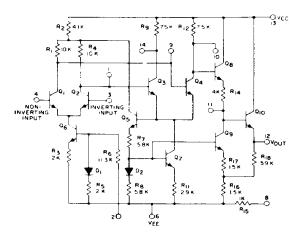


NOT RECOMMENDESIGNS FOR NEW DESIGNS

May 1990

Operational Amplifiers

Features:


- These new types have all the desirable features and characteristics of their prototypes plus lower noise figures and improved input characteristics for offset voltage, offset current, bias current, and impedance
- All types are electrically identical within their voltage groups
- For use in telemetry, data-processing, instrumentation, and communication equipment
- Built-in temperature stability from -55°C to +125°C for TO-5 style, and ceramic dual-in-line packages; 0°C to +70°C for plastic dual-in-line packages

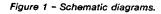
Applications:

SEE CATAI

- Narrow-band and band-pass amplifier
- **Operational functions**
- Feedback amplifier
- DC and video amplifier
- m Multivibrator
- Oscillator
- Comparator
- Servo driver
- Scaling adder
- Balanced modulator-driver

6-VOLT TYPES	12-VOLT TYPES	PACKAGE
CA3010A	CA3015A	12-Lead TO-5 Style
CA3029A	CA3030A	14-Lead Plastic Dual-In-Line (TO-116)

CA3029A, CA3030A


Ç12 ð _Ovo⊔⊤ [2] Rie 5 R15 ٥Ē . ∎¢ VFF

Rq

R12 \$

Zċ

CA3010A, CA3015A

Copyright © Harris Corporation 1990

File Number 310

-0 vcc 1∕2

3-48

This Material Copyrighted By Its Respective Manufacturer

ABSOLUTE-MAXIMUM VOLTAGE AND CURRENT LIMITS, TA = 25°C

Voltage or current limits shown for each terminal can be applied under the indicated voltage or other circuit conditions for other terminals

All voltages are with respect to ground (common terminal of Positive and Negative DC Supplies)

Terminal Voltage or Current Limits		Circuit Conditions			Tern	Terminal		Voltage or Current Limits		Circuit Conditions				
CA3010A	CA3029A	Nega- tive	Posi- tive	Terminal Voltage		CA3015A	CA3030A	Nega- tive	Posi- tive	Terminal Volt				
12	1	DO NOT APPLY VOLTAGE FROM AN EX- TERNAL SOURCE TO THIS TERMINAL				12	1	DO NOT APPLY VOLTAGE FROM AN EX- TERNAL SOURCE TO THIS TERMINAL						
				CA3010A	CA3029A						CA3015A	CA3030A		
1	2	-8 V	0 V	4 10	6 13	-8 +6	1	2	-16 V	0 V	4 10	6 13	-16 +12	
2	3	-4 V	+1 V	1 3 4 10	2 4 6 13	0 0 -6 +6	2	3	-8 V	+1 V	1 3 4 10	2 4 6 13	0 0 -12 +12	
3	4	-4 V	+1 V	1 2 4 10	2 3 6 13	0 0 -6 +6	3	4	-8 V	+1 V	1 2 4 10	2 3 6 13	0 0 -12 +12	
-	5	NO CONNECTION					-	5	NO CONNECTION					
4	6	-10 V	0 V	1 10	2 13	0 +6	4	6	-20 V	0 V	1 10	2 13	0 +12	
-	7		NO	CONNECT	ION		-	7	NO CONNECTION					
5	8	DO NOT APPLY VOLTAGE FROM AN EX- TERNAL SOURCE TO THIS TERMINAL					5	8	DO NOT APPLY VOLTAGE FROM AN EX- TERNAL SOURCE TO THIS TERMINAL					
6	9	DO NOT APPLY VOLTAGE FROM AN EX- TERNAL SOURCE TO THIS TERMINAL				NEX- NAL	6	9	DO NOT APPLY VOLTAGE FROM AN EX- TERNAL SOURCE TO THIS TERMINAL					
7	10	0 V	+7 V	1 4 10	2 6 13	0 -6 +6	7	10	0 V	+14 V	1 4 10	2 6 13	0 -12 +12	
8	11	DO NOT APPLY VOLTAGE FROM AN EX- TERNAL SOURCE TO THIS TERMINAL					8	11	DO NOT APPLY VOLTAGE FROM AN EX- TERNAL SOURCE TO THIS TERMINAL					
9	12	30 m	ıA	CA30	6 13 Between Te 6 & 12 29A, CA3010A)	-6 +6 erminals	9	12	30 mA				-12 +12 minals	
10	13	0 V	+10 V	1 4	2 6	0 -6	10	13	0 V	+20 V	1 4	2 6	0 -12	
11	14	0 V	+7 V	1 4 10	2 6 13	0 -6 +6	11	14	0 V	+14 V	1 4 10	2 6 13	0 -12 +12	
CAS	SE				Terminal N D NOT GRO		CA	SE			nected to 1 ostrate) DC			

CA3010A CA3015A	CA3029A CA3030A		CA3030A	CA3015A	CA3029A	CA3010A
OPERATING TEMPERATURE RANGE55°C to +125°C STORAGE TEMPERATURE RANGE65°C to +200°C	-4 0°C to +80°C -65 °C to +150°C	MAXIMUM SIGNAL VOLTAGE. MAXIMUM DEVICE DISSIPATIO		-8 V to +1 V 600 mW	-4 V to +1 V 300 mW	

3-49

This Material Copyrighted By Its Respective Manufacturer

OPERATIONAL Amplifiers

ELECTRICAL CHARACTERISTICS at $T_A = 25^{\circ}C$

Characteristics	Symbols	Special Test Conditions Terminal No.8 CA3029A, CA3030A, Terminal No.5 (CA3010A, CA3015A) Not Connected		Test Cir- cuit	CA3010A CA3029A			CA3015A CA3030A			Units	Typical Charac- teristic Curves	
STATIC CHARACTERISTIC		Unless Otherwis	se specified	Fig.	Min.	Тур.	Max.	Min.	Тур,	Max.		Fig.	
STATIC CHARACTERISTIC	1	Noo KN				0.0	2		[<u> </u>		I	
Input Offset Voltage	V ₁₀	VCC = +6V, = +12V	VEE = -6V = -12V	4	-	0.9	2	-	- 1	2	mV	2	
Input Offset Current	110	= +6V = +12V	= -6V = -12V	5		0.3 -	1.5 -	-	0.5	- 1.6	μA	2	
Input Bias Current	¹ 1B	= +6V = +12V	= -6V = -12V	5	-	2.5 -	4 -	-	- 4.7	- 6	μA	3	
Input Offset Voltage Sensitivity: Positive	۵۷ ₁₀ /۵۷ _{CC}	= +6V = +12V	= -6V = -12V	4	-	0.10 -	1	-	- 0.096	- 0.5	mV/V	1000	
Negative	Δνιο/Δνεε	= +6V = +12V	= -6V = -12V	4		-	0.26	1	-	- 0.156	- 0.5	III V / V 	none
Device Dissipation	PD	= +6 V = +12V	= -6 V = -12V	4	-	40	•	•	175	-		none	
		5 shorted to 9	VCC = +6V VEE = -6V		-	102	-	-	-	-	m₩		
		8 shorted to 12	$V_{CC} = +12V,$ $V_{EE} = -12V$		-			-	500	-			
DYNAMIC CHARACTERIST	ICS: All tests	at f = 1 kHz excep	t BWOL	•		•		•	•	•			
Open-Loop Differential Voltage Gain	A _{OL}	V _{CC} = +6V, = +12V	VEE = -6V = -12V	8	57 -	60 -	-	- 66	- 70	-	dB	6&7	
Open-Loop Bandwidth at -3 dB Point	BW _{OL}	= +6V = +12V	= -6V = -12V	8	200	300	-	- 200	- 320	-	kHz	6&7	
Slew Rate	SR	$V_{CC} = +6V V_E$ = +12V		none	-	3	-	-	- 7	-	V. jus	none	
Common-Mode Rejection Ratio	CMR	VCC = +6V. = +12V	VEE = -6V = -12V	11	70 -	94 -	•	- 80	103	-	dB	12	
Maximum Output-Voltage Swing	V ₀ (P-P)	= +6V = +12V	= -6V = -12V	8	4	6.75	-	- 12	- 14	•	V _{P-P}	9&1	
Input Impedance	Z _{IN}	= +6V = +12V	= -6V = -12V	14	15	20 -	-	- 7.5	10	-	kΩ	13	
Output Impedance	ZOUT	= +6V = +12V	= -6V = -12V	15	-	160 -	-	-	85	-	Ω	16	
Common-Mode Input-Voltage Range	V _{ICR}	= +6V	= -6V	 11	+0.5 to		-	-	-	-	v	none	
		= +12V	= -12V	11	-4		-	+0.65 to -8	-	-			
Noise Figure	NF	V _{CC} = +3V , V _E = +6V = +9V = +12V	E = -3V = -6V = -9V -= -12V	18	-	6.3 8.3 -	9 12 -	-	6.3 8.3 10 11	9 12 14 16	dB	17	

LEAD TEMPERATURE (During Soldering):

ALL TYPES

3-50

TYPICAL DYNAMIC CHARACTERISTICS AND TEST CIRCUITS

Terminal Numbers in Circles are for CA3029A, CA3030A Italic Numbers in Square Boxes are for CA3010A, CA3015A.

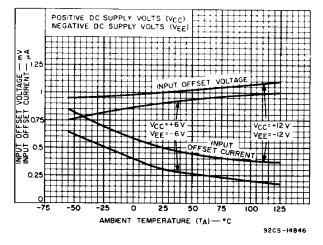


Fig. 2 — Input offset voltage and current

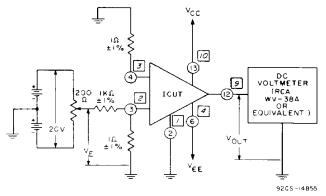


Fig. 4 — Input offset voltage, input offset voltage sensitivity, and and device dissipation test circuit.

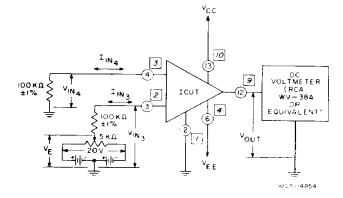


Fig. 5 — Input offset current and input bias current test circuit.

POSITIVE DC SUPPLY VOLTS (VCC) NEGATIVE DC SUPPLY VOLTS (VEE) Ā CURRENT BIAS INPUT 2 -75 -50 -25 0 25 50 75 100 125 AMBIENT TEMPERATURE (TA) - °C 9205-14847

Fig. 3 — Input bias current

Procedure:

Input Offset Voltage

1. Adjust V_{E} for a DC Output Voltage (V_OUT) of 0 \pm 0.1 volts.

2. Measure VE and record input Offset Voltage in millivolts as $V_{E}/1000.$

Input Offset Voltage Sensitivity

- 1. Adjust V_E for a DC Output Voltage (V_{OUT}) of 0 ± 0.1 volts.
- 2. Increase $|V_{CC}|$ by 1 volt and record output voltage (V_{OUT}) .
- 3. Decrease $|V_{CC}|$ by 1 volt and record output voltage (V_{OUT}) .
- 4. Divide the difference between V_DUT measured in steps 2 and 3 by the change in V_CC in steps 2 and 3.

$$\frac{V_{OUT}}{V_{OUT}} = \frac{V_{OUT} (\text{Step 2}) - V_{OUT} (\text{Step 3})}{V_{OUT} (\text{Step 3})}$$

5. Refer the reading to the input by dividing by Open Loop Voltage Gain $(A_{\mbox{\scriptsize OL}})$.

- 6. Repeat procedures 1 through 5 for the Negative Supply (VEE).
- 7. Device Dissipation
- PT = VCCIC + VEEIE
- IC = Direct Current into Terminal 13 or $\underline{10}$
- $I_E = Direct Current out of Terminal 6 or 4$

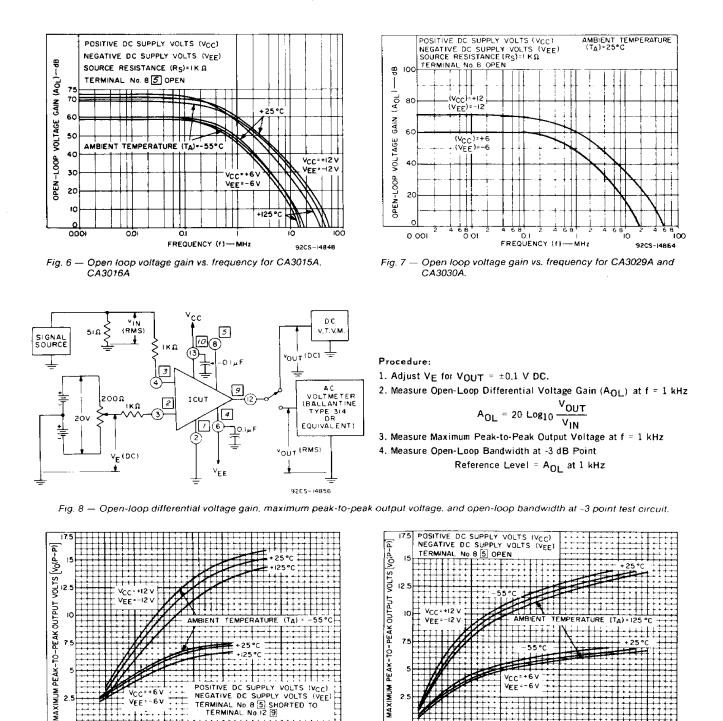
٧

Procedure:

Input Bias Current and Input Offset Current

- 1. Adjust VE for $\|V_{OUT}\| \le 0.1$ V DC.
- 2. Measure and record V_E and V_{IN4}
- 3. Calculate the Input Bias Current using the following equation:

$$I_{14} = \frac{V_{1N4}}{100 \text{ k}\Omega}$$


4. Calculate the Input Offset Current using the following equation:

3-51

3

TYPICAL DYNAMIC CHARACTERISTICS AND TEST CIRCUITS

Terminal Numbers in Circles are for CA3029A, CA3030A, Italic Numbers in Square Boxes are for CA3010A, CA3015A.

TERMINAL NO.8 S SHORTED TO TERMINAL NO.8 S SHORTED TO - + - + - -0.75 1.25 15 1.75 0 10 0.25 0.5 ŧ۶ LOAD RESISTANCE (RL) - K OHMS LOAD RESISTANCE (RL)-K OHMS 9205-14849 (b) (a)

92CS-14862

Fig. 9 — Maximum peak-to-peak output voltage vs. load resistance for CA3010A. CA3015A

(VEE)

3-52

This Material Copyrighted By Its Respective Manufacturer

2.

0

VEE бV

TYPICAL DYNAMIC CHARACTERISTICS AND TEST CIRCUITS

Terminal Numbers in Circles are for CA3029A, CA3030A, Italic Numbers in Square Boxes are for CA3010A, CA3015A.

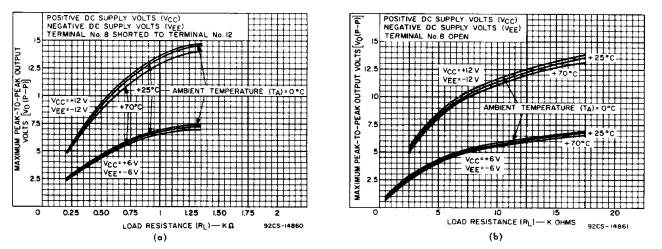
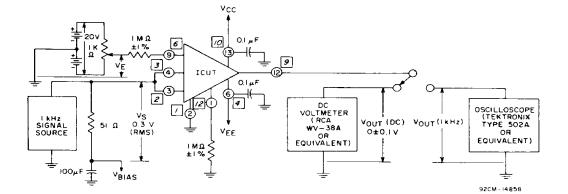



Fig. 10 — Maximum peak-to-peak output voltage vs. load resistance for CA3029A and CA3030A.

Procedures:

Common-Mode Rejection Ratio:

- 1. Set $V_{BIAS} = 0$. Adjust V_E for $V_{OUT}(DC) = 0 \pm 0.1 V$.
- 2. Apply 1-kHz sinusodial input signal and adjust for V_S = 0.3 V (RMS).
- Measure and record the RMS value of V_{OUT}. An oscilloscope is used for this measurement so that the output signal may be visually separated.from noise output.
- 4. Calculate Common-Mode Voltage Gain:

5. Calculate Common-Mode Rejection Ratio:

- CMR in dB = ADIFF in dB - A_{CM} in dB.

- Common-Mode Input-Voltage Range;
- 1. Calculate and record CMR for various positive and negative values of V_{BIAS} within the maximum limits shown on Page 2. The Common-Mode Input-Voltage Range limits are those values of V_{BIAS} at which CMR is 6 dB less than that calculated in Step 5 of the procedure given above.
- Fig. 11 Common-mode rejection ratio and common-mode inputvoltage-range test circuit.

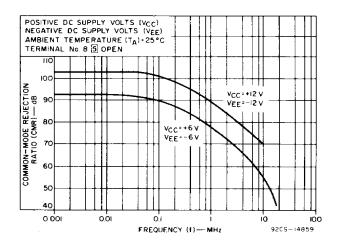


Fig. 12 — Common-mode rejection ratio vs. frequency.

3-53

OPERATIONAL Amplifiers

3

This Material Copyrighted By Its Respective Manufacturer

TYPICAL DYNAMIC CHARACTERISTICS AND TEST CIRCUITS

Terminal Numbers in Circles are for CA3029A, CA3030A Italic Numbers in Square Boxes are for CA3010A, CA3015A.

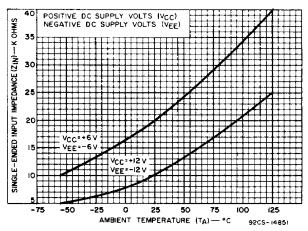


Fig. 13 — Single-ended input impedance vs. temperature.

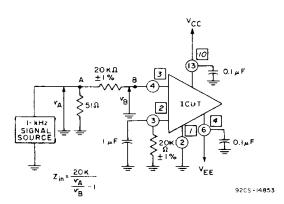
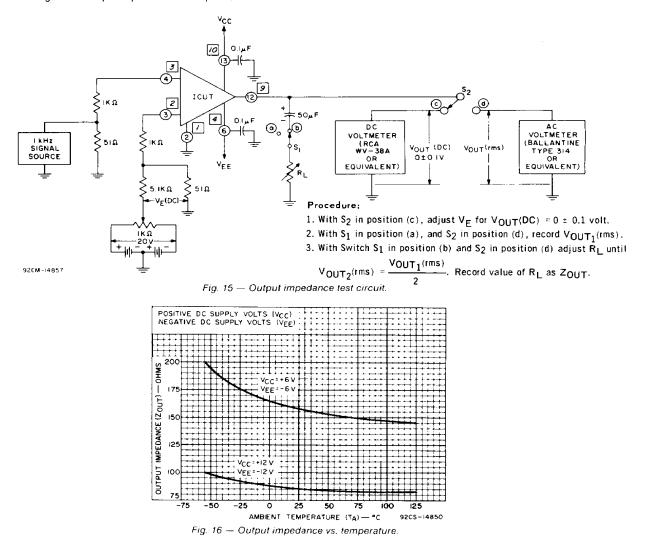



Fig. 14 — Single-ended input impedance test circuit.

3-54

This Material Copyrighted By Its Respective Manufacturer