Single-chip Type with Built-in FET Switching Regulator Series

 Low Noise Step-down Switching Regulator BD8962MUV
- Description

ROHM's high efficiency step-down switching regulator BD8962MUV is a power supply designed to produce a low voltage including 0.8 volts from 5.5/3.3 volts power supply line. Offers high efficiency with synchronous rectifier. Employs a current mode control system to provide faster transient response to sudden change in load.

- Features

1) Offers fast transient response with current mode PWM control system.
2) Offers highly efficiency for all load range with synchronous rectifier (Nch/Nch FET)
3) Incorporates soft-start function.
4) Incorporates thermal protection and ULVO functions.
5) Incorporates short-current protection circuit with time delay function.
6) Incorporates shutdown function Icc=0 $\mu \mathrm{A}$ (Typ.)
7) Employs small surface mount package : VQFN020V4040

-Use

Power supply for LSI including DSP, Micro computer and ASIC
-Absolute Maximum Rating $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit
		BD8962MUV	
Vcc Voltage	Vcc	$-0.3 \sim+7^{* 1}$	V
PVcc Voltage	PVcc	$-0.3 \sim+7^{* 1}$	V
BST Voltage	VBST	$-0.3 \sim+13$	V
BST_SW Voltage	VBST-SW	$-0.3 \sim+7$	V
EN Voltage	VEN	$-0.3 \sim+7$	V
SW,ITH Voltage	VSW, VITH	$-0.3 \sim+7$	V
Power Dissipation 1	Pd1	$0.34^{* 2}$	W
Power Dissipation 2	Pd2	$0.70^{* 3}$	W
Power Dissipation 3	Pd3	$1.21^{*^{4}}$	W
Power Dissipation 4	Pd 4	$3.56^{* 5}$	W
Operating temperature range	Topr	$-40 \sim+105$	${ }^{\circ} \mathrm{C}$
Storage temperature range	Tstg	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$
Maximum junction temperature	Tj	+150	${ }^{\circ} \mathrm{C}$

*1 Pd should not be exceeded.
*2 IC only
*3 1-layer. mounted on a $74.2 \mathrm{~mm} \times 74.2 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ glass-epoxy board, occupied area by copper foil : $10.29 \mathrm{~mm}^{2}$

* $4 \quad$ 4-layer. mounted on a $74.2 \mathrm{~mm} \times 74.2 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ glass-epoxy board, occupied area by copper foil : $10.29 \mathrm{~mm}^{2}$, in each layers
*5 4-layer. mounted on a $74.2 \mathrm{~mm} \times 74.2 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ glass-epoxy board, occupied area by copper foil : $5505 \mathrm{~mm}^{2}$, in each layers

Parameter	Symbol	BD8962MUV			Unit
		Min.	Typ.	Max.	
Power Supply Voltage	Vcc	2.7	3.3	5.5	V
	PVcc	2.7	3.3	5.5	V
EN Voltage	VEN	0	-	5.5	V
Output voltage Setting Range	Vout	0.8	-	$2.5{ }^{* 6}$	V
SW average output current	Isw	-	-	$3.0{ }^{\text {7 }}$	A

[^0]- Electrical Characteristics
© BD 8962 MUV ($\mathrm{Ta}=25^{\circ} \mathrm{C}$ Vcc=PVcc=3.3V, $\mathrm{EN}=\mathrm{Vcc}, \mathrm{R}_{1}=10 \mathrm{k} \Omega, \mathrm{R}_{2}=5 \mathrm{k} \Omega$, unless otherwise specified.)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Standby current	Іsтв	-	0	10	$\mu \mathrm{A}$	EN=GND
Active current	Icc	-	250	500	$\mu \mathrm{A}$	
EN Low voltage	VENL	-	GND	0.8	V	Standby mode
EN High voltage	Venh	2.0	Vcc	-	V	Active mode
EN input current	IEN	-	1	10	$\mu \mathrm{A}$	$\mathrm{VEN}=3.3 \mathrm{~V}$
Oscillation frequency	Fosc	0.8	1	1.2	MHz	
High side FET ON resistance	Ronh	-	82	115	$\mathrm{m} \Omega$	PVcc=3.3V
Low side FET ON resistance	Ronl	-	70	98	$\mathrm{m} \Omega$	$\mathrm{PVCc}=3.3 \mathrm{~V}$
ADJ Voltage	VADJ	0.788	0.800	0.812	V	
ITH sınk current	ITHSI	10	18	-	$\mu \mathrm{A}$	VADJ=1V
ITH source current	ITHSO	10	18	-	$\mu \mathrm{A}$	VADJ $=0.6 \mathrm{~V}$
UVLO threshold voltage	VUVLO1	2.400	2.500	2.600	V	$\mathrm{Vcc}=3.3 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
UVLO release voltage	VUVLO2	2.425	2.550	2.700	V	$\mathrm{Vcc}=0 \mathrm{~V} \rightarrow 3.3 \mathrm{~V}$
Soft start time	Tss	2.5	5	10	ms	
Timer latch time	TLATCH	0.5	1	2	ms	
Output Short circuit Threshold Voltage	VscP	-	0.40	0.56	V	VADJ $=0.8 \mathrm{~V} \rightarrow 0 \mathrm{~V}$

-Block Diagram, Application Circuit
 【BD8962MUV】

(Unit : mm)

Fig. 2 BD8962MUV Block Diagram

Fig. 1 BD8962MUV TOP View
-Pin No. \& function table

Pin No.	Pin name	Function	Pin No.	Pin name	Function
1	SW	SW pin	11	GND	Ground
2	SW	SW pin	12	ADJ	Output voltage detect pin
3	SW	SW pin	13	ITH	GmAmp output pin/Connected phase compensation capacitor
4	SW	SW pin	14	N.C.	Non Connection
5	SW	SW pin	15	N.C.	Non Connection
6	PVCC	Highside FET source pin	16	N.C.	Non Connection
7	PVCC	Highside FET source pin	17	EN	Enable pin(High Active)
8	PVCC	Highside FET source pin	18	PGND	Lowside FET source pin
9	BST	Bootstrapped voltage input pin	19	PGND	Lowside source pin
10	VCC	VCC power supply input pin	20	PGND	Lowside source pin

- Characteristics data【BD8962MUV】

Fig. 3 Vcc - VOUT

Fig. 9 Ta - RONN, RONP

Fig. 12 Vcc - Fosc

Fig. 16 Transient Response $\mathrm{lo}=1 \rightarrow 3 \mathrm{~A}(10 \mu \mathrm{~s})$

Fig. 7 Efficiency

Fig. 10 Fig. 11 Ta - VEN

Fig. 13 Soft start waveform

Fig. 17 Transient Response $\mathrm{lo}=3 \rightarrow 1 \mathrm{~A}(10 \mu \mathrm{~s})$ 3/15

Fig. 11 Ta - Icc

Fig. 14 SW waveform lo=10mA

Advantage 1 : Offers fast transient response with current mode control system.

Fig. 18 Comparison of transient response

Advantage 2: Offers high efficiency for all load range with synchronous rectifier.

Utilizes the synchronous rectifying mode and the low on-resistance MOS FETs incorporated as power transistor.
\{ ON resistance of Highside MOS FET : $82 \mathrm{~m} \Omega$ (Typ.)
\{ ON resistance of Lowside MOS FET : $70 \mathrm{~m} \Omega$ (Typ.)

Fig. 19 Efficiency

Advantage 3 : • Supplied in smaller package due to small-sized power MOS FET incorporated.

- Output capacitor Co required for current mode control: $22 \mu \mathrm{~F}$ ceramic capacitor - Inductance L required for the operating frequency of $1 \mathrm{MHz}: 2.2 \mu \mathrm{H}$ inductor - Incorporates FET + Boot strap diode

Reduces a mounting area required.

Fig. 20 Example application

- Operation

BD8962MUV is a synchronous rectifying step-down switching regulator that achieves faster transient response by employing current mode PWM control system.

OSynchronous rectifier
It does not require the power to be dissipated by a rectifier externally connected to a conventional DC/DC converter IC, and its P.N junction shoot-through protection circuit limits the shoot-through current during operation, by which the power dissipation of the set is reduced.

OCurrent mode PWM control
Synthesizes a PWM control signal with a inductor current feedback loop added to the voltage feedback.

- PWM (Pulse Width Modulation) control

The oscillation frequency for PWM is 1 MHz . SET signal form OSC turns ON a highside MOS FET (while a lowside MOS FET is turned OFF), and an inductor current I_{L} increases. The current comparator (Current Comp) receives two signals, a current feedback control signal (SENSE: Voltage converted from I_{L}) and a voltage feedback control signal (FB), and issues a RESET signal if both input signals are identical to each other, and turns OFF the highside MOS FET (while a lowside MOS FET is turned ON) for the rest of the fixed period. The PWM control repeat this operation.

Fig. 21 Diagram of current mode PWM control

Fig. 22 PWM switching timing chart

-Description of operations

- Soft-start function

EN terminal shifted to "High" activates a soft-starter to gradually establish the output voltage with the current limited during startup, by which it is possible to prevent an overshoot of output voltage and an inrush current.

- Shutdown function

With EN terminal shifted to "Low", the device turns to Standby Mode, and all the function blocks including reference voltage circuit, internal oscillator and drivers are turned to OFF. Circuit current during standby is $0 \mu \mathrm{~F}$ (Typ.).

- UVLO function

Detects whether the input voltage sufficient to secure the output voltage of this IC is supplied. And the hysteresis width of 50 mV (Typ.) is provided to prevent output chattering.

Fig. 23 Soft start, Shutdown, UVLO timing chart

- Short-current protection circuit with time delay function

Turns OFF the output to protect the IC from breakdown when the incorporated current limiter is activated continuously for the fixed time(TLATCH) or more. The output thus held tuned OFF may be recovered by restarting EN or by re-unlocking UVLO.

Fig. 24 Short-current protection circuit with time delay timing chart

- Switching regulator efficiency

Efficiency η may be expressed by the equation shown below:

$$
\eta=\frac{\text { Vout } \times \text { lout }}{\text { Vin } \times \operatorname{lin}} \times 100[\%]=\frac{\text { Pout }}{\operatorname{Pin}} \times 100[\%]=\frac{\text { Pout }}{\text { Pout }+\operatorname{PD} \alpha} \times 100[\%]
$$

Efficiency may be improved by reducing the switching regulator power dissipation factors $P_{D} \alpha$ as follows:
Dissipation factors:

1) ON resistance dissipation of inductor and FET : PD($\left.I^{2} R\right)$
2) Gate charge/discharge dissipation : $\mathrm{PD}($ Gate $)$
3) Switching dissipation : $\mathrm{PD}(\mathrm{SW})$
4) ESR dissipation of capacitor: $\mathrm{PD}(\mathrm{ESR})$
5) Operating current dissipation of IC : PD(IC)
 2) PD (Gate) $=\mathrm{Cgs} \times f \times \mathrm{V}$ (Cgs[F]: Gate capacitance of $\mathrm{FET}, \mathrm{f}[\mathrm{H}]:$ Switching frequency, $\mathrm{V}[\mathrm{V}]:$ Gate driving voltage of FET)
6) $\operatorname{PD}(S W)=\frac{\text { Vin }^{2} \times \text { CRSS } \times \text { IOUT } \times f}{\text { IDRIVE }} \quad$ (CRSS[F] : Reverse transfer capacitance of FET, IDRIVE[A] : Peak current of gate.)
7) $P D(E S R)=I R M S^{2} \times E S R \quad$ (IRMS[A] : Ripple current of capacitor, $\operatorname{ESR}[\Omega]$: Equivalent series resistance.)
8) $\mathrm{PD}(\mathrm{IC})=\operatorname{Vin} \times \operatorname{Icc} \quad$ (Icc[A] : Circuit current.)

Consideration on permissible dissipation and heat generation
As this IC functions with high efficiency without significant heat generation in most applications, no special consideration is needed on permissible dissipation or heat generation. In case of extreme conditions, however, including lower input voltage, higher output voltage, heavier load, and/or higher temperature, the permissible dissipation and/or heat generation must be carefully considered.

For dissipation, only conduction losses due to DC resistance of inductor and ON resistance of FET are considered. Because the conduction losses are considered to play the leading role among other dissipation mentioned above including gate charge/discharge dissipation and switching dissipation.

Fig. 25 Thermal derating curve
(VQFN020V4040)

If $\mathrm{Vcc}=3.3 \mathrm{~V}$, Vout $=1.8 \mathrm{~V}$, RONH $=82 \mathrm{~m} \Omega$, RONL= $=70 \mathrm{~m} \Omega$
Iout=3A, for example, D=Vout/Vcc=1.8/3.3=0.545
RoN $=0.545 \times 0.082+(1-0.545) \times 0.07$
$=0.0447+0.0319$
$=0.0766[\Omega]$
$\mathrm{P}=3^{2} \times 0.0766=0.6894[\mathrm{~W}]$

As Ronh is greater than Ronl in this IC, the dissipation increases as the ON duty becomes greater. With the consideration on the dissipation as above, thermal design must be carried out with sufficient margin allowed.

1. Selection of inductor (L)

IL

Fig. 26 Output ripple current

The inductance significantly depends on output ripple current. As seen in the equation (1), the ripple current decreases as the inductor and/or switching frequency increases.

$$
\Delta \mathrm{IL}=\frac{(\mathrm{VCc}-\mathrm{Vout}) \times \text { Vout }}{\mathrm{L} \times \mathrm{Vcc} \times \mathrm{f}}[\mathrm{~A}] \cdot \cdots(1)
$$

Appropriate ripple current at output should be 20% more or less of the maximum output current.

$$
\begin{aligned}
\Delta \mathrm{IL}= & 0.2 \times \text { Ioutmax. }[\mathrm{A}] \cdots(2) \\
\mathrm{L} & =\frac{(\mathrm{Vcc}-\mathrm{Vout}) \times \text { Vout }}{\Delta \mathrm{IL} \times \mathrm{Vcc} \times \mathrm{f}}[\mathrm{H}] \cdot(3)
\end{aligned}
$$

($\Delta \mathrm{IL}:$: Output ripple current, and f: Switching frequency)
※Current exceeding the current rating of the inductor results in magnetic saturation of the inductor, which decreases efficiency. The inductor must be selected allowing sufficient margin with which the peak current may not exceed its current rating.

If $\mathrm{Vcc}=5.0 \mathrm{~V}$, Vout $=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \Delta \mathrm{IL}=0.2 \times 3 \mathrm{~A}=0.6 \mathrm{~A}$, for example,(BD8962MUV)

$$
\mathrm{L}=\frac{(5-2.5) \times 2.5}{0.6 \times 5 \times 1 \mathrm{M}}=2.08 \mu \rightarrow 2.2[\mu \mathrm{H}]
$$

※Select the inductor of low resistance component (such as DCR and ACR) to minimize dissipation in the inductor for better efficiency.
2. Selection of output capacitor (Co)

Fig. 27 Output capacitor

Output capacitor should be selected with the consideration on the stability region and the equivalent series resistance required to smooth ripple voltage.

Output ripple voltage is determined by the equation (4) :
Δ Vout $=\Delta$ IL×ESR [V] • • • (4)
($\Delta \mathrm{IL}:$: Output ripple current, ESR: Equivalent series resistance of output capacitor)
※Rating of the capacitor should be determined allowing sufficient margin against output voltage. A $22 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ ceramic capacitor is recommended. Less ESR allows reduction in output ripple voltage.

3. Selection of input capacitor (Cin)

Fig. 28 Input capacitor

Input capacitor to select must be a low ESR capacitor of the capacitance sufficient to cope with high ripple current to prevent high transient voltage. The ripple current IRMS is given by the equation (5):

$$
\begin{aligned}
& \text { IRMS }=\text { Iout } \times \frac{\sqrt{\text { Vout(Vcc-VOUT) }}}{\text { Vcc }}[\mathrm{A}] \cdot \cdots(5) \\
& <\text { Worst case }>\text { IRMS(max.) } \\
& \text { When Vcc= } 2 \times \text { Vout, IRMS }=\frac{\text { Iout }}{2} \\
& \text { If Vcc }=3.3 \mathrm{~V} \text {, Vout }=1.8 \mathrm{~V} \text {, and IouTmax. }=3 \mathrm{~A} \text {, (BD8962MUV) } \\
& \text { IRMS }=2 \times \quad \frac{\sqrt{1.8(3.3-1.8)}}{3.3}=1.49[\text { ARMS }]
\end{aligned}
$$

A low ESR $22 \mu \mathrm{~F} / 10 \mathrm{~V}$ ceramic capacitor is recommended to reduce ESR dissipation of input capacitor for better efficiency.

4. Determination of RITH, CITH that works as a phase compensator

As the Current Mode Control is designed to limit a inductor current, a pole (phase lag) appears in the low frequency area due to a CR filter consisting of a output capacitor and a load resistance, while a zero (phase lead) appears in the high frequency area due to the output capacitor and its ESR. So, the phases are easily compensated by adding a zero to the power amplifier output with C and R as described below to cancel a pole at the power amplifier.

Fig. 29 Open loop gain characteristics

$$
\begin{aligned}
& \mathrm{fp}=\frac{1}{2 \pi \times \mathrm{Ro} \times \mathrm{Co}} \\
& \mathrm{fz}(\mathrm{ESR})=\frac{1}{2 \pi \times \mathrm{ESR} \times \mathrm{Co}}
\end{aligned}
$$

Pole at power amplifier
When the output current decreases, the load resistance Ro increases and the pole frequency lowers.

$$
\mathrm{fp}(\text { Max. })=\frac{1}{2 \pi \times \text { RoMin } . \times \text { Co }}[\mathrm{Hz}] \leftarrow \text { with heavier load }
$$

Zero at power amplifier
Increasing capacitance of the output capacitor lowers the pole frequency while the zero frequency does not change. (This is because when the capacitance is doubled, the capacitor ESR reduces to half.)
$\mathrm{fz}($ Amp. $)=\frac{1}{2 \pi \times \mathrm{RITH} \times \mathrm{CITH}}$

Fig. 30 Error amp phase compensation characteristics

Fig. 31 Typical application

Stable feedback loop may be achieved by canceling the pole fp (Min.) produced by the output capacitor and the load resistance with CR zero correction by the error amplifier.

$$
\begin{aligned}
& \mathrm{fz} \text { (Amp.) }=\mathrm{fp} \text { (Min.) } \\
& \longrightarrow \frac{1}{2 \pi \times \text { RITH } \times \text { CITH }}=\frac{1}{2 \pi \times \text { RoMax. } \times \text { Co }}
\end{aligned}
$$

5. Determination of output voltage

The output voltage Vout is determined by the equation (6):
Vout=(R2/R1+1)×VADJ • • (6) VADJ: Voltage at ADJ terminal (0.8 V Typ.) With R1 and R2 adjusted, the output voltage may be determined as required.
(Adjustable output voltage range : $0.8 \mathrm{~V} \sim 2.5 \mathrm{~V}$)

Fig. 32 Determination of output voltage

Use $1 \mathrm{k} \Omega \sim 100 \mathrm{k} \Omega$ resistor for $R 1$. If a resistor of the resistance higher than $100 \mathrm{k} \Omega$ is used, check the assembled set carefully for ripple voltage etc.

The lower limit of input voltage depends on the output voltage. Basically, it is recommended to use in the condition :
$\mathrm{VCCmin}=\mathrm{VOUT}+1.2 \mathrm{~V}$.
Fig.33. shows the necessary output current value at the lower limit of input voltage. (DCR of inductor : $20 \mathrm{~m} \Omega$)
This data is the characteristic value, so it' doesn't guarantee the operation range.

Fig. 33 minimum input voltage in each output voltage

Fig. 34 Layout diagram
(1) Lay out the input ceramic capacitor CIN closer to the pins PVCC and PGND, and the output capacitor Co closer to the pin PGND.
(2) Lay out CITH and RITH between the pins ITH and GND as neat as possible with least necessary wiring.
※ VQFN020V4040 (BD8962MUV) has thermal PAD on the reverse of the package.
The package thermal performance may be enhanced by bonding the PAD to GND plane which take a large area of PCB.

- Recommended components Lists on above application

Symbol	Part	Value		Manufacturer	Series
L	Coil	2.0 uH		Sumida	CDR6D28MNP-2R0NC
		2.2 uH		Sumida	CDR6D26NP-2R2NC
CIN	Ceramic capacitor	22uF		Murata	GRM32EB11A226KE20
Co	Ceramic capacitor	22uF		Murata	GRM31CB30J226KE18
CIth	Ceramic capacitor	Vout $=1.0 \mathrm{~V}$	1500pF	Murata	CRM18 Serise
		Vout=1.2V	1000pF	Murata	GRM18 Serise
		Vout $=1.5 \mathrm{~V}$	1000pF	Murata	GRM18 Serise
		Vout $=1.8 \mathrm{~V}$	560pF	Murata	GRM18 Serise
		Vout=2.5V	560pF	Murata	GRM18 Serise
RIth	Resistance	Vout=1.0V	$5.6 \mathrm{k} \Omega$	Rohm	MCR03 Serise
		Vout=1.2V	$6.8 \mathrm{k} \Omega$	Rohm	MCR03 Serise
		Vout $=1.5 \mathrm{~V}$	$6.8 \mathrm{k} \Omega$	Rohm	MCR03 Serise
		Vout $=1.8 \mathrm{~V}$	$8.2 \mathrm{k} \Omega$	Rohm	MCR03 Serise
		Vout $=2.5 \mathrm{~V}$	$12 \mathrm{k} \Omega$	Rohm	MCR03 Serise
Cf	Ceramic capacitor	1000 pF		Murata	GRM18 Serise
Rf	Resistance	10Ω		Rohm	MCR03 Serise
Сbst	Ceramic capacitor	0.1 uF		Murata	GRM18 Serise

※The parts list presented above is an example of recommended parts. Although the parts are sound, actual circuit characteristics should be checked on your application carefully before use. Be sure to allow sufficient margins to accommodate variations between external devices and this IC when employing the depicted circuit with other circuit constants modified. Both static and transient characteristics should be considered in establishing these margins. When switching noise is substantial and may impact the system, a low pass filter should be inserted between the VCC and PVCC pins, and a schottky barrier diode or snubber established between the SW and PGND pins.

- I/O equivalence circuit

【BD8962MUV】

Fig. 35 I/O equivalence circuit

1. Absolute Maximum Ratings

While utmost care is taken to quality control of this product, any application that may exceed some of the absolute maximum ratings including the voltage applied and the operating temperature range may result in breakage. If broken, short-mode or open-mode may not be identified. So if it is expected to encounter with special mode that may exceed the absolute maximum ratings, it is requested to take necessary safety measures physically including insertion of fuses.

2. Electrical potential at GND

GND must be designed to have the lowest electrical potential In any operating conditions.
3. Short-circuiting between terminals, and mismounting

When mounting to pc board, care must be taken to avoid mistake in its orientation and alignment. Failure to do so may result in IC breakdown. Short-circuiting due to foreign matters entered between output terminals, or between output and power supply or GND may also cause breakdown.
4. Thermal shutdown protection circuit

Thermal shutdown protection circuit is the circuit designed to isolate the IC from thermal runaway, and not intended to protect and guarantee the IC. So, the IC the thermal shutdown protection circuit of which is once activated should not be used thereafter for any operation originally intended.
5. Inspection with the IC set to a pc board

If a capacitor must be connected to the pin of lower impedance during inspection with the IC set to a pc board, the capacitor must be discharged after each process to avoid stress to the IC. For electrostatic protection, provide proper grounding to assembling processes with special care taken in handling and storage. When connecting to jigs in the inspection process, be sure to turn OFF the power supply before it is connected and removed.

6. Input to IC terminals

This is a monolithic IC with P^{+}isolation between P -substrate and each element as illustrated below. This P -layer and the N -layer of each element form a P-N junction, and various parasitic element are formed.
If a resistor is joined to a transistor terminal as shown in Fig 36.
OP-N junction works as a parasitic diode if the following relationship is satisfied; GND>Terminal A (at resistor side), or GND>Terminal B (at transistor side); and
Oif GND>Terminal B (at NPN transistor side),
a parasitic NPN transistor is activated by N-layer of other element adjacent to the above-mentioned parasitic diode.
The structure of the IC inevitably forms parasitic elements, the activation of which may cause interference among circuits, and/or malfunctions contributing to breakdown. It is therefore requested to take care not to use the device in such manner that the voltage lower than GND (at P-substrate) may be applied to the input terminal, which may result in activation of parasitic elements.

Fig. 36 Simplified structure of monorisic IC

7. Ground wiring pattern

If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.

8. Selection of inductor

It is recommended to use an inductor with a series resistance element (DCR) 0.1Ω or less. Especially, in case output voltage is set 1.6 V or more, note that use of a high DCR inductor will cause an inductor loss, resulting in decreased output voltage. Should this condition continue for a specified period (soft start time + timer latch time), output short circuit protection will be activated and output will be latched OFF. When using an inductor over 0.1Ω, be careful to ensure adequate margins for variation between external devices and this IC, including transient as well as static characteristics. Furthermore, in any case, it is recommended to start up the output with EN after supply voltage is within operation range.

-Ordering part number

VQFN020V4040

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.

[^0]: *6 In case set output voltage 1.6 V or more, VccMin = Vout+1. 2 V .

 * 7 Pd should not be exceeded.

