

CUSTOMER PROCUREMENT SEPTETA TON

Z08617

NMOS Z8® 8-BIT MCU KEYBOARD CONTROLLER

FEATURES

- Low Power Consumption 750 mW
- 32 Input/Output Lines
- Digital Inputs NMOS Levels with Internal Pull-Up Resistors
- 4 Kbytes ROM
- Four Direct Connect LED Drive Pins
- 124 Bytes of RAM

- Hardware Watch-Dog Timer (WDT)
- Two Programmable 8-Bit Counter/Timers, Each with 6-Bit Programmable Prescaler
- Six Vectored, Priority Interrupts from Six Different Sources
- On-Chip RC Oscillator
- Clock Frequency: Up to 5MHz
- Low FMI Emission

GENERAL DESCRIPTION

The Z08617 Keyboard Controller is a member of the Z8® single-chip microcontroller family with 4 Kbytes of ROM. The device is housed in a 40-pin DIP package, and is manufactured in NMOS technology. The Z08617 microcontroller offers fast execution, efficient use of memory, sophisticated interrupt, input/output bitmanipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption.

The Z08617 architecture is characterized by a flexible I/O scheme, an efficient register, I/O, and a number of ancillary features that are useful in many industrial and advanced scientific applications.

For applications which demand powerful I/O capabilities, the Z08617 provides 32 pins dedicated to input and output. These lines are grouped into four ports, each port consists of 8 lines, and are configurable under software control to provide timing, status signals, and serial or parallel I/O ports.

The Z08617 offers low EMI emission which is achieved by means of several modifications in the output drivers and clock circuitry of the device.

There are two basic address spaces which are available to support this wide range of configurations: Program Memory and 124 General-Purpose Registers.

The Z08617 offers two on-chip counter/timers with a large number of user-selectable modes. This unburdens the program from coping with real-time problems such as counting/timing (Figure 1).

Notes:

All Signals with a preceding front slash, "/", are active Low, e.g., B/W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{cc}	V _{DD}
Ground	GND	V _{ss}

DS96KEY0300 1

GENERAL DESCRIPTION (Continued)

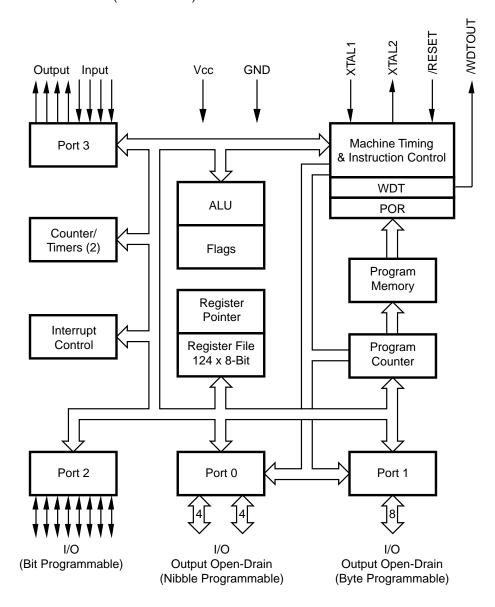
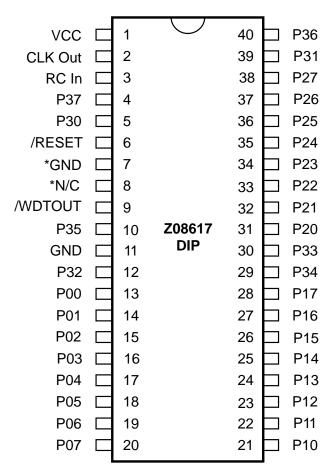



Figure 1. Z08617 Functional Block Diagram

PIN IDENTIFICATION

Note:

Figure 2. 40-Pin DIP Pin Configuration

Table 1. 40-Pin DIP Pin Identification

Pin #	Symbol	Function	Direction
1	V _{cc}	Power Supply	Input
2	CĽK Out	Clock Out	Output
3	RC In	Z8 Clock	Input
4	P37	Port 3, Pin 7	Output
5	P30	Port 3, Pin 0	Input
6	/RESET	Reset	Input
*7	GND	Ground	
*8	N/C	Not Connected	
9	/WDTOUT	Watch-Dog Timer	Output
10	P35	Port 3, Pin 5	Output

F	Pin#	Symbol	Function	Direction
	11	GND	Ground	
	12	P32	Port 3, Pin 2	Input
1	3-20	P07-P00	Port 0, Pins 0,1,2,3,4,5,6,7	In/Output
2	21-28	P17-P10	Port 1, Pins 0,1,2,3,4,5,6,7	In/Output
	29	P34	Port 3, Pin 4	Output
_	30	P33	Port 3, Pin 3	Input
3	31-38	P27-P20	Port 2, Pins 0,1,2,3,4,5,6,7	In/Output
3	84-38	P24-P20	Port 2, Pins 0, 1, 2, 3, 4	In/Output
3	39	P31	Port 3, Pin 1	Input
4	10	P36	Port 3, Pin 6	Output

^{*} Pin 8 is connected to the chip, although used only for testing.
This pin **must** float. Pin 7 is a test pin and **must** be grounded.

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
V _{CC} T _{STG}	Supply Voltage* Storage Temp	-0.3 -65	+7.0 +150	V C
T _A	Oper Ambient Temp	†	†	

Notes:

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed here apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 17).

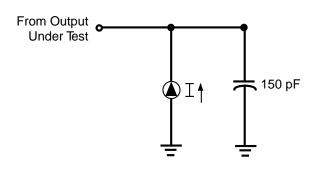


Figure 17. Test Load Diagram

STANDARD TEST CONDITIONS

 $T_A = 25$ °C, $V_{CC} = GND = 0V$, f = 1.0 MHz, unmeasured pins returned to ground.

Parameter	Max
Input capacitance Output capacitance I/O capacitance	12 pF 12 pF 12 pF

^{*} Voltage on all pins with respect to GND.

[†] See ordering information

DC CHARACTERISTICS $V_{CC} = 4.75V$ to 5.25V @ 0°C to -55°C

Sym	Parameter	Min	Max	Тур*	Unit	Condition
$\overline{V_{IH}}$	Input High Voltage	2.0	V _{cc}		V	
$V_{IL}^{"}$	Input Low Voltage	-0.3	0.8		V	
$\overline{V_{RH}}$	Reset Input High Voltage	3.8	V _{cc}		V	
VRL	Reset Input Low Voltage	-0.3	0.8		V	
V _{OH}	Output High Voltage	2.0			V	$I_{OH} = -250 \mu\text{A} (\text{Port 2 only})$
ОН	Output High Voltage	2.4			V	$I_{OH}^{OH} = -250 \mu\text{A (Port 3 only)}$
\overline{V}_{OL}	Output Low Voltage		0.8		V	I _{OI} = 10.0 mA (See note [1] below.)
I,,	Input Leakage	-10	10		μΑ	$V_{IN} = 0V, 5.25V \text{ (See note [3] below.)}$
I _{OL}	Output Leakage	-10	10		μΑ	$V_{IN} = 0V$, 5.25V (See note [2] below.)
I _{IR}	Reset Input Current	-335	-775	<i>–</i> 477	μΑ	V _{IN} = 0V, 5.25V
I _{R1}	Input Current	-335	-775		μΑ	Pull-up resistor=10.4 Kohms, $V_{\rm IN}$ =0.0V
I _{R2}	Input Current	-1.6	-2.9		mA	Pull-up resistor = 2.4 Kohms, V_{IN} =0.0V
I _{cc}	V _{cc} Supply Current		160		mA	
WDT	Watch-Dog Timer		2.0		mA	V _{oL} =0.4 Volt

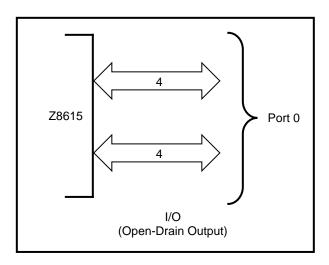
Notes:

^{*} Typical @ 25°C

^[1] Ports P37-P34 may be used to sink 12 mA. These may be used for LEDs or as general-purpose outputs requiring high sink current.

^[2] P00-P07, P10-P17, P20-P25, P30-P33 as output mode opendrain as a logic one.

^[3] P00-P07, P10-P17, P20-P25, P30-P33 as output mode opendrain as a logic one.



PIN FUNCTIONS

RCIN This pin is connected between a precision resistor on the power supply from the precision RC Oscillator.

CLK Out This pin is the syste m clock of the Z8 and runs at the frequency of the RC Oscillator. Any load on this pin will effect the RC Oscillator frequency.

Port 0 (P07-P00). Port 0 is an 8-bit, nibble programmable, bi-directional, NMOS compatible I/O port. These eight I/O lines can be configured under software control as a nibble input port, or as a nibble open-drain output port. When used as an I/O port, inputs are standard NMOS (Figure 5). Port P03-P00 has 10.4 Kohms (±35%) pull-up resistors when configured as inputs.

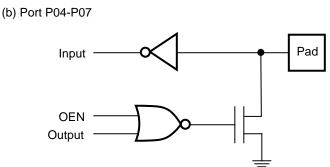


Figure 5. Port 0 Configuration

PIN FUNCTIONS (Continued)

Port 1 (P17-P10). Port 1 is an 8-bit, byte programmable, bidirectional, NMOS compatible I/O port. These eight I/O lines are configured under software control program as a

Output

byte input port or as an open-drain output port. When used as an I/O port, inputs are standard NMOS (Figure 6).

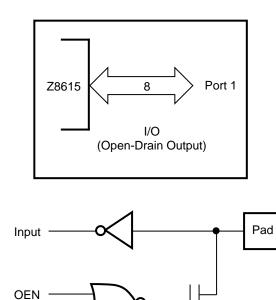


Figure 6. Port 1 Configuration

Port 2 (P27-P20). Port 2 is an 8-bit, bit programmable, bidirectional, NMOS compatible I/O port. These eight I/O lines are configured under the software control program for I/O. Port 2 can be programmed as bit-by-bit independently, as input or output, or configured to provide open-

drain outputs (Figure 7). P26 and P27 have 2.4 Kohms $(\pm 25\%)$ pull-up resistors and are capable of sourcing 2.4 mA. P24 and P25 have 10.4 Kohms $(\pm 35\%)$ pull-up when configured as inputs.

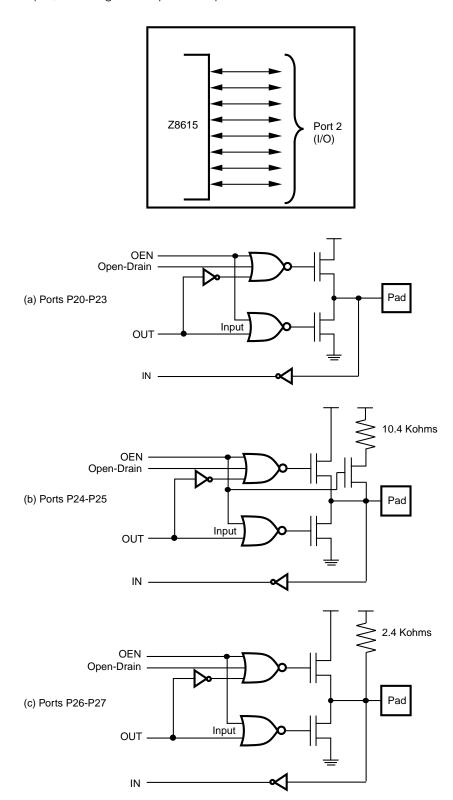


Figure 7. Port 2 Configuration

PIN FUNCTIONS (Continued)

Port 3 (P37-P30). Port 3 is an 8-bit, NMOS compatible four-fixed-input and four-fixed-output I/O port. These eight I/O lines have four-fixed-input (P33-P30) and four-fixed-output (P37-P34) ports. Port 3 inputs have 10.4 Kohms (±35%) pull-up resistors and port 3 outputs are capable of driving up to four LEDs.

Port 3 is configured under software control to provide the following control functions: four external interrupt request signals (IRQ3-IRQ0); timer input and output signals (T_{IN} and T_{OUT} - Figure 8).

/RESET (input, active Low). When activated, /RESET initializes the Z08617. When /RESET is deactivated, program execution begins from the internal program location at 000CH. Reset pin has a 10.4 Kohms pull-up resistor. Once this pin is pulled Low, it takes about 150 ms for microcon-troller initialization.

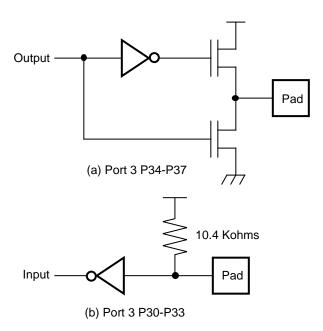


Figure 8. Port 3 Configuration

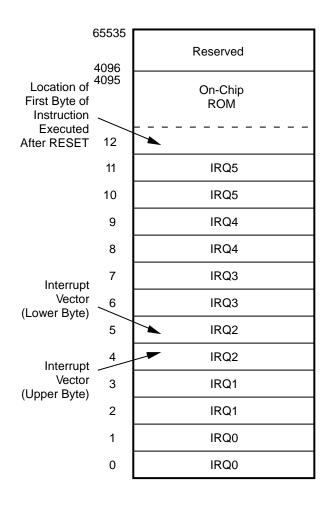
FUNCTIONAL DESCRIPTION

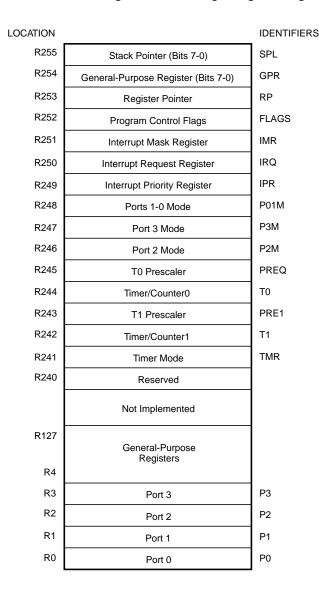
The device incorporates special functions to enhance Zilog's Z8 applications as a keyboard controller, scientific research and advanced technologies applications.

Program Memory. The 16-bit program counter addresses 4 Kbytes of program memory space at internal locations (Figure 9).

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations have six 16-bit vectors that correspond to the six available interrupts.

Byte 12 to byte 4095 consists of on-chip, mask programmed ROM. Addresses 4096 and greater are reserved.




Figure 9. Program Memory Map

FUNCTIONAL DESCRIPTION (Continued)

Register File. The register file (Figure 10) consists of four I/O port registers, 124 general-purpose registers and 16 control and status registers (R3-R0, R127-R4, and R255-R240, respectively). The instructions can access registers directly or indirectly through an 8-bit address field. This allows short, 4-bit register addressing using the Register

Pointer (Figure 11). In the 4-bit mode, the register file is divided into nine working-register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working-register group.

r7 r6 r5 r4 r3 r2 r1 r0 R253 (Register Pointer) The upper nibble of the register file address provided by the register pointer specifies the active working-register group. R15 to R0 The lower nibble of the register file address Specified Working provided by the Register Group instruction points 2F to the specified register. R15 to R0 Register Group 1 10 0F R15 to R4 Register Group 0 R3 to R0 I/O Ports

Figure 11. Register Pointer Configuration

Figure 10. Register File Configuration

Stack. The Z08617 internal register files are used for the stack. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers.

Counter/Timers. There are two 8-bit programmable counter/timers (T0-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler can be driven by internal or external clock sources, however, the T0 prescaler is driven by the internal clock only (Figure 12).

The 6-bit prescalers can further divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its own counter, which decrements the value (1 to 256) that has been loaded into the counter. When both the counter and prescaler reach the end of count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulon continuous mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and are either the internal microprocessor clock divided by four, or an external signal input through Port 3. The Timer Mode register configures the external timer input as an external clock, a trigger input that can be retriggerable or non-triggerable, or as a gate input for the internal clock. The counter/timers can be programmable cascaded by connecting the T0 output to the input of T1. Port 3 lines P36 also serves as a timer output ($T_{\rm OUT}$) through which T0, T1 or the internal clock are output.

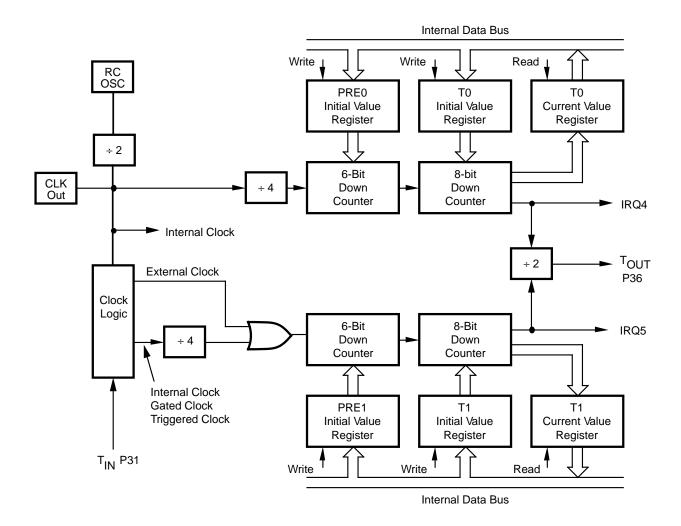


Figure 12. Counter/Timers Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

Interrupts. The Z08617 has six different interrupts from six different sources. These interrupts are maskable and prioritized (Figure 13). The six sources are divided as follows: four sources are claimed by Port 3 lines P33-P30, and two are claimed by the counter/timers. The Interrupt Masked Register globally or individually enables or disables the six interrupts requests.

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All interrupts are vectored through locations in the program memory. When an interrupt machine cycle is activated an

interrupt request is granted. This disables all of the subsequent interrupts, saves the Program Counter and status flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt request needs service.

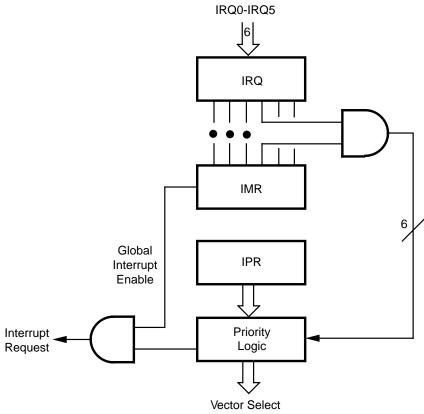


Figure 13. Interrupt Block Diagram

RC Oscillator. The Z08617 provides an internal capacitor to accommodate an RC oscillator configuration. A 1% precision resistor is necessary to achieve \pm 10% accurate frequency oscillation.

EMI. The Z08617 offers low EMI emission due to circuit modifications to improve EMI performance. The internal divide-by-two circuit has been removed to improve EMI performance.

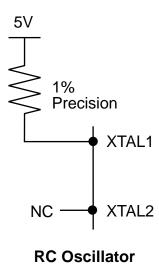


Figure 14. Oscillator Configuration

FUNCTIONAL DESCRIPTION (Continued)

Watch-Dog Timer. The Z08617 is equipped with a hardware Watch-Dog Timer which will be turned on automatically by power-on (Figure 15). The Watch-Dog Timer must be refreshed at least once every 50 ms by executing the instruction WDT (Opcode = %5F), otherwise the Z08617 will reset itself if /WDTOUT pin 9 is connected to /RESET (Pin 6). Figure 16 shows the block diagram of WDT.

The Watch-Dog Timer is automatically enabled upon power-up of the microcontroller and /RESET going High. The /WDTOUT pin can be connected to the /RESET pin to provide an automatic reset upon WDT time-out. Dur-

ing WDT time-out, the /WDTOUT pin goes Low for approximately 8-15 μ s.

WDT Hot Bit. Bit 7 of the Interrupt Request Register (IRR register FAH) determines whether a hot start or cold start occurred. A cold start is defined as a rest occurring from the power-up of the Z08617 (bit 7 is set to zero upon power-up). A hot start occurs when a WDT timeout has occurred (bit 7 is set to 1). Bit 7 of the IRQ register is read-only and is automatically reset to 0 when accessed.

Power-On Reset. Upon power-up of the microcontroller, a reset condition is enabled. A delay of 150 ms ±20% is used to assist in initializing the microcontroller.

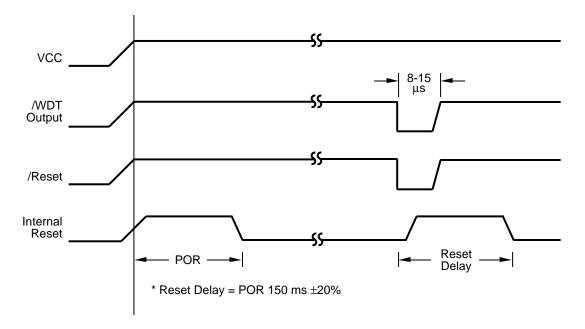


Figure 15. WDT Turn-On Timing After Reset

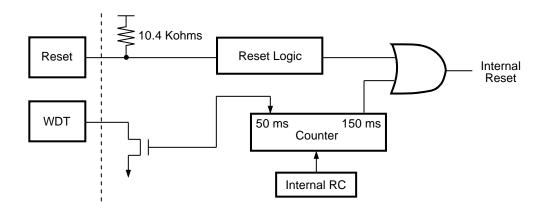


Figure 16. WDT Block Diagram

Z8® CONTROL REGISTER DIAGRAMS

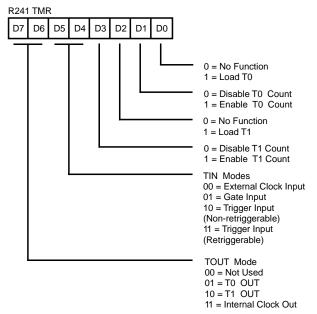


Figure 18. Timer Mode Register (F1H: Read/Write)

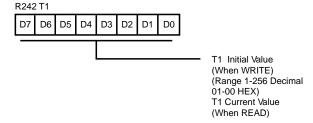


Figure 19. Counter Timer 1 Register (F2H: Read/Write)

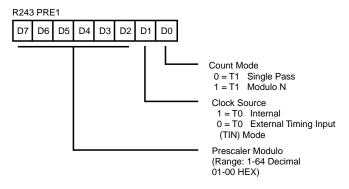


Figure 20. Prescaler 1 Register (F3H: Write Only)

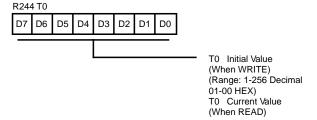


Figure 21. Counter/Timer 0 Register (F4H: Read/Write)

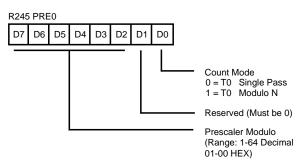


Figure 22. Prescaler 0 Register (F5H: Write Only)

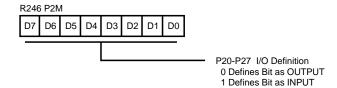


Figure 23. Port 2 Mode Register (F6H: Write Only)

Figure 24. Port 3 Mode Register (F7H: Write Only)

Z8® CONTROL REGISTER DIAGRAMS (Continued)

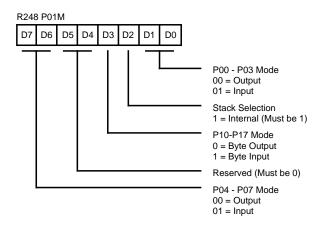


Figure 25. Port 0 and 1 Mode Register (F8H: Write Only)

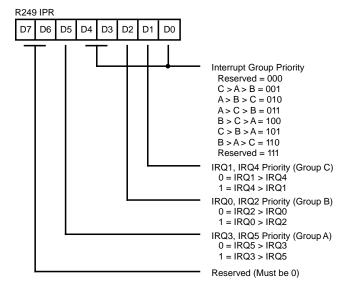


Figure 26. Interrupt Priority Register (F9H: Write Only)

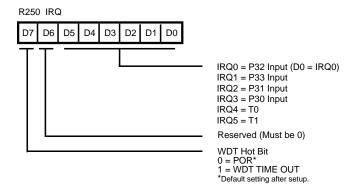


Figure 27. Interrupt Request Register (FAH: Read/Write)

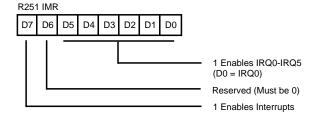


Figure 28. Interrupt Mask Register (FBH: Read/Write)

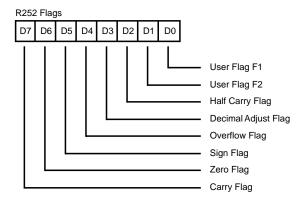


Figure 29. Flag Register (FCH: Read/Write)

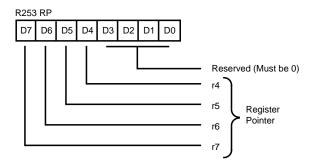


Figure 30. Register Pointer (FDH: Read/Write)

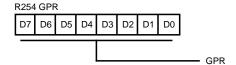


Figure 31. General-Purpose Register (FEH: Read/Write)

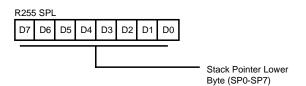


Figure 32. Stack Pointer (FFH: Read/Write)

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol Meaning **IRR** Indirect register pair or indirect workingregister pair address Irr Indirect working-register pair only Χ Indexed address DA Direct address RA Relative address Immediate IM R Register or working-register address Working-register address only IR Indirect-register or indirect working-register address Indirect working-register address only lr Register pair or working register pair RR address

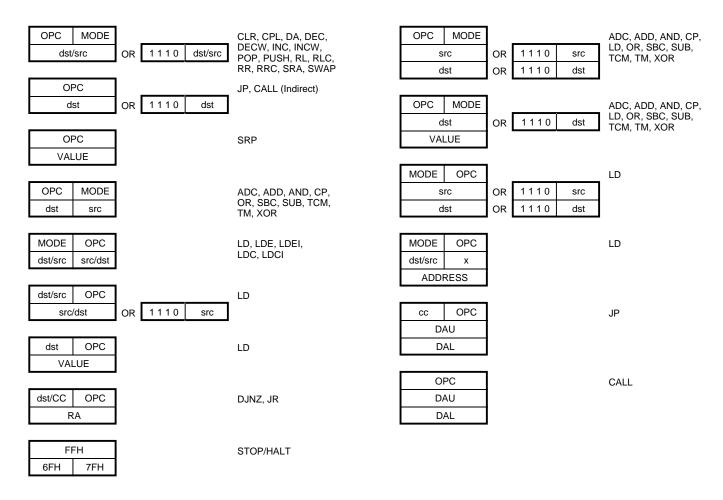
Symbols. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
CC	Condition code
@	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
C Z S V D	Carry flag Zero flag Sign flag Overflow flag Decimal-adjust flag Half-carry flag
Affected flags	are indicated by:
0 1 * - x	Clear to zero Set to one Set to clear according to operation Unaffected Undefined

CONDITION CODES


Value	Mnemonic	Meaning	Flags Set
1000	_	Always True	_
0111	С	Carry	C = 1
1111	NC	No Carry	C = 0
0110	Z	Zero	Z = 1
1110	NZ	Not Zero	Z = 0
1101	PL	Plus	S = 0
0101	MI	Minus	S = 1
0100	OV	Overflow	V = 1
1100	NOV	No Overflow	V = 0
0110	EQ	Equal	Z = 1
1110	NE	Not Equal	Z = 0
1001	GE	Greater Than or Equal	(S XOR V) = 0
0001	LT	Less than	(S XOR V) = 1
1010	GT	Greater Than	[Z OR (S XOR V)] = 0
0010	LE	Less Than or Equal	[Z OR (S XOR V)] = 1
1111	UGE	Unsigned Greater Than or Equal	C = 0
0111	ULT	Unsigned Less Than	C = 1
1011	UGT	Unsigned Greater Than	(C = 0 AND Z = 0) = 1
0011	ULE	Unsigned Less Than or Equal	(C OR Z) = 1
0000	F	Never True (Always False)	

INSTRUCTION FORMATS

One-Byte Instructions

Two-Byte Instructions

Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol "\(--\)". For example:

 $dst \leftarrow dst + src$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr (n)" is used to refer to bit (n) of a given operand location.

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)	Αf		ted	V	D	Н
ADC dst, src dst ← dst + src +	† C	1[]	*	*	*	*	0	*
ADD dst, src dst ← dst + src	†	0[]	*	*	*	*	0	*
AND dst, src dst ← dst AND sr	† c	5[]		*	*	0	_	_
CALL dst SP ← SP - 2 @SP ← PC, PC ← dst	DA IRR	D6 D4	_	-	-	_	-	_
CCF C ← NOT C		EF	*	-	_	-	-	_
CLR dst dst ← 0	R IR	B0 B1	_	_	_	_	_	_
COM dst dst ← NOT dst	R IR	60 61	-	*	*	0	_	_
CP dst, src dst - src	†	A[]	*	*	*	*	_	_
DA dst dst ← DA dst	R IR	4 0 4 1	*	*	*	X	-	_
DEC dst dst ← dst − 1	R IR	0 0 0 1	-	*	*	*	_	_
DECW dst dst ← dst − 1	RR IR	8 0 8 1	-	*	*	*	_	_
DI IMR(7) ← 0		8F	_	_	_	_	_	_
DJNZ r, dst $r \leftarrow r - 1$ if $r \neq 0$ $PC \leftarrow PC + dst$ Range: $+127,-12$	RA	rA r = 0 - F	-	-	-	_	-	_
EI IMR(7) ← 1		9F	_	-	-	-	-	_

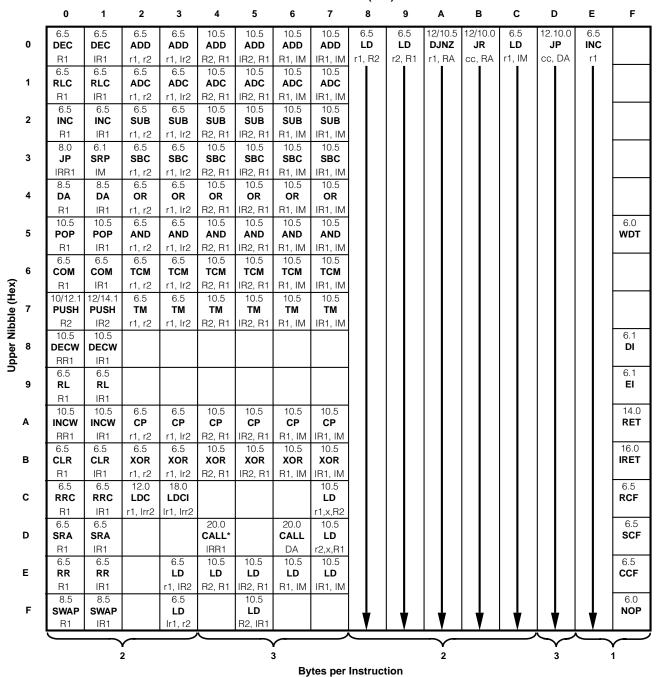
Instruction	Address Mode	Opcode	Αf		ted			
and Operation	dst src	Byte (Hex)	С	Z	S	٧	D	Н
INC dst dst ← dst + 1	r R IR	rE r = 0 - F 20 21	_	*	*	*	_	_
INCW dst dst ← dst + 1	RR IR	A 0 A 1	_	*	*	*	-	-
IRET FLAGS ← @SP; SP ← SP + 1 PC ← @SP; SP ← SP + 2; IMR(7) ← 1		BF	*	*	*	*	*	*
JP cc, dst if cc is true PC ← dst	DA IRR	CD C = 0 - F 3 0	-	_	_	-	-	_
JR cc, dst if cc is true, PC ← PC + dst Range: +127,-12	RA 28	CB C = 0 - F	-	-	_	-	-	_
LD dst, src dst ← src	r Im r R R r r X X r r Ir Ir r R R R IR R IM IR IM IR R	rC r8 r9 r = 0 - F C7 D7 E3 F3 E4 E5 E6 E7 F5	_	_	_	_	_	_
LDC dst, src	r Irr	C2	_	_	_	_	_	_
LDCI dst, src dst \leftarrow src $r \leftarrow r + 1$; $rr \leftarrow rr + 1$	lr Irr	C3	_	_	_	_	_	_

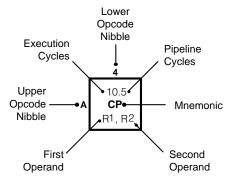
INSTRUCTION SUMMARY (Continued)

Instruction	Address Mode	Opcode Byte	Flags Affected C Z S V D					
and Operation NOP	dst src	(Hex)				<u> </u>		
NOP		ГГ	_	_	_	_	_	_
OR dst, src dst ← dst OR src	†	4[]	_	*	*	0	_	_
POP dst dst ← @SP; SP ← SP + 1	R IR	5 0 5 1	-	_	_	_	_	-
PUSH src SP ← SP - 1; @SP ← src	R IR	7 0 7 1	-	_	_	_	_	_
RCF C ← 0		CF	0	-	-	-	-	_
RET PC ← @SP; SP ← SP + 2		AF	-	_	_	_	_	_
RL dst	R IR	9 0 9 1	*	*	*	*	_	-
RLC dst	R IR	1 0 1 1	*	*	*	*	_	_
RR dst	R IR	E0 E1	*	*	*	*	_	_
RRC dst	R IR	C0 C1	*	*	*	*	_	_
SBC dst, src dst ← dst — src -	† - C	3[]	*	*	*	*	1	*
SCF C ← 1		DF	1	_	-	-	-	_
SRA dst	R IR	D0 D1	*	*	*	0	_	_
SRP src RP ← src	lm	3 1	_	_	_	_	_	_

Instruction and Operation	Address Mode dst src	Opcode Byte (Hex)	Af		ted S		D	н
SUB dst, src dst ← dst - src	†	2[]	[[[[1	[
SWAP dst	R IR	F0 F1	X	*	*	X	-	_
TCM dst, src (NOT dst) AND src	†	6[]	-	*	*	0	_	_
TM dst, src dst AND src	†	7[]	_	*	*	0	-	_
WDT		5F	_	Χ	Χ	Χ	_	_
XOR dst, src dst ← dst XOR src	•	B[]	_	*	*	0	_	_

† These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a '[]' in this table, and its value is found in the following table to the left of the applicable addressing mode pair.


For example, the opcode of an ADC instruction using the addressing modes ${\bf r}$ (destination) and ${\bf lr}$ (source) is 13.


Address Mode dst src		Lower Opcode Nibble		
r	r	[2]		
r	lr	[3]		
R	R	[4]		
R	IR	[5]		
R	IM	[6]		
IR	IM	[7]		

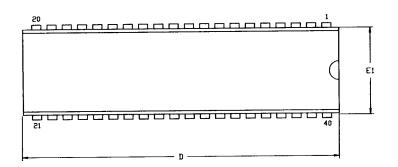
OPCODE MAP

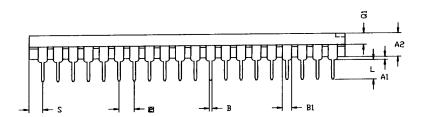
Lower Nibble (Hex)

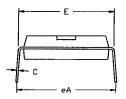
Legend:

R = 8-bit Address r = 4-bit Address R1 or r1 = Dst Address R2 or r2 = Src Address

Sequence:


Opcode, First Operand, Second Operand


Note: Blank areas not defined.


*2-byte instruction appears as a 3-byte instruction

PACKAGE INFORMATION

SYMBOL	MILLI	METER	INCH					
	MIN	MAX	MIN	MAX				
A1	0.51	0.81	.020	.032				
A2	3.25	3.43	.128	.135				
В	0.38	0.53	.015	.021				
Bl	1.02	1.52	.040	.060				
С	0:53	0.38	.009	.015				
D	52.07	52.58	2.050	2.070				
E	15.24	15.75	.600	.620				
E1	13.59	14.22	.535	.560				
œ	2.54 TYP		.100 TYP					
eA	15.49	16.51	.610	.650				
L	3.18	3.81	.125	.150				
- Q1	1.52	1.91	.060	.075				
S	1.52	2.29	.060	.090				

CONTROLLING DIMENSIONS : INCH

40-Pin DIP Package Diagram

ORDERING INFORMATION

5 MHz Z0861705PSC

For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

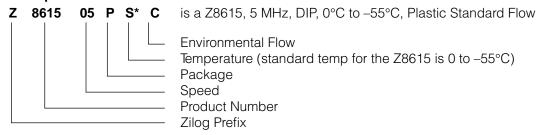
Package

P = Plastic DIP

V = Plastic Leaded Chip Carrier

Speed

05 = 5 MHz


Environmental

C = Plastic Standard

Temperature

 $S = 0^{\circ}C$ to $+70^{\circ}C$ (standard temp for the Z8615 is 0 to $-55^{\circ}C$)

Example:

