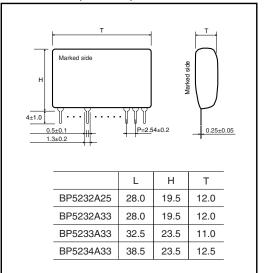
DC/DC converter

BP5232A25/BP5232A33 BP5233A33/BP5234A33

The BP5232A25, BP5232A33, BP5233A33, BP5234A33 are DC/DC converters that use PWM system and VFM system. They contain control circuits, switching devices and coils, and operate by only connecting an I/O smoothing capacitor. With a high efficiency of power conversion, the modules are available in stand-alone SIP packages with no heat sink required.


Applications

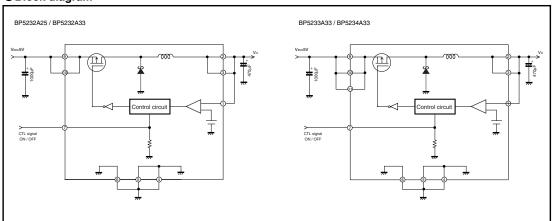
Power supplies for copiers, personal computers, facsimiles, industrial equipment, and AV equipment.

Features

- 1) High power conversion efficiency. (BP5233A33:93%)
- 2) Large output current.
- 3) Low current consumption with no load. (BP5233A33 : $200\mu A$ Typ.)
- 4) High conversion efficiency. (85% at output current of 100mA)
- 5) Applicable to various purposes by fine-adjusting output voltage with external circuits.
- 6) Built-in ON / OFF switch.
- 7) Heat sink unnecessary.

● Dimensions (Unit: mm)

● Absolute maximum ratings (Ta=25°C)


Davamatav	Cumbal	Limits						
Parameter	Symbol	BP5232A25	BP5232A33	BP5233A33	BP5234A33	Unit		
Input voltage	Vin	7						
Output current	lo	2*	2*	3*	4*	Α		
Operating temperature	Topr	-20 to +55						
Storage temperature	Tstg	-25 to +80						

^{*} Derating required according to the input voltage and ambient temperature.

● Recommended operating conditions (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Input voltage	Vin	4.5	5.0	5.5	V

●Block diagram

● Pin descriptions BP5232A25 , 5232A33

		_		
Pin No.	Pin description		Pin No.	Pin description
1	Feed back		6	GND
2	V оит 1		7	CTL
3	Vоит2	-	9	V _I N1
4	GND		10	Vin2
5	GND	•		

Pin 8 is removed.

BP5233A33, BP5234A33

Pin No.	Pin description	Pin No.	Pin description
1	Feed back	6	GND
2	Vour1	7	CTL
3	Vоит2	9	V _I N1
4	GND	10	Vin2
5	GND	11	Vin3

Pin 8 is removed.

● Electrical characteristics

BP5232A25 (Unless otherwise noted, V_{IN}=5V, Io=1A, SW=1, Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circuit
Input voltage	Vin	4.5	5	5.5	V	DC	Fig.1
Output voltage	Vo	2.4	2.5	2.6	V		Fig.1
Output current	lo	_	-	2	Α	*1	Fig.1
Current consumption at no load	lin	-	200	300	μΑ	Io=0A	Fig.1
Load regulation	ΔVο	_	13	33	mV	Io=0.1A to 2A	Fig.1
Output ripple voltage	υγ	_	33	100	mV _{PP}	*2	Fig.1
Power conversion efficiency	η	84	89	-	%		Fig.1
CTL pin ON voltage	Von	1.8	_	-	V	SW=2	Fig.1
CTL pin OFF voltage	Voff	_	_	0.3	V	SW=2	Fig.1

^{*1} Derating required according to the input voltage and ambient temperature. *2 Pulse noise not included.

BP5232A33 (Unless otherwise noted, Vin=5V, Io=1A, SW=1, Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circuit
Input voltage	Vin	4.5	5	5.5	V	DC	Fig.1
Output voltage	Vo	3.17	3.3	3.43	V		Fig.1
Output current	lo	-	-	2	Α	*1	Fig.1
Current consumption at no load	lin	-	200	300	μΑ	Io=0A	Fig.1
Load regulation	ΔVο	-	16	42	mV	Io=0.1A to 2A	Fig.1
Output ripple voltage	υγ	-	33	100	mV₽₽		Fig.1
Power conversion efficiency	η	88	93	-	%		Fig.1
CTL pin ON voltage	Von	1.8	-	-	V	SW=2	Fig.1
CTL pin OFF voltage	Voff	_	-	0.3	V	SW=2	Fig.1

 $[\]ast 1$ Maximum output current must be reduced by ambient temperature.

BP5233A33 (Unless otherwise noted, V_{IN}=5V, lo=1.5A, SW=1, Ta=25°C)

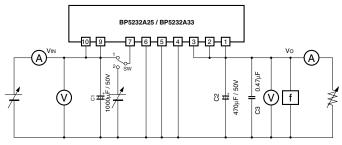
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circuit
Input voltage	Vin	4.5	5	5.5	V	DC *2	Fig.2
Output voltage	Vo	3.17	3.3	3.43	V		Fig.2
Output current	lo	-	-	3	Α	*1, 4	Fig.2
Current consumption at no load	lin	-	200	300	μΑ	Io=0A	Fig.2
Load regulation	ΔVο	-	16	42	mV	Io=0.1A to 3A	Fig.2
Output ripple voltage	υγ	-	33	150	mV₽₽	*3	Fig.2
Power conversion efficiency	η	88	93	-	%		Fig.2
CTL pin ON voltage	Von	1.8	_	_	V	SW=2	Fig.2
CTL pin OFF voltage	Voff	-	-	0.3	V	SW=2	Fig.2

^{*1} Maximum output current must be reduced by ambient temperature.

BP5234A33 (Unless otherwise noted, VIN=5V, Io=2A, SW=1, Ta=25°C)

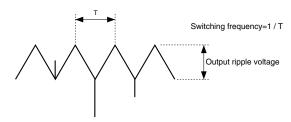
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circuit
Input voltage	VIN	4.5	5	5.5	V	DC	Fig.2
Output voltage	Vo	3.17	3.3	3.43	V		Fig.2
Output current	lo	-	-	4	Α	*1, 3	Fig.2
Current consumption at no load	lin	-	300	400	μΑ	Io=0A	Fig.2
Load regulation	ΔVο	-	16	42	mV	Io=0.1A to 4A	Fig.2
Output ripple voltage	υγ	-	33	150	mV₽₽	*2	Fig.2
Power conversion efficiency	η	88	93	-	%		Fig.2
CTL pin ON voltage	Von	1.8	-	-	V	SW=2	Fig.2
CTL pin OFF voltage	Voff	_	_	0.3	V	SW=2	Fig.2

^{*1} Maximum output current must be reduced by ambient temperature.

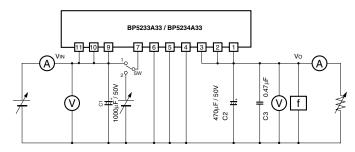

^{*2} Give the start time of input as 5ms within.

^{*3} An output ripple voltage sometimes changes in capacitor to use, the measurement environment.
*4 There is restriction in use time, in the case that the output current is 2.5A over.
Please refer to " the passage output current characteristic" of later description.

^{*2} Give the start time of input as 5ms within.

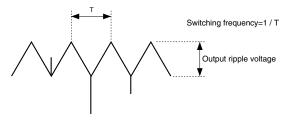

 $[\]ast 3$ An output ripple voltage sometimes changes in capacitor to use, the measurement environment.

Measurement circuit



- f : frequency counter
 C1, C2 : Low impedance type
 C3 : film capacitor
- A large ripple current flows to the input smoothing capacitor due to the output load. Be minded to use within the allowable ripple current of the capacitor.
 The capacitor with a particularly low impedance is used as the
- •The capacitor with a particularly low impedance is used as the output smoothing capacitor C2 so as to suppress the output ripple voltage. Select the capacitor according to the purpose of use in each case.

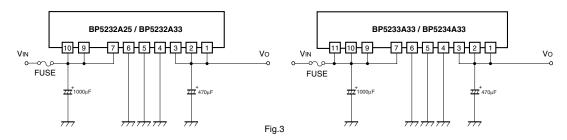
Fig.1


Note that the output ripple voltage depends on the type and characteristics of the output capacitor.

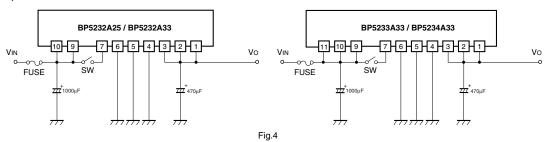
- f : frequency counter C1, C2 : Low impedance type C3 : film capacitor
- *A large ripple current flows to the input smoothing capacitor due to the output load. Be minded to use within the allowable ripple current of the capacitor.
- current of the capacitor.

 The capacitor with a particularly low impedance is used as the output smoothing capacitor C2 so as to suppress the output ripple voltage. Select the capacitor according to the purpose of use in

Fig.2

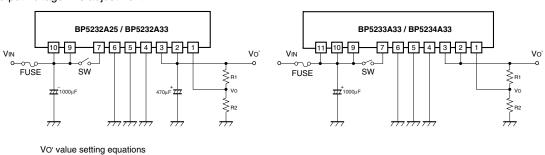


Note that the output ripple voltage depends on the type and characteristics of the output capacitor.


Circuit operation

- (1) The basic application examples are shown in Fig.3. The externally installed parts are only the input and output smoothing capacitors.
- (2) Switching on and off the output voltage is allowed. The output can be switched off by making pin 7 to be low or open (high impedance). (See Fig.4)
- (3) Fine adjustment of the output voltage is allowed. The fine adjustment of output voltage can be performed from pin 1 via the resistor by connecting the output terminal (pin2, 3) and GND. (See Fig.5)
- (4) Be sure to use a fuse for the safety.

Basic application



Output ON / OFF control

Output voltage fine adjustment

Vo'=Vo

It is recommended that the output voltage should be adjusted within the range of ±10% of the rated output voltage, so that the performance of the module can fully be exhibited.

 $R1 + R2 \leq 50 k\Omega$

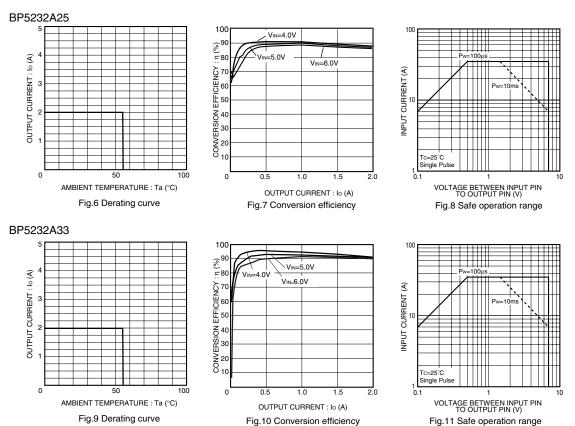
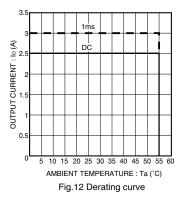
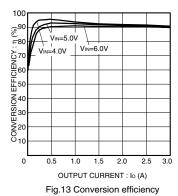
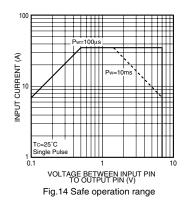
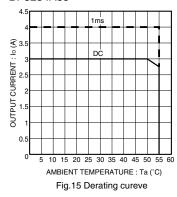

R1

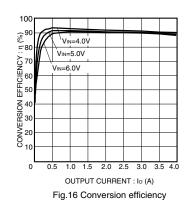
Fig.5

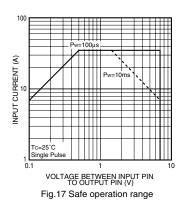

Operation notes


- (1) The output current should be reduced according to an increase in the input voltage or ambient temperature. Use the module within the derating curve range.
- (2) In case that the output is controlled by switching on and off utilizing pin 7 or in case that the input voltage is applied, a large inrush electrical current may flow. Be minded to use within the allowable operating range. This allowable operating range is specified by the safety operating range of the switching transistor in the module. The amount of the inrush current varies depending on the output impedance of the input power supply or the capacity value of the capacitor to be connected to the output.
- (3) Protection circuit for output current is incorporated. In case that the output is short-circuited, the output will be latched by switching off. The protection circuit can be canceled by making CTL terminal active state (CTL= HIGH), after once making it standby state (CTL=LOW), or by resupplying the power. However, in case that the protection circuit is canceled by resupplying the power source, it may not be canceled even by resupplying the power source in the state that the electrical charge is remained in CIN (the state that voltage is remained in VIN) even after the power source is switched off.
- (4) The rising time of the input voltage should be made within 5ms. There may be a case that the protection circuit is activated.
- (5) I / O smoothing capacitors should be connected between I / O and GND terminals.
- (6) Normally, use by short-circuiting pins 1, 2, 3, pins 4, 5, 6, and pins 9, 10, 11 (BP5232A25) respectively.
- (7) A large ripple current flows to the input smoothing capacitor due to the output load. Be minded to use within the allowable ripple current of the capacitor.
- (8) The capacitor with a particularly low impedance is used as the output smoothing capacitor C2 so as to suppress the output ripple voltage. Select the capacitor according to the purpose of use in each case.


Electrical characteristics


BP5233A33





BP5234A33

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

ROHM

Appendix1-Rev1.1