, C _L = 20 pF	43		Deg
		(Note 12)			
e _n	Input-Referred	$f = 1 \text{ kHz}, R_S = 20\Omega$	25		nV √Hz
	Voltage Noise				√Hz
i _n	Input-Referred	f = 1 kHz	0.0015		pA
	Current Noise				$\frac{pA}{\sqrt{Hz}}$
f _{max}	Full Power Bandwidth	$V_S = 10V, C_L = 20 \text{ pF}, R_L = 20 \text{ k}\Omega$	120		kHz
	Amp-to-Amp Isolation	(Note 9)	150		dB
THD	Total Harmonic	$A_V = +1, V_{IN} = 2.5 V_{PP}$	0.015		%
	Distortion	f = 1 kHz			

10V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = 10V, V^- = 0V, V_{CM} = V_O = $V^+/2$, R_L to ground and R_L > 1 M Ω . **Boldface** limits apply at the temperature extremes

Symbol	Parameter	Conditions	Typ (Note 5)	LMC272C Limit (Note 6)	Units
Vos	Input Offset Voltage	V _O = 1.4V, R _S = 50,	2.1	7	mV
		$R_{L} = 10k, V_{CM} = 0V$		9	max
TCV _{os}	Temp. Coefficient of	$T_A = 0^{\circ}C \text{ to } 70^{\circ}C$	3.6		μV/°C
	Input Offset Voltage				
I _B	Input Bias Current		1	64	pA
					max
Ios	Input Offset Current		0.5	32	pA
					max
CMRR	Common Mode	$V_{CM} = -0.2V \text{ to } 8.5V$	77	65	dB
	Rejection Ratio			60	min
PSRR	Power Supply	V+ = 5V to 10V, V _O = 1.4V	88	65	dB
	Rejection Ratio			60	min
V _{CM}	Input Common-Mode	CMRR ≥ 50 dB	9.2	9	V
	Voltage Range			8.5	min
			-0.3	-0.2	V
				-0.2	max
A _V	Large Signal Voltage	$V_{O} = 1V \text{ to 6V, R}_{L} = 10k$	95	85	dB
	Gain			78	min
Vo	Output Swing	$R_{L} = 10 \text{ k}\Omega, V_{ID} = 100 \text{ mV}$	9.93	9.85	V
		(Note 11)		9.75	min
		V _{ID} = -100 mV	33	45	mV
		(Note 11)		50	max
I _{sc}	Output Short Circuit	Sourcing, V _{ID} = 100 mV	55		mA
	Current	(Note 11)			
		Sinking, V _{ID} = -100 mV	25		mA
		(Note 11)			
Is	Total Supply Current		2.25	3.6	mA
				4.0	max

10V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = 10V, V^- = 0V, V_{CM} = V_O = $V^+/2$, R_L to ground and R_L > 1 M Ω . Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	Typ (Note 5)	LMC272C Limit (Note 6)	Units
SR	Slew Rate (Note 8)	$A_V = +1, R_L = 10 \text{ k}\Omega,$ VI = 1 V _{PP} , C _L = 20 pF (Note 12)	2.65		V/µs
		$A_V = +1$, $R_L = 10 \text{ k}\Omega$, $VI = 5.5 \text{ V}_{PP}$, $C_L = 20 \text{ pF}$ (Note 12)	2.65		
GBW	Unity Gain Frequency	VI = 10 mV, C _L = 20 pF (Note 12)	2.1		MHz
φ _m	Phase Margin	VI = 10 mV, C _L = 20 pF (Note 12)	44		Deg
e _n	Input-Referred Voltage Noise	$f = 1 \text{ kHz}, R_S = 20\Omega$	25		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
i _n	Input-Referred Current Noise	f = 1 kHz	0.0015		$\frac{pA}{\sqrt{Hz}}$
f _{max}	Full Power Bandwidth	$C_L = 20 \text{ pF}, R_L = 20 \text{ k}\Omega$	120		kHz
	Amp-to-Amp Isolation	(Note 9)	150		dB
THD	Total Harmonic Distortion	$A_{V} = +1, V_{IN} = 5 V_{PP}$ f = 1 kHz	0.005		%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical characteristics.

Note 2: Human body model, 1.5 k Ω in series with 100 pF.

Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of ±30 mA over long term may adversely affect reliability.

Note 4: The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

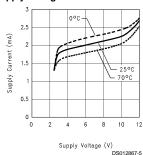
 $\textbf{Note 5:} \ \ \textbf{Typical Values represent the most likely parametric norm}.$

Note 6: All limits are guaranteed by testing or statistical analysis.

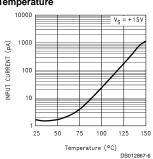
Note 7: Do not short circuit output to V+, when V+ is greater than 13V or reliability will be adversely affected.

Note 8: Slew rate is the slower of the rising and falling slew rates.

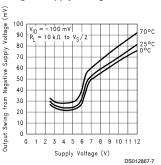
Note 9: Input referred, V+ = 10V and R_L = 100 kΩ connected to 5V. Each amp excited in turn with 1 kHz to produce about 10 V_{PP} output.

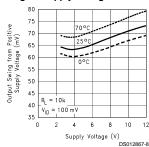

Note 10: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.

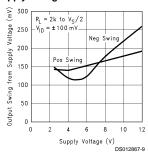
Note 11: V_{ID} is the differential voltage on the non-inverting input with respect to the inverting input.

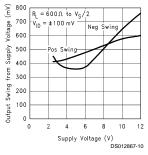

Note 12: V_I is the input voltage.

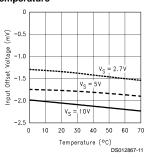
Typical Performance Characteristics ($V_S = +5V$, single supply, $T_A = 25^{\circ}C$, and R_L to ground unless otherwise specified)

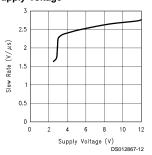

Supply Current vs Supply Voltage

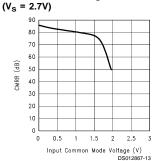

Input Current vs Temperature


Negative Output Voltage Swing vs Supply Voltage

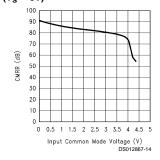

Positive Output Voltage Swing vs Supply Voltage


Output Voltage Swing vs Supply Voltage

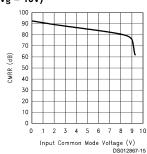

Output Voltage Swing vs Supply Voltage


Input Offset Voltage vs Temperature

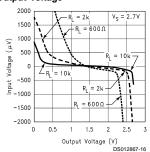
Slew Rate vs Supply Voltage

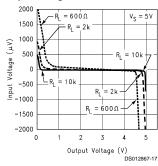


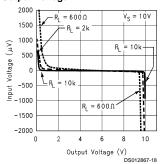
CMRR vs Input Common Mode Voltage

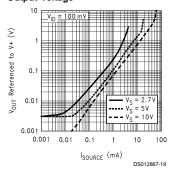


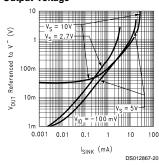
Typical Performance Characteristics ($V_S = +5V$, single supply, $T_A = 25$ °C, and R_L to ground unless otherwise specified) (Continued)

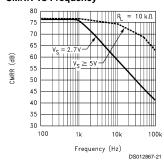

CMRR vs Input Common Mode Voltage (V_S = 5V)

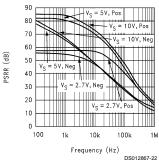

CMRR vs Input Common Mode Voltage (V_S = 10V)

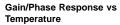

Input Voltage vs Output Voltage

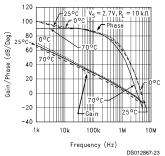

Input Voltage vs Output Voltage


Input Voltage vs Output Voltage

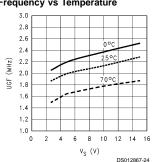

Sourcing Current vs Output Voltage


Sinking Current vs Output Voltage

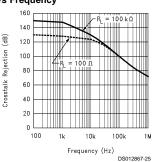

CMRR vs Frequency

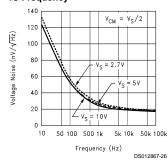


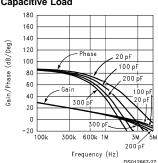
PSRR vs Frequency

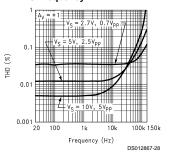


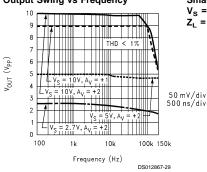
Typical Performance Characteristics ($V_S = +5V$, single supply, $T_A = 25$ °C, and R_L to ground unless otherwise specified) (Continued)

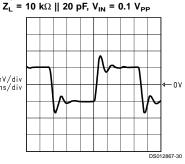



Unity Gain Frequency vs Temperature

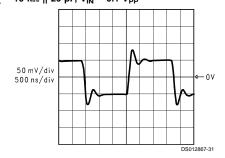

Crosstalk Rejection vs Frequency


Input Voltage Noise vs Frequency

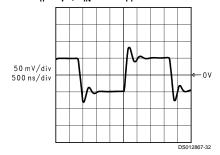

Gain/Phase vs Capacitive Load


THD vs Frequency

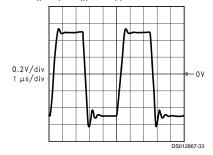
Output Swing vs Frequency


Small Signal Step Response $V_S = \pm 1.35V$, $A_V = +1$,

$\textbf{Typical Performance Characteristics} \ \, (\text{V}_{\text{S}} = \text{+5V}, \text{ single supply, T}_{\text{A}} = 25^{\circ}\text{C}, \text{ and R}_{\text{L}} \text{ to ground unless}$ otherwise specified) (Continued)

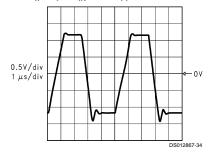

Small Signal Step Response

 $V_S = \pm 2.5 V$, $A_V = +1$, $Z_L = 10 \text{ k}\Omega \parallel 20 \text{ pF}$, $V_{\text{IN}} = 0.1 \text{ V}_{\text{PP}}$



Small Signal Step Response

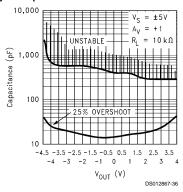
 $V_S = \pm 5V$, $A_V = +1$, $Z_L = 10 \text{ k}\Omega \parallel 20 \text{ pF}$, $V_{IN} = 0.1 \text{ V}_{PP}$



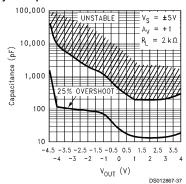
Large Signal Step Response V_S = ±1.35V, A_V = +1, Z_L = 10 k Ω || 20 pF, V_{IN} = 1 V_{PP}

Large Signal Step Response

 $V_S = \pm 2.5 V$, $A_V = +1$, $Z_L = 10 \text{ k}\Omega \parallel 20 \text{ pF}$, $V_{IN} = 2.4 \text{ V}_{PP}$

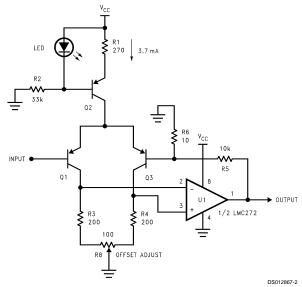


Large Signal Step Response V_S = ±5V, A_V = +1, Z_L = 10 k Ω || 20 pF, V_{IN} = 5.5 V_{PP}



Typical Performance Characteristics ($V_S = +5V$, single supply, $T_A = 25$ °C, and R_L to ground unless otherwise specified) (Continued)

Stability vs Capacitive Load

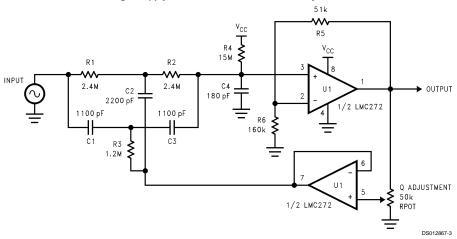


Stability vs Capacitive Load

Application Information

Low Noise Single Supply Preamp

It is generally difficult to find already existing solutions in the market which are single supply and low noise. The circuit above is a low noise single supply preamp using the LMC272. It utilizes the feature of input common mode voltage range to ground to achieve zero-volt-in zero-volt-out performance and uses the RR output swing to achieve maximum dynamic range. By introducing a differential pair operating at high bias current as the front end, the equivalent input noise voltage, $\mathbf{e}_{\rm n}$, is reduced. The gain is $1+{\rm R5/R6}$


which is a 1000 in this case. There is an inherent trade off between noise voltage and power consumption, input bias current, and input noise current. Input equivalent noise current is inconsequential if the source impedance is small. R1 can be adjusted to vary bias current. To avoid saturation, R3 and R4 should be set such that Q1 and Q3 collector voltages do not exceed 0.5V. *Table 1* shows typical noise data for two different R1 settings:

Application Information (Continued)

TABLE 1. Equivalent Input Noise Voltage, \mathbf{e}_{n} , for Two Different Values of R1

Ω	mA	nV/√ Hz		
R1	I _C (Q1, 3)	e _n (100 Hz)	e _n (1 kHz)	e _n (10 kHz)
270	1.85	3.2	2.0	1.7
1000	0.50	5.3	2.4	1.9

Single Supply Twin-T Notch Filter with "Q" Adjustment

Here is another application for the LMC272. This is a single supply notch filter set for 60 Hz using the component values shown, but the frequency can be changed using the equations below. The main feature of this circuit is its ability to adjust the filter selectivity (Q) using RPOT. You can trade off notch depth for Q. Table 2 shows data for two different settings. The LMC272 lends itself nicely to general purpose applications like this because it is very well behaved and easy to use. This filter can operate from 2.7V to 15V supplies. Component value matching is important to achieve good results. Here R4 is used to set the input to within the common mode range of the device to allow maximum swing on the non-inverting input (pin 3). Since R1, R2, and R4 form a voltage divider at low frequencies, C4 is added to introduce a high frequency attenuation in conjunction with C1, and C3. R5 and R6 were picked to set the pass band gain to 0 dB.

$$R = R1 = R2 = 2R3$$

 $C = C1 = C3 = C2/2$

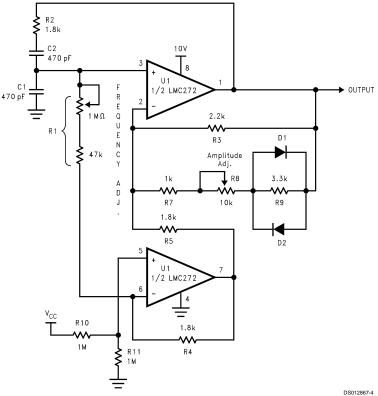
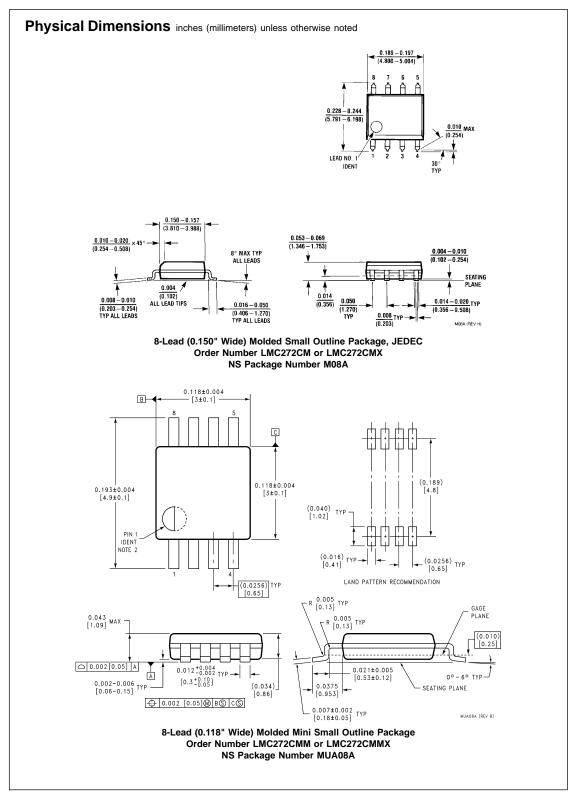
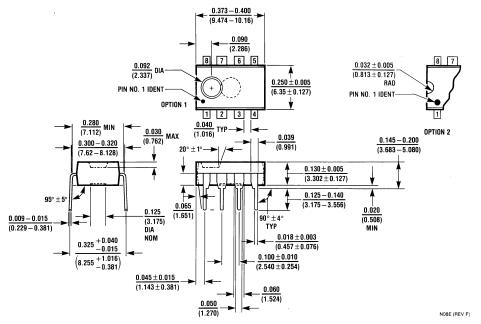

f(notch) =
$$\frac{1}{2\pi RC}$$
; C4 = $\frac{R \cdot C}{R4}$, Q = $\frac{f(notch)}{BW}$

TABLE 2. Filter Selectivity (Q) vs Notch Depth

	(dB)
Q	Notch Depth
0.3	40
6	17



Single Supply Wein_Bridge Oscillator with Amplitude and Frequency Adjustment



f(range) = 6.4 kHz to 30 kHz

Amplitude Adjustment (range) = 2.8 V_{PP} to 8.6 V_{PP}

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

8-Lead (0.300" Wide) Molded Dual-In-Line Package Order Number LMC272CN NS Package Number N08E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Europe
Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.