32-bit RISC Microcontroller

CMOS

FR20 Series MB91103

MB91103

■ DESCRIPTION

The MB91103 is a standard single-chip microcontroller constructed around the 32-bit RISC CPU (FR20 Series) core with abundant I/O resources and bus control functions optimized for high-performance/high-speed CPU processing for embedded controller applications. To support the vast memory space accessed by the 32-bit CPU, the MB91103 normally operates in the external bus access mode and executes instructions on the internal 1 KB cache memory for enhanced performance.

The MB91103 is optimized for applications requiring high-performance CPU processing such as navigation systems, high-performance FAXs and printer controllers.

■ FEATURES

FR20CPU

- 32-bit RISC, load/store architecture, 5-stage pipeline
- Operating clock frequency: 25 MHz
- General purpose registers: 32 -bit $\times 16$
- 16-bit fixed length instructions (basic instructions), 1 instruction/1 cycle
- Memory to memory transfer, bit processing, barrel shifter processing: Optimized for embedded applications
- Function entrance/exit instructions, multiple load/store instructions of register contents, instruction systems supporting high level languages
- Register interlock functions, efficient assembly language coding
- Branch instructions with delay slots: Reduced overhead time in branch executions
- Internal multiplier/Supported at instruction level Signed 32-bit multiplication: 5 cycles Signed 16-bit multiplication: 3 cycles
- Interrupt (push PC and PS): 6 cycles, 16 priority levels

PACKAGE

(FPT-160P-M03)

(Continued)

Bus interface

- 24-bit address bus (16 MB memory space)
- 32-bit/16-bit/8-bit data bus
- Basic external bus cycle: 2 clock cycles
- Chip select outputs for setting down to a minimum memory block size of 64 K bytes: 6
- Interface supported for various memory technologies

Time sharing input/output of data/address (area 1)
DRAM interface (area 4 and 5)

- Automatic wait cycle insertion: Flexible setting, from 0 to 7 for each area
- Parity check function: Generates parity error interrupt
- Unused data/address pins can be configured us input/output ports
- Little endian mode supported (Select 1 area from area 1 to 5)

DRAM interface

- 2 banks independent control (area 4 and 5)
- Normal mode/high speed page mode
- Basic bus cycle: Normally 5 cycles, 2-cycle access possible in high speed page mode
- Programmable waveform: Automatic 1-cycle wait insertion to RAS and CAS cycles
- DRAM refresh

CBR refresh (interval time configurable by 6-bit timer)
Self-refresh mode

- Supports 8 -bit/9-bit/10-bit/12-bit column address width
- 2CAS/1WE, 2WE/1CAS selective

Cache memory

- 1 KB instruction cache memory
- 2 way set associative
- 32 blocks/way, 4 entries (4 words)/block

DMAC (DMA Controller)

- 5 channels
- External to external 2.5 access cycle/transfer (when 2 clock cycles $=1$ access cycle)
- Internal to external 1.5 access cycle/transfer (when 2 clock cycles $=1$ access cycle)
- Address registers (inc, dec and reload executable), 32 -bit $\times 2,16$-bit $\times 6$
- Transfer count register (reload executable), 16 -bit $\times 2,8$-bit $\times 3$
- Transfer incident/external pins/internal resource interrupt requests/software interrupts
- Transfer sequence: Step transfer/block transfer/burst transfer/continuous transfer/cycle steal transfer (for ch. 0 and ch. 1 only)
- Transfer data length: 8-bit/6-bit/32-bit selective
- Command chain operation possible
- NMI/interrupt request enables temporary stop operation

UART

- 2 independent channels
- Full-duplex double buffer
- Data length: 7 -bit to 9 -bit (non-parity), 6 -bit to 8 -bit (parity)
- Asynchronous (start-stop system), CLK-synchronized communication selective
- Multi-processor mode
- Internal 16-bit timer operating as a proprietary baud rate generator: Generates any given baud rate
- Use external clock can be used as a transfer clock
- Error detection: Parity, frame, overrun

(Continued)

Extended I/O serial interface

- Inputs/outputs 8-bit data in serial format
- LSB first/MSB first selective
- Shift clock internal generation/external input selective

A/D converter (successive approximation type)

- 10-bit resolution, 8 channels
- Successive approximation type: Conversion time of $5.6 \mu \mathrm{~s}$ at 25 MHz
- Internal sample and hold circuit
- Conversion mode: Single conversion/scanning conversion/repeated conversion selective
- Start: Software/external trigger/internal timer selective

Reload timer

- 16-bit timer: 2 channels
- Internal clock: 2 clock cycle resolution, divide by 2/8/32 selective
- Pin input: Event counter input/gate function
- Square wave output

Up/down counter

- 16-bit timer: 2 channels
- Timer mode/up/down counter mode/phase shift count mode
- Pin input activates counter clear/gate function

Other interval timers

- 16 -bit timer: 2 channels (U-TIMER), 1 channel (free run for ICU/OCU)
- Watch-dog timer: 1 channel

Input capture/output compare

- Capture: 4 channels, compare: 8 channels
- Count can be cleared on compare match
- 16-bit unified free-run timer embedded

Bit search module

- First bit transition " 1 "/" 0 " from MSB can be detected in 1 cycle

Interrupt controller

- External interrupt input: Non-maskable interrupt (NMI), normal interrupt $\times 8$ (INT0 to INT7)
- Internal interrupt incident: Parity error, UART, DMAC, A/D, reload timer, up/down counter, capture/compare, baud rate timer, extended serial I/O, free-run timer and delayed interrupt
- Priority levels of interrupts are programmable in 16 steps (except for non-maskable interrupt)

Others

- Reset cause: Power-on reset/watch-dog timer/software reset/external reset
- Low power consumption mode Sleep mode/stop mode
- Clock gear function

Operating clocks for CPU and peripherals are independently selective Gear clock can be selected from $1 / 1,1 / 2,1 / 4$ and $1 / 8$ (or $1 / 2,1 / 4,1 / 8$ and $1 / 16$)

- Package

QFP-160

- CMOS technology ($0.65 \mu \mathrm{~m}$), operating voltage $5.0 \mathrm{~V} \pm 10 \%$

PRODUCT LINEUP

Product Items	MB91103	MB91V100
Instruction cache	1 KB fixed	Max. 4 KB ($4 \mathrm{~KB} / 2 \mathrm{~KB} / 1 \mathrm{~KB} / 512 \mathrm{~B}$ selective)
DMAC	5 channels (ch. 0 , ch. 1, ch. 4 , ch. 5 and ch. 6 only) Address register (32-bit length) $\times 2$ (DMAAR 0, DMAAR 1) Address register (16-bit length) $\times 6$ (DMAAR 2 to DMAAR 7) Transfer count register (16-bit length) $\times 2$ (DMACT 0, DMACT 1) Transfer count register (8-bit length) $\times 3$ (DMACT 4 to DMACT 6) Channels for cycle steal operation: 2 channels (ch. 0, ch. 1) 19 internal transfer causes	8 channels 32-bit length $\times 4$ (DMAAR 0 to DMAAR 3) 16-bit length $\times 4$ (DMAAR 4 to DMAAR 7) 16-bit length $\times 4$ (DMACT 0 to DMACT 3) 8 -bit length $\times 4$ (DMACT 4 to DMACT 7) 4 channels (ch. 0 to ch. 3) 23 internal interrupt causes
U-TIMER	2 channels	3 channels
UART	2 channels	3 channels
External interrupts	8 channels (INT0 to INT7)	12 channels (INT0 to INT11)
Timer units		Incorporated
DSP unit		Incorporated
Pin conditions in each state	PG 4 to PG 7 are fixed to 0 when CPU stops	Configured as input when CPU stops

PIN ASSIGNMENT

Note: No connections to N.C. pins.

PIN DESCRIPTION

Pin No.	Pin name	Circuit type	Function
QFP*			
158	X0	A	Clock (Oscillator) input
159	X1		Clock (Oscillator) output
97 to 99	MD0 to MD2	G	Mode pins 0 to 2 Input pins for operation mode specification. Directly connect these pins with Vcc or $\mathrm{V} s \mathrm{~s}$ for use.
156	$\overline{\mathrm{RST}}$	B	External reset input.
1 to 8	D00 to D07	J	Bit 0 to bit 7 of external data bus.
	P00 to P07		I/O port. This function is available when external data bus width is set to 8 -bit or 16 -bit.
$\begin{aligned} & 10 \text { to } 13, \\ & 15 \text { to } 18 \end{aligned}$	D08 to D15	J	Bit 8 to bit 15 of external data bus.
	P10 to P17		I/O port. This function is available when external data bus width is set to 8 -bit or 16 -bit.
$\begin{aligned} & 20 \text { to } 23, \\ & 25 \text { to } 28 \end{aligned}$	D16 to D23	J	Bit 16 to bit 23 of external data bus.
	P20 to P27		I/O port. This function is available when external data bus width is set to 8 -bit.
$\begin{aligned} & 29 \text { to } 32, \\ & 34 \text { to } 37 \end{aligned}$	D24 to D31	J	Bit 24 to bit 31 of external data bus.
$\begin{aligned} & 38 \text { to } 45, \\ & 47 \text { to } 50, \\ & 52 \text { to } 55 \end{aligned}$	A00 to A15	C	Bit 0 to bit 15 of external address bus.
56 to 63	A16 to A23	C	Bit 16 to bit 23 of external address bus.
	P60 to P67		Can be configured as I/O ports when not used as address bus.
64	RDY	J	External ready input. Outputs "L" level bus cycle is being executed and not completed.
	P80		Can be configured as I/O port.
65	BGRNT	C	External bus release acknowledge output. Outputs "L" level when external bus is released.
	P81		Can be configured as I/O port.
66	BRQ	J	External bus release request input. Input " H " level when release of external bus is required.
	P82		Can be configured as I/O port.
67	$\overline{\mathrm{RD}}$	C	Read strobe output pin for external bus.
68	$\overline{\text { WRO }}$	C	Write strobe output pin for external bus.

Pin No.	Pin name	Circuit type	Function			
69 to 71	WR1 to WR3	C	Write strobe output pin for external bus. Relation between control signals and effective byte locations is as follows:			
			,	32-bit bus width	16-bit bus width	8-bit bus width
			D31 to D24	WRO	WRO	WRO
			D23 to D16	WR1	WR1	(I/O port enabled)
			D15 to D08	WR2	(I/O port enabled)	(I/O port enabled)
			D07 to D00	WR3	(//O port enabled)	(I/O port enabled)
	P85 to P87		Can be configured as I/O port.			
72	ACLK	C	Clock output for a bus cycle.			
	P90		Can be configured as I/O port.			
74	ALE	C	Address strobe signal in time-sharing mode.			
	P91		Can be configured as I/O port.			
75, 76, 78, 79	PAR0 to PAR3	J	Parity input/output. Relation between control signals and effective byte locations is as follows:			
			-	32-bit bus width	16-bit bus width	8-bit bus width
			D31 to D24	PAR0	PAR0	PAR0
			D23 to D16	PAR1	PAR1	(I/O port enabled)
			D15 to D08	PAR2	(I/O port enabled)	(1/O port enabled)
			D07 to D00	PAR3	(I/O port enabled)	(//O port enabled)
	P92 to P95		Can be configured as I/O port.			
80 to 85	$\overline{\mathrm{CSO}}$ to CS5	C	Chip select 0 to 5 output ("L" active).			
	PA0 to PA5		Can be configured as I/O port.			
86	CLK	C	System clock output. Outputs clock signal of internal operating frequency.			
	PA6		Can be configured as I/O port.			
88	RAS0	C	RAS output for DRAM bank 0.			
	PB0		Can be configured as I/O port.			
89	RAS1	C	RAS output for DRAM bank 1.			
	PB1		Can be configured as I/O port.			
90	CSOL	C	CASL output for DRAM bank 0.			
	PB2		Can be configured as I/O port.			
91	CSOH	C	CASH output for DRAM bank 0.			
	PB3		Can be configured as I/O port.			
93	CS1L	C	CASL output for DRAM bank 1.			
	PB4		Can be configured as I/O port.			

Pin No.	Pin name	Circuittype	Function
QFP*			
94	CS1H	C	CASH output for DRAM bank 1.
	PB5		Can be configured as I/O port.
95	DW0	C	WE output for DRAM bank 0. ("L" active)
	PB6		Can be configured as I/O port.
96	DW1	C	$\overline{\text { WE }}$ output for DRAM bank 1. ("L" active)
	PB7		Can be configured as I/O port.
100	HST	H	Directly connects this pin with Vcc for use.
101	$\overline{\mathrm{NMI}}$	H	NMI (non-maskable interrupt pin) input pin. ("L" active)
102 to 105	AN0 to AN3	D	Analog input pins of A/D converter. This function is available when AIC register is set to specify analog input mode.
	PD0 to PD3		General-purpose I/O ports. This function is available when AIC register is set to configure I/O ports.
110 to 113	AN4 to AN7	D	Analog input pins of A/D converter. This function is available when AIC register is set to specify analog input mode.
	PD4 to PD7		General-purpose I/O ports. This function is available when AIC register is set to configure I/O ports.
115 to 118	INT0 to INT3	1	External interrupt request input pins. This pin is used for input during corresponding interrupt is enabled, and it is necessary to disable output for other functions from this pin unless such output is made intentionally. INT0 and INT1 can be used as a DMA request when DMAC is so configured.
	PE0 to PE3		General-purpose I/O port.
119	SIO	F	Data input pin for extended serial I/O interface (SIO). This pin is used for input during SIO is in operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	PE4		General-purpose I/O port.
120	SO0	C	Data output for extended serial I/O interface (SIO). This function is available when serial data output specification of SIO is enabled.
	PE5		General-purpose I/O port. This function is available when serial data output of extended serial I/O interface (SIO) is disabled.
121	SC0	F	Clock input/output pin for extended serial I/O interface. Clock output is valid when clock output of SIO is enabled.
	PE6		General-purpose I/O port. This function is available when clock output of SIO is enabled.

Pin No.	Pin name	Circuit type	Function
QFP*			
122	SI1	F	UARTO data input pin. This pin is used for input during UARTO is in input operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	PE7		General-purpose I/O port.
123	SO1	C	UART0 data output pin. This function is available when UART0 data output is enabled.
	PF0		General-purpose I/O port. This function is available when serial data output of UARTO is disabled.
124	SC1	F	UARTO clock I/O pin. This function is available when UART0 clock output is enabled
	PF1		General-purpose I/O port. This function is available when UARTO clock output is disabled
125	SI2	F	UART1 data input pin. This pin is used for input during UART1 is in input operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	PF2		General-purpose I/O port.
126	SO2	C	UART1 data output pin. This function is available when UART1 data output is enabled.
	PF3		General-purpose I/O port. This function is available when UART1 data output is disabled.
128, 129	INT4, INT5	I	External interrupt request input pins. These pins are used for input during corresponding interrupt is enabled, and it is necessary to disable output for other functions from these pins unless such output is made intentionally.
	PF4, PF5		General-purpose I/O ports.
131, 132	PF6, PF7	E	I/O ports of open-drain type.
134	DACK0	C	Transfer request acknowledge output pin for DMAC (ch. 0). This function is available when transfer request output for DMAC is enabled.
	PG0		General-purpose I/O port. This function is available when transfer request for DMAC is disabled.

[^0](Continued)

Pin No.	Pin name	Circuit type	Function
135	DACK1	I	External transfer request acknowledge output pin for DMAC (ch. 1). This function is available when transfer request output for DMAC is enabled.
	INT6		External interrupt request input pins. This pin is used for input during corresponding interrupt is enabled, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	$\overline{\text { ATG }}$		External trigger input pin for A/D converter. This pin is used for input when external trigger is selected to cause A/D converter operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	PG1		General-purpose I/O port. This function is available when transfer request acknowledge for DMAC is disabled.
136	DREQ0	F	External transfer request input pin for DMA (ch. 0). This pin is used for input when external trigger is selected to cause DMAC operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	PG2		General-purpose I/O port.
137	DREQ1	1	External transfer request input pin for DMA (ch. 1). This pin is used for input when external trigger is selected to cause DMAC operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	INT7		External interrupt request input pins. This pin is used for input during corresponding interrupt is enabled, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	PG3		General-purpose I/O port.
138	TIO	F	Input pin for reload-timer 0. This pin is used for input when input to reload-timer 0 is enabled, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	PG4		General-purpose I/O port.
139	TO0	F	Output pin for reload-timer 0. This function is available when output from reload-timer is enabled.
	PG5		General-purpose I/O port. This function is available when output from reload-timer is disabled.

Pin No. QFP*	Pin name	Circuit type	Function
141	TI1	F	Input pin for reload-timer 1. This pin is used for input when input to reload-timer is enabled, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	AINO		AIN input for up/down counter 0 . This pin is used for input when input to the counter is enabled in phase-shift count mode or up/down count mode, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	PG6		General-purpose I/O port.
142	T01	F	Input pin for reload-timer 1. This pin is used for input when input to reload-timer is enabled, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	BINO		BIN input for up/down counter 0 . This pin is used for input when input to the counter is enabled in phase-shift count mode or up/down count mode, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	PG7		General-purpose I/O port. This function is available when output from reload-timer is disabled.
143	IC0	F	Input pin for input capture 0 (ICUO). This pin is used for input when ICU is in edge detect operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	SC2		Clock I/O pin for UART1. This function is available when cock output of UART1 is enabled.
	ZINO		ZIN-input for up/down counter 0 . This pin is used for input when ZIN -input to the counter is enabled in by up/down counter 0 , and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	PH0		General purpose I/O port. This function is available when clock output of UART1 is enabled.
144	IC1	F	Input pin for input capture 1 (ICU1). This pin is used for input when ICU is in edge detect operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	AIN1		AIN input for up/down counter 1 . This pin is used for input when input to the counter is enabled in phase-shift count mode or up/down count mode, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	PH1		General-purpose I/O port.

Pin No.	Pin name	Circuittype	Function
QFP*			
145	IC2	F	Input pin for input capture 2 (ICU2). This pin is used for input when ICU is in edge detect operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	BIN1		BIN input for up/down counter 1. This pin is used for input when input to the counter is enabled in phase-shift count mode or up/down count mode, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	PH2		General-purpose I/O port.
146	IC3	F	Input pin for input capture 3 (ICU3). This pin is used for input when ICU is in edge detect operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	ZIN1		ZIN-input for up/down counter 1 . This pin is used for input when ZIN-input to the counter is enabled by up/down counter 1 , and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
	PH3		General-purpose I/O port.
147	OCO	K	Output pin for output compare 0 (OCUO). This function is available when output of corresponding OCU is enabled.
	PH4		General-purpose I/O port. This function is available when output of corresponding OCU is disabled.
148	OC1	K	Output pin for output compare 1 (OCU1). This function is available when output of corresponding OCU is enabled.
	PH5		General-purpose I/O port. This function is available when output of corresponding OCU is disabled.
149	OC2	K	Output pin for output compare 2 (OCU2). This function is available when output of corresponding OCU is enabled.
	PH6		General-purpose I/O port. This function is available when output of corresponding OCU is disabled.
151	OC3	K	Output pin for output compare 3 (OCU3). This function is available when output of corresponding OCU is enabled.
	PH7		General-purpose I/O port. This function is available when output of corresponding OCU is disabled.

(Continued)

Pin No.	Pin name	Circuittype	Function
QFP*			
152	OC4	K	Output pin for output compare 4 (OCU4). This function is available when output of corresponding OCU is enabled.
	PIO		General-purpose I/O port. This function is available when output of corresponding OCU is disabled.
153	OC5	K	Output pin for output compare 5 (OCU5). This function is available when output of corresponding OCU is enabled.
	Pl1		General-purpose I/O port. This function is available when output of corresponding OCU is disabled.
154	OC6	K	Output pin for output compare 6 (OCU6). This function is available when output of corresponding OCU is enabled.
	PI2		General-purpose I/O port. This function is available when output of corresponding OCU is disabled.
155	OC7	F	Output pin for output compare 7 (OCU7). This function is available when output of corresponding OCU is enabled.
	PI3		General-purpose I/O port. This function is available when output of corresponding OCU is disabled.
130, 133	N.C.	-	No connections allowed to this pin.
$\begin{gathered} 14,24 \\ 46,77 \\ 92,140 \\ 160 \end{gathered}$	Vcc	-	Power supply pin (Vcc) for digital circuit
9,19 33,51 73,87 114,127 150,157	Vss	-	Earth level (Vss) for digital circuit.
106	AV ${ }_{\text {cc }}$	-	Power supply pin (Vcc) for A/D converter.
107	AVRH	-	Reference voltage input (High) for A/D converter. Make sure to turn on and off this pin with potential of AVRH or more applied to Vcc.
108	AVRL	-	Reference voltage input pin (Low) for A/D converter.
109	AVss	-	Power supply pin (Vss) for A/D converter.

*:FPT-160P-M03
Note: In most of the above pins, I/O port and resource I/O are multiplexed e.g. P82 and BRQ. In case of conflict between output of I/O port and resource I/O, priority is always given to the output of resource I/O.

DRAM CONTROL PIN

Pin name	Data bus 32-bit mode		Data bus 16-bit mode		Data bus 8-bit mode
	2CAS/1WE mode	1CAS/2WE mode	2CAS/1WE mode	1CAS/2WE mode	-
RAS0	Area 4 RAS				
RAS1	Area 5 RAS				
CS0L	CAS0 *1	CAS	Area 4 CASL *2	Area 4 CAS	Area 4 CAS
CSOH	CAS1*1	CAS	Area 4 CASH *2	Area $4 \overline{\mathrm{WEL}}$ *2	Area 4 CAS
CS1L	CAS2 *1	WE0 *1	Area 5 CASL *2	Area 5 CAS	Area 5 CAS
CS1H	CAS3 *1	WE1 *1	Area 5 CASH *2	Area $5 \overline{\mathrm{WEL}}$ *2	Area 5 CAS
$\overline{\text { DW0 }}$	$\overline{W E}$	WE2 *1	Area $4 \overline{\mathrm{WE}}$	Area $4 \overline{W E H}^{* 2}$	Area $4 \overline{\mathrm{WE}}$
DW1	WE	WE3 *1	Area 5 WE	Area $5 \overline{\mathrm{WEH}}^{* 2}$	Area 5 WE

*1: 0, 1, 2 and 3 respectively corresponds to the lowest 2 bits of address as follows:
0: "00", 1: "01", 2: "10", 3: "11"
*2: L and H respectively corresponds to the LSB of address as follows:
L: "0", H: "1"

■ I/O CIRCUIT TYPE

Type	Circuit	Remarks
A	Standby control signal	- Oscillation feedback resistance $1 \mathrm{M} \Omega$ approx. With Standby control
B		- CMOS level hysteresis input Without standby control With pull-up resistance
C	Standby control signal	- CMOS level I/O With standby control
D		- CMOS level I/O With standby control - Analog input

(Continued)

Type	Circuit	Remarks
E	Standby control signal	- N-ch open-drain output - CMOS level output With standby control
F	Standby control signal	- CMOS level output - CMOS level hysteresis input With standby control
G		- CMOS level I/O Without standby control
H		- CMOS level hysteresis input Without standby control

(Continued)
(Continued)

Type	Circuit	Remarks
I		- CMOS level output - CMOS level hysteresis input Without standby control
J		- CMOS level output - TTL level input With standby control
K		- CMOS level input/output With standby control - Large current drive

HANDLING DEVICES

1. Preventing Latchup

In CMOS ICs, applying voltage higher than V_{cc} or lower than $\mathrm{V}_{\text {ss }}$ to input/output pin or applying voltage over rating across V_{cc} and $\mathrm{V}_{\text {ss }}$ may cause latchup.
This phenomenon rapidly increases the power supply current, which may result in thermal breakdown of the device. Make sure to prevent the voltage from exceeding the maximum rating.

For the same reason, make sure to prevent the analog power supply voltage ($\mathrm{AV} \mathrm{Vc}, \mathrm{AVR}$) and analog input from exceeding the digital power supply voltage when turning on/off the device.

2. Treatment of Unused Pins

Unused pins left open may cause malfunctions. Make sure to connect them to pull-up or pull-down resistors.

3. Remarks for External Clock Operation

When external clock is selected, stabilization time is necessary at the time of power reset (optional) or wakening up from stop mode.

- Using an External Clock

4. Power Supply Pins

When there are several V_{cc} and $\mathrm{V}_{\text {ss }}$ pins, each of them is geometrically connected to its counterpart inside of the device, minimizing the risk of malfunctions such as latch up. To further reduce the risk of malfunctions, to prevent EMI radiation, to prevent strobe signal malfunction resulting from creeping-up of ground level and to observe the total output current standard, connect each pin directly to V_{cc} or $\mathrm{V}_{\text {ss outside of the device. }}$

It is preferred to connect V_{cc} and V_{ss} of this device to power supply with minimal impedance possible.
It is also recommended to connect a bypass capacitor of about $0.1 \mu \mathrm{~F}$ between V_{cc} and V ss at a position as close as possible to this device.

5. Crystal Oscillator Circuit

Noises around X0 and X1 pins may cause malfunctions of this device. In designing the PC board, lay out X0, X1 and crystal oscillator (or ceramic oscillator) and bypass capacitor for grounding as close as possible. Prevent their wiring from being crossed by other wires.
It is strongly recommended to design PC board so that X 1 and X 0 pins are surrounded by grounding area for stable operation.

6. Turning-on Sequence of A/D Converter Power Supply and Analog Input

Make sure to turn on the digital power supply (V_{cc}) before turning on the A / D converter ($\mathrm{AVcc}, \mathrm{AVRH}, \mathrm{AVRL}$) and applying voltage to analog input (AN0 to AN7).

Make sure to turn off digital power supply after power supply to A/D converters and analog inputs have been switched off. (There are no such limitations in turning on power supplies. Analog and digital power supplies may be turned on simultaneously.) Make sure that AVRH never exceeds $A V c c$ when turning on/off power supplies.

7. Treatment of N.C. Pins

Make sure to leave N.C. (internal connection) pins open.

8. Fluctuation of Power Supply Voltage

Warranty range for normal operation against fluctuation of power supply voltage is as given in rating. However, sudden fluctuation of power supply voltage within the warranty range may cause malfunctions. It is recommended to make every effort to stabilize the power supply voltage.

9. Mode Setting Pins

Connect mode setting pins (MD0 to MD2) directly to Vcc or Vss.
Arrange each mode setting pin and V_{cc} or V ss patterns on the printed circuit board as close as possible and make the impedance between them minimal to prevent mistaken entrance to the test mode caused by noises.

10. External Reset Input

Keep the $\overline{\text { RST }}$ pin level at "L" for at least 5 machine cycles to ensure proper reset operation.

11. I/O Access Limmitations When Using Gear Function

In MB91103 series, there are some limmitations concerning about accesses to the I/O area.
Limitted I/O area: 0X10н to 0XFFн 0X400н to 0×5 FFн

Clock gear combinations:

Peripheral system CPU system	$\mathbf{1 / 1}$	$\mathbf{1 / 2}$	$\mathbf{1 / 4}$	$\mathbf{1 / 8}$
$1 / 1$	\bigcirc	\triangle	\triangle	\triangle
$1 / 2$	\triangle	\bigcirc	\triangle	\triangle
$1 / 4$	\bigcirc	\triangle	\bigcirc	\triangle
$1 / 8$	\bigcirc	\bigcirc	\triangle	\bigcirc

\bigcirc : Without limitation
\triangle : Limitted

In the limitted clock gear combination shown in the above table, there are limitations concerning about accesses to the appricable I/O area as below.
(1) When accessing to the I/O area, use only 16 -bit length instruction or 8 -bit length instruction.
(2) When putting the read-out instruction from the appricable I/O area right after the write-in instruction to the same I/O area, put the dummy read-out instruction from the same area.

MB91103 Series

| (Example) | | | ;r1, r2, r4 are the appricable I/O areas |
| :--- | :--- | :--- | :--- | :--- |
| sth | r0, | @r1 | ;Write-in instruction |
| Iduh | @r4, | r3 | ;Dummy read-out instruction : add this instruction |
| Iduh | @r2, | r3 | ;Target read-out insturction |

0×400 address is recomendable for the dummy read-out instruction address. As interrupting controllers ICR00 and ICR01 are put in this address, there is no bad influence owing to dummy read-out operations.

12. DMAC Limitations When Using Gear Function

In MB91103 series, UART operated in synclonizing transfer mode must not be DMA transfer facter.
Clock gear combinations:

Peripheral system CPU system	$\mathbf{1 / 1}$	$\mathbf{1 / 2}$	$\mathbf{1 / 4}$	$\mathbf{1 / 8}$
$1 / 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$1 / 2$	\times	\bigcirc	\bigcirc	\bigcirc
$1 / 4$	\times	\times	\bigcirc	\bigcirc
$1 / 8$	\times	\times	\times	\bigcirc

O : Without limitation
x : Prohibite to use

BLOCK DIAGRAM

CPU CORE

1. Memory Space

The FR20 series has a logical address space of 4 G bytes (2 2^{32} bytes) and the CPU linearly accesses the memory space.

The MB91103 has no internal memories (RAM, ROM).

- Memory space

- Direct addressing area

The following areas on the memory space are assigned to direct addressing area for I/O. In these areas, an address can be specified in a direct operand of a code.
Direct areas consists of the following areas dependent on accessible data sizes.
Byte data access: 0 to 0FFн
Half word data access: 0 to 1FFH
Word data access: 0 to 3 FFH

2. Registers

The FR20 series has two types of registers -- dedicated registers embedded on the CPU and general-purpose registers on memory.

- Dedicated registers

Program counter (PC)
Program status (PS)
Table base register (TBR)
: 32-bit length, indicates the location of the instruction to be executed
: 32-bit length, register for storing register pointer or condition codes
: Holds top address of vector table used in EIT (Exceptional/Interrupt/Trap) processing.

Return pointer (RP) : Holds address to resume operation after returning from a subroutine.
System stack pointer (SSP) : Indicates system stack space.
User's stack pointer (USP) : Indicates user's stack space.
Multiplication/Division result register (MDH/MDL): 32-bit length, register for multiplication/division.

32 bits	Program counter	Initial value		not fixed
PC		XXXX	XXXX ${ }_{\text {H }}$	
PS	Program status			
TBR	Table base register	000F	FCOOH	
RP	Return pointer	XXXX	XXXX ${ }_{\text {H }}$	not fixed
SSP	System stack pointer	0000	0000 ${ }_{\text {H }}$	
USP	User's stack pointer	XXXX	XXXX ${ }_{\text {H }}$	not fixed
MDH	Multiplication/division result register	XXXX	XXXX	not fixed
MDL		XXXX	XXXX ${ }_{\text {H }}$	not fixed

The PS register is for holding program status and consists of a condition code register (CCR), a system condition code register (SCR) and a level mask register (ILM).

- Condition code register (CCR)

S flag : Specifies a stack pointer used as R15.
I flag : Controls user interrupt request enable/disable.
N flag : Indicates sign bit when division result is assumed to be in the 2's complement format.
Z flag : Indicates whether or not the result of division was " 0 ".
V flag : Assume the operand used in calculation in the 2's complement format and indicates whether or not overflow has occurred.
C flag : Indicates if a carry or borrow from the MSB has occurred.

- System condition code register (SCR)

T flag : Specifies whether or not to enable step trace trap.

- Interrupt level mask register (ILM)

ILM4 to ILM0 : Register for holding interrupt level mask value. The value held by this register is used as a level mask. When an interrupt request issued to the CPU is higher than the level held by ILM, the interrupt request is accepted.

ILM4	ILM3	ILM2	ILM1	ILMO	Interrupt level	Priority
0	0	0	0	0	0	High
\vdots 交						
0	1	0	0	0	15	
		\vdots			\vdots	\downarrow
1	1	1	1	1	31	Low

■ GENERAL-PURPOSE REGISTERS

R0 to R15 are general-purpose registers embedded on the CPU. These registers functions as an accumulator and a memory access pointer (field for indicating address). User can specify the functions of the registers.

- Register bank structure

Of the above 16 registers, following registers have special functions. To support the special functions, part of the instruction set has been sophisticated to have enhanced functions.

R13: Virtual accumulator (AC)
R14: Frame pointer (FP)
R15: Stack pointer (SP)
Upon reset, values in R0 to R14 are not fixed. Value in R15 is initialized to be 00000000н (SSP value).

SETTING MODE

1. Pin

- Mode setting pins and modes

Mode setting pins		Mode name	Reset vector access area	External data bus width	Bus mode	
MD2	MD1	MD0		8its		
0	0	0	External vector mode 0	External	16 bits	
0	0	1	External vector mode 1	External	32 bits	
0	1	0	External vector mode 2	External	Single-chip mode*	
0	1	1	Internal vector mode	Internal	(Mode register)	Sing
1	-	-	-	-	-	Inhibited

*: MB91103 does not support single-chip mode.

2. Registers

- Mode setting registers and modes

W: Write only
X : Not fixed

* : Always write "0" except for M1 and M0.
- Bus mode setting bits and functions

M1	M0	Functions	Note
0	0	Single-chip mode	
0	1	Internal ROM external bus mode	
1	0	External ROM External bus mode	
1	1	-	Inhibited

Note: For a device without internal ROM, set "10s" only.
MB91103 allows " 10 b " setting only.

■ I/O MAP

Address	Register name (Abbreviated)	Register name	Read/write	Initial value
0000н	Vacant			
0001н	PDR2	Port 2 data register	R/W	XXXXXXXXв
0002н	PDR1	Port 1 data register	R/W	XXXXXXXXв
0003н	PDR0	Port 0 data register	R/W	XXXXXXXXв
0004н	Vacant			
0005н	PDR6	Port 6 data register	R/W	XXXXXXXXв
0006н	Vacant			
0007H				
0008н	PDRB	Port B data register	R/W	XXXXXXXXв
0009н	PDRA	Port A data register	R/W	$-X X X X X X X$ в
000Ан	PDR9	Port 9 data register	R/W	$--X X X X X X$ в
000Вн	PDR8	Port 8 data register	R/W	XXX--XXXв
$\begin{aligned} & 000 \mathrm{CH} \\ & \text { to } \\ & 0010 \mathrm{H} \end{aligned}$	Vacant			
0011н	PDRD	Port D data register	R/W	XXXXXXXXв
0012н	PDRE	Port E data register	R/W	XXXXXXXXb
0013н	PDRF	Port F data register	R/W	XXXXXXXXb
0014н	PDRG	Port G data register	R/W	
0015н	PDRH	Port H data register	R/W	XXXXXXXXв
0016н	PDRI	Port I data register	R/W	----XXXXв
0017	Vacant			
0018н				
0019н	SDR	Serial data register	R/W	XXXXXXXXв
001 Ан	SMCS	Serial mode control status register	R/W	00000010 в
001Bн				----0000в
001С ${ }^{\text {¢ }}$	SSR0	Serial status register 0	R/W	$00001-00$ в
001D ${ }_{\text {н }}$	SIDR0/SODR0	Serial input register 0/Serial output register 0	R/W	XXXXXXXXв
001Ен	SCR0	Serial control register 0	R/W	00000100 в
001F	SMR0	Serial mode register 0	R/W	00--0-00в
0020н	SSR1	Serial status register 1	R/W	$00001-00$ в
0021н	SIDR1/SODR1	Serial input register 1/Serial output register 1	R/W	XXXXXXXXв
0022н	SCR1	Serial control register 1	R/W	00000100 в

(Continued)

Address	Register name (Abbreviated)	Register name	Read/write	Initial value		
0023н	SMR1	Serial mode register 1	R/W	00--0-00в		
$\begin{gathered} \text { 0024 } \\ \text { to } \\ 0027 \mathrm{H} \end{gathered}$	Vacant					
0028н	TMRLR0	16-bit reload register ch. 0	W	XXXXXXXXв		
0029н				XXXXXXXX		
002Ан	TMR0	16-bit timer register ch. 0	R	XXXXXXXXb		
002Bн				XXXXXXXXв		
002CH	Vacant					
002D						
002Ен	TMCSR0	16-bit reload timer control status register ch. 0	R/W	----0000в		
002Fн				00000000 в		
0030 ${ }^{\text {H}}$	TMRLR1	16-bit reload register ch. 1	W	XXXXXXXXв		
0031H				XXXXXXXXв		
0032н	TMR1	16-bit timer register ch. 1	R	XXXXXXXXb		
0033H				XXXXXXXXв		
0034н	Vacant					
0035						
0036н	TMCSR1	16-bit reload timer control status register ch. 1	R/W	----0000в		
0037				00000000 в		
0038н	ADCR	A/D converter data register	R	$000000 \times$ Хв		
0039н				XXXXXXXXв		
003Ан	ADCS	A/D converter control status register	R/W	00000000 в		
003Вн				00000000 в		
$\begin{aligned} & 003 \mathrm{C}_{\mathrm{H}} \\ & \text { to } \\ & 0044 \mathrm{H} \end{aligned}$	Vacant					
0045	ICS0	Input capture control status register ch. 0	R/W	00000000 в		
0046н	Vacant					
0047н						
0048н	IPCP0	Input capture data register 0	R	XXXXXXXXb		
0049н				XXXXXXXX		
004Ан	IPCP1	Input capture data register 1	R	XXXXXXXX		
004Bн				XXXXXXXX ${ }_{\text {¢ }}$		

(Continued)

Address	Register name (Abbreviated)	Register name	Read/write	Initial value		
004CH	Vacant					
004D	ICS1	Input capture control status register ch. 1	R/W	00000000 в		
004F	Vacant					
004Ен						
0050н	IPCP2	Input capture data register 2	R	ХХХХХХХХв		
0051н				XXXXXXXXв		
0052н	IPCP3	Input capture data register 3	R			
0053н				XXXXXXXXв		
0054н	OCSO	Output compare control status register ch. 0	R/W	---00000в		
0055				0000--00в		
0056н	Vacant					
0057						
0058н	OPCP0	Output compare register ch. 0	R/W	XXXXXXXXв		
0059н						
005Ан	OPCP1	Output compare register ch. 1	R/W	ХХХХХХХХв		
005Вн						
005Сн	OCS1	Output compare control status register ch. 1	R/W	---00000в		
005D				0000--00 в		
005Ен	Vacant					
005FH						
0060н	OPCP2	Output compare register ch. 2	R/W	XXXXXXXXв		
0061н						
0062н	OPCP3	Output compare register ch. 3	R/W	ХХХХХХХХв		
0063н				XXXXXXXXв		
0064н	OCS2	Output compare control status register ch. 2	R/W	---00000 в		
0065н				0000--00 в		
0066н	Vacant					
0067H						
0068н	OPCP4	Output compare register ch. 4	R/W	XXXXXXXXв		
0069н						
006Ан	OPCP5	Output compare register ch. 5	R/W			
006Bн				XXXXXXXXв		

(Continued)

Address	Register name (Abbreviated)	Register name	Read/write	Initial value		
006CH	OCS3	Output compare control status register ch. 3	R/W	---00000в		
006D ${ }_{\text {н }}$				0000--00в		
006Ен	Vacant					
006Fн						
0070н	OPCP6	Output compare register ch. 6	R/W	XXXXXXXXb		
0071H				XXXXXXXX		
0072н	OPCP7	Output compare register ch. 7	R/W	XXXXXXXX		
0073н				XXXXXXXXв		
0074н	TCDT	16-bit free-run timer count data register	R/W	00000000 в		
0075 ${ }^{\text {¢ }}$				00000000 в		
0076н	Vacant					
0077 ${ }^{\text {H }}$	TCCS	16-bit free-run timer count control status register	R/W	00000000 в		
0078	UTIMO/UTIMRO	U-TIMER register ch. 0/Reload register ch. 0	R/W	00000000 в		
0079н				00000000 в		
007Ан	Vacant					
007Bн	UTIMC0	U-TIMER control register ch. 0	R/W	$0-00001$ в		
007CH	UTIM1/UTIMR1	U-TIMER register ch. 1/Reload register ch. 1	R/W	00000000 в		
007D				00000000 в		
007Eн	Vacant					
007F	UTIMC1	U-TIMER control register ch. 1	R/W	$0--00001$ в		
$\begin{gathered} 0080_{\mathrm{H}} \\ \text { to } \\ 0083 \mathrm{H} \end{gathered}$	Vacant					
0084н	UDCRO	16-bit up-down count register ch. 0	R	00000000 в		
0085н				00000000 в		
0086н	RCRO	16-bit up/down counter reload/compare register ch. 0	W	00000000 в		
0087				00000000 в		
0088н	CCRO	16-bit up/down counter control register ch. 0	R/W	-0000000в		
0089н				-0001000в		
008Ан	Vacant					
008Вн	CSR0	16-bit up/down counter status register ch. 0	R/W	00000000 в		
008CH	UDCR1	16-bit up/down count register ch. 1	R	00000000 в		
008D				00000000 в		

(Continued)

Address	Register name (Abbreviated)	Register name	Read/write	Initial value		
008Ен	RCR1	16-bit up/down counter reload/compare register ch. 1	W	00000000 в		
008F ${ }_{\text {H }}$				00000000 в		
0090н	CCR1	16-bit up/down counter control register ch. 1	R/W	-0000000в		
0091н				-0001000в		
0092н	Vacant					
0093н	CSR1	16-bit up/down counter status register ch. 1	R/W	00000000 в		
0094н	EIRR	External interrupt cause register	R/W	00000000 в		
0095	ENIR	Interrupt enable register	R/W	00000000 в		
0096н	Vacant					
0097н						
0098н	ELVR	External interrupt request level setting register	R/W	00000000 в		
0099н				00000000 в		
$009 \text { Aн }^{2}$ to 00DO	Vacant					
00D1H	DDRD	Port D data direction register	W	00000000 в		
00D2н	DDRE	Port E data direction register	W	00000000 в		
00D3н	DDRF	Port F data direction register	W	00000000 в		
00D4н	DDRG	Port G data direction register	W	00000000 в		
00D5 ${ }^{\text {¢ }}$	DDRH	Port H data direction register	W	00000000 в		
00D6н	DDRI	Port I data direction register	W	----0000в		
00D7 ${ }^{\text {H }}$	AIC	Port D analog input control register	W	00000000 в		
$\begin{aligned} & \text { 00D8н } \\ & \text { to } \\ & 01 \text { FFH } \end{aligned}$	Vacant					
0200н	DMACS0	DMAC-ch. 0 control/status register	R/W	$0-000000$ в		
0201H				$000--$ Х0в		
0202н				XXXXXXXXв		
0203н						
0204H	DMACC0	DMAC-ch. 0 addressing/count setting register	R/W	ХХХХХХХХв		
0205н				- ХХХХХХХв		
0206н				ХХХХХХХХв		
0207H				XXXXXXXXв		

(Continued)

Address	Register name (Abbreviated)	Register name	Read/write	Initial value
0208н	DMACS1	DMAC-ch. 1 control/status register	R/W	$0-000000$ в
0209н				$000--$ Х 0 в
020Ан				XXXXXXXXв
020Вн				XXXXXX-Xв
$020 \mathrm{CH}_{\mathrm{H}}$	DMACC1	DMAC-ch. 1 addressing/count setting register	R/W	XXXXXXXXв
020D				- XXXXXXXb
020Ен				
020F\%				XXXXXXXXв
$\begin{aligned} & \text { 0210н } \\ & \text { to } \\ & 021 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	Vacant			
0220н	DMACS4	DMAC-ch. 4 control/status register	R/W	$0-000000$ в
0221н				000-----в
0222н				$--X X X X X X$ в
0223н				----XX-Xв
0224H	DMACC4	DMAC-ch. 4 addressing/count setting register	R/W	$0000 \times X X$ ¢ $^{\text {¢ }}$
0225				$-X X X X X X X$ в
0226н				XXXXXXXXв
0227H				XXXXXXXXв
0228н	DMACS5	DMAC-ch. 5 control/status register	R/W	$0-000000$ в
0229н				000-----в
022Aн				$--X X X X X X$ в
022Bн				$----X X-\chi_{\text {в }}$
022CH	DMACC5	DMAC-ch. 5 addressing/count setting register	R/W	$0000 \times X X X$ в
022D				- XXXXXXXв
022Ен				ХХХХХХХХв
022F\%				XXXXXXXXв
0230н	DMACS6	DMAC-ch. 6 control/status register	R/W	$0-000000$ в
0231н				000-----в
0232н				$--X X X X X X$ в
0233				----XX-Xв

(Continued)

Address	Register name (Abbreviated)	Register name	Read/write	Initial value
0234	DMACC6	DMAC-ch. 6 addressing/count setting register	R/W	$0000 \times X X X$ в
0235				$-X X X X X X X$ в
0236н				
0237				XXXXXXXXв
$\begin{aligned} & 0238 \mathrm{H} \\ & \text { to } \\ & 023 \mathrm{~F}_{\mathrm{H}} \end{aligned}$		Vacant		
0240н	DMAAR0	DMAC address register 0	R/W	XXXXXXXXв
0241H				
0242н				ХХХХХХХХв
0243н				ХХХХХХХХв
0244H	DMAAR1	DMAC address register 1	R/W	
0245 ${ }^{\text {- }}$				ХХХХХХХХв
0246 ${ }^{\text {¢ }}$				ХХХХХХХХв
0247 ${ }^{\text {H }}$				XXXXXXXXв
0248	DMAAR2	DMAC address register 2	R/W	00000000 в
0249н				$00000 \times X$ в $^{\text {¢ }}$
024Ан				ХХХХХХХХв
024Bн				ХХХХХХХХв
024CH	DMAAR3	DMAC address register 3	R/W	00000000 в
024D ${ }_{\text {н }}$				$00000 \times X$ ¢ $^{\text {¢ }}$
024Ен				XXXXXXXXв
024Fн				ХХХХХХХХв
0250н	DMAAR4	DMAC address register 4	R/W	00000000 в
0251H				$00000 \times X X$ в
0252н				XXXXXXXXв
0253н				XXXXXXXXв
0254H	DMAAR5	DMAC address register 5	R/W	00000000 в
0255н				$00000 \times X X$ в
0256н				XXXXXXXXb
0257 ${ }^{\text {H }}$				XXXXXXXXв

(Continued)

Address	Register name (Abbreviated)	Register name	Read/write	Initial value
0258н	DMAAR6	DMAC address register 6	R/W	00000000 в
0259н				$00000 \times X$ в
025Aн				XXXXXXXX
025Вн				XXXXXXXX
025CH	DMAAR7	DMAC address register 7	R/W	00000000 в
025D				$00000 \times X$ в
025Ен				XXXXXXXXв
025Fн				XXXXXXXXв
0260н	DMACTO	DMAC transfer count register 0	R/W	XXXXXXXXв
0261н				XXXXXXXX
0262н	DMACT1	DMAC transfer count register 1	R/W	XXXXXXXXв
0263н				XXXXXXXX
$\begin{gathered} \text { 0264н } \\ \text { to } \\ 0267 \mathrm{H} \end{gathered}$	Vacant			
0268н	DMACT4	DMAC transfer count register 4	R/W	00000000 в
0269н				XXXXXXXX
026Ан	DMACT5	DMAC transfer count register 5	R/W	00000000 в
026Вн				XXXXXXXX
026Сн	DMACT6	DMAC transfer count register 6	R/W	00000000 в
026D				XXXXXXXX
$\begin{gathered} \text { 026Ен } \\ \text { to } \\ 0273 \boldsymbol{H} \end{gathered}$	Vacant			
0274	DMACR	DMAC total control register	R/W	-------- в
0275				-------- в
0276н				00----- в
0277				----0000 в
$\begin{gathered} \text { 0278H } \\ \text { to } \\ 03 \mathrm{E} 3 \mathrm{H} \end{gathered}$	Vacant			
03E4н	ICHCR	Instruction cache control register	R/W	-------- в
03E5 ${ }^{\text {¢ }}$				-------- в
03E6н				-------- в
03E7H				--000000 в

Address	Register name (Abbreviated)	Register name	Read/write	Initial value
$\begin{gathered} \text { 03E8H } \\ \text { to } \\ 03 E F_{H} \end{gathered}$	Vacant			
03F0н	BSD0	Bit search module 0-detection data register	W	XXXXXXXXв
03F1н				XXXXXXXX
03F2н				XXXXXXXXв
03F3н				XXXXXXXX
03F4н	BSD1	Bit search module 1-detection data register	R/W	XXXXXXXXв
03F5				XXXXXXXXв
03F6н				XXXXXXXXв
03F7H				XXXXXXXXв
03F8н	BSDC	Bit search module transition-detection data register	W	XXXXXXXXв
03F9н				XXXXXXXXв
03FAн				XXXXXXXXв
03FBн				XXXXXXXXв
03FCH	BSRR	Bit search module detection result register	R	XXXXXXXXв
03FD ${ }_{\text {н }}$				XXXXXXXXв
03FEн				
03FF\%				XXXXXXXXв
0400н	ICR00	Interrupt control register 0	R/W	---11111в
0401н	ICR01	Interrupt control register 1	R/W	---11111в
0402н	ICR02	Interrupt control register 2	R/W	---11111в
0403н	ICR03	Interrupt control register 3	R/W	---11111в
0404н	ICR04	Interrupt control register 4	R/W	---11111в
0405	ICR05	Interrupt control register 5	R/W	---11111в
0406н	ICR06	Interrupt control register 6	R/W	---11111в
0407H	ICR07	Interrupt control register 7	R/W	---11111в
0408н	ICR08	Interrupt control register 8	R/W	---11111в
0409н	ICR09	Interrupt control register 9	R/W	---11111в
040Ан	ICR10	Interrupt control register 10	R/W	---11111в
040Вн	ICR11	Interrupt control register 11	R/W	---11111в
040С ${ }_{\text {H }}$	ICR12	Interrupt control register 12	R/W	---11111в
040D ${ }_{\text {H }}$	ICR13	Interrupt control register 13	R/W	---11111в

(Continued)

Address	Register name (Abbreviated)	Register name	Read/write	Initial value
040Eн	ICR14	Interrupt control register 14	R/W	---11111в
040FH	ICR15	Interrupt control register 15	R/W	---11111в
0410 ${ }_{\text {H }}$	ICR16	Interrupt control register 16	R/W	---11111в
0411н	ICR17	Interrupt control register 17	R/W	---11111 в
0412н	ICR18	Interrupt control register 18	R/W	---11111 в
0413н	ICR19	Interrupt control register 19	R/W	---11111в
0414H	ICR20	Interrupt control register 20	R/W	---11111 в
0415 ${ }_{\text {H }}$	ICR21	Interrupt control register 21	R/W	---11111 в
0416 ${ }^{\text {H }}$	ICR22	Interrupt control register 22	R/W	---11111в
0417 ${ }_{\text {H }}$	ICR23	Interrupt control register 23	R/W	---11111 в
0418н	ICR24	Interrupt control register 24	R/W	---11111 в
0419н	ICR25	Interrupt control register 25	R/W	---11111 в
041Ан	ICR26	Interrupt control register 26	R/W	---11111в
041Вн	ICR27	Interrupt control register 27	R/W	---11111 в
041䂙	ICR28	Interrupt control register 28	R/W	---11111в
041䉼	ICR29	Interrupt control register 29	R/W	---11111в
041Eн	ICR30	Interrupt control register 30	R/W	---11111 в
041FH	ICR31	Interrupt control register 31	R/W	---11111 в
0420н	ICR32	Interrupt control register 32	R/W	---11111в
0421н	ICR33	Interrupt control register 33	R/W	---11111в
0422н	ICR34	Interrupt control register 34	R/W	---11111в
0423 ${ }_{\text {H }}$	ICR35	Interrupt control register 35	R/W	---11111в
0424H	ICR36	Interrupt control register 36	R/W	---11111 в
0425	ICR37	Interrupt control register 37	R/W	---11111в
0426н	ICR38	Interrupt control register 38	R/W	---11111 в
0427	ICR39	Interrupt control register 39	R/W	---11111 в
0428 ${ }_{\text {H }}$	ICR40	Interrupt control register 40	R/W	---11111 в
0429н	ICR41	Interrupt control register 41	R/W	---11111 в
042Aн	ICR42	Interrupt control register 42	R/W	---11111 в
042Вн	ICR43	Interrupt control register 43	R/W	---11111 в
042Cн	ICR44	Interrupt control register 44	R/W	---11111 в
042D ${ }_{\text {H }}$	ICR45	Interrupt control register 45	R/W	---11111 в

(Continued)

Address	Register name (Abbreviated)	Register name	Read/write	Initial value
042Ен	ICR46	Interrupt control register 46	R/W	---11111в
042F	ICR47	Interrupt control register 47	R/W	---11111в
0430н	DICR	Delayed interrupt control register	R/W	-------0 в
0431H	HRCL	Hold request cancel request level setting register	R/W	---11111 в
$\begin{gathered} \text { 0432н } \\ \text { to } \\ 047 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	Vacant			
0480н	RSRR/WTCR	Reset cause register/Watch-dog peripheral control register	R/W	$1-X X X-00$ в
0481H	STCR	Standby control register	R/W	000111 - в
0482н	PDRR	DMA request squelch register	R/W	----0000в
0483н	CTBR	Time-base timer clear register	W	XXXXXXXX ${ }_{\text {в }}$
0484н	GCR	Gear control register	R/W	11--11-1 в
0485	WPR	Watch-dog reset occurrence postpone register	W	XXXXXXXXв
$\begin{aligned} & 0486 \mathrm{H} \\ & \text { to } \\ & 0600 \mathrm{H} \end{aligned}$	Vacant			
0601H	DDR2	Port 2 data direction register	W	00000000 в
0602н	DDR1	Port 1 data direction register	W	00000000 в
0603н	DDR0	Port 0 data direction register	W	00000000 в
0604	Vacant			
0605н	DDR6	Port 6 data direction register	W	00000000 в
0606н	Vacant			
0607н				
0608н	DDRB	Port B data direction register	W	00000000 в
0609н	DDRA	Port A data direction register	W	-0000000 в
060Ан	DDR9	Port 9 data direction register	W	--000000 в
060Вн	DDR8	Port 8 data direction register	W	000--000в
$060 \mathrm{CH}_{\mathrm{H}}$	ASR1	Area select register 1	W	00000000 в
060D ${ }_{\text {н }}$				00000001 в
060Ен	AMR1	Area mask register 1	W	00000000 в
060FH				00000000 в
0610н	ASR2	Area select register 2	W	00000000 в
0611H				00000010 в

(Continued)

Address	Register name (Abbreviated)	Register name	Read/write	Initial value
0612н	AMR2	Area mask register 2	W	00000000 в
0613н				00000000 в
0614H	ASR3	Area select register 3	W	00000000 в
0615н				00000011 в
0616н	AMR3	Area mask register 3	W	00000000 в
0617 ${ }^{\text {¢ }}$				00000000 в
0618H	ASR4	Area select register 4	W	00000000 в
0619н				00000100 в
$061 \mathrm{~A}_{\text {н }}$	AMR4	Area mask register 4	W	00000000 в
061Bн				00000000 в
061信	ASR5	Area select register 5	W	00000000 в
061D ${ }_{\text {н }}$				00000101 в
061Ен	AMR5	Area mask register 5	W	00000000 в
061F				00000000 в
0620н	AMD0	Area mode register 0	R/W	---00111 в
0621н	AMD1	Area mode register 1	R/W	0--00000в
0622н	AMD32	Area mode register 32	R/W	00000000 в
0623н	AMD4	Area mode register 4	R/W	0--00000в
0624H	AMD5	Area mode register 5	R/W	$0-00000$ в
0625	DSCR	DRAM signal control register	W	00000000 в
0626н	RFCR	Refresh control register	R/W	--XXXXXXв
0627н				00---000в
0628н	EPCR0	External pin control register 0	W	-1001100в
0629н				-1111111в
062Aн	EPCR1	External pin control register 1	W	--------в
062Вн				11111111 в
062CH	DMCR4	DRAM control register 4	R/W	00000000 в
062D				0000000 - в
062Ен	DMCR5	DRAM control register 5	R/W	00000000 в
062F				0000000 -
$\begin{aligned} & \text { 0630н } \\ & \text { to } \\ & \text { 07FD } \end{aligned}$		Vacant		

(Continued)
(Continued)

Address	Register name (Abbreviated)	Register name	Read/write	Initial value
07 FE н	LER	Little endian register	W	-----000 в
07 FF	MODR	Mode register	W	XXXXXXXX

Note: Do not use vacant areas.
INTERRUPT CAUSES, INTERRUPT VECTORS
AND INTERRUPT CONTROL REGISTER ALLOCATIONS

Interrupt causes	Interrupt number		Interrupt level *1		Interrupt vector *2	
	Decimal	Hexadecimal	Setting register	Register adaress	Offset	Vector address
Reset *1	0	00	-	-	3FCH	000FFFFCH
Reserved for system	1	01	-	-	3F8\%	000FFFF8\%
Reserved for system	2	02	-	-	3F4 ${ }_{\text {H }}$	000FFFF4 ${ }_{\text {H }}$
Reserved for system	3	03	-	-	3FOH	000FFFFOH
Reserved for system	4	04	-	-	3ЕСн	000FFFECH
Reserved for system	5	05	-	-	3E8H	000FFFE8 ${ }_{\text {H }}$
Reserved for system	6	06	-	-	3E4H	000FFFE4 ${ }_{\text {H }}$
Co-processor unattended trap	7	07	-	-	3E0H	000FFFEOH
Co-processor error trap	8	08	-	-	3DCH	000FFFDCH
INTE instruction	9	09	Fixed to 4	-	3D8H	000FFFD8н
Instruction break exception	10	0A	-	-	3D4н	000FFFD4н
Operand break trap	11	OB	-	-	3D0н	000FFFDOH
Step trace trap	12	OC	Fixed to 4	-	3 CCH	000FFFCCH
Reserved for system	13	OD	-	-	3С8	000FFFC8 ${ }_{\text {H }}$
Exception for undefined instruction	14	OE	-	-	3C4H	000FFFC4 ${ }_{\text {н }}$
NMI (user) request	15	OF	Fixed to 15 (Fy)	-	3С0н	000FFFCOH
Parity error area 4	16	10	ICR00	00000400н	3BCH	000 FFFBC H
Parity error area 5	17	11	ICR01	00000401н	3B8H	000FFFB8 ${ }_{\text {н }}$
External interrupt 0	18	12	ICR02	00000402н	3B4н	000FFFB4 ${ }_{\text {н }}$
External interrupt 1	19	13	ICR03	00000403н	3B0H	000FFFBOH
External interrupt 2	20	14	ICR04	00000404н	ЗАС	000FFFACH
External interrupt 3	21	15	ICR05	00000405	3A8H	000FFFA8H
External interrupt 4	22	16	ICR06	00000406н	3 A 4 H	000FFFA4 ${ }_{\text {H }}$
External interrupt 5	23	17	ICR07	00000407н	3АО ${ }^{\text {¢ }}$	000FFFA0н
External interrupt 6	24	18	ICR08	00000408н	39С ${ }_{\text {+ }}$	000FFF9CH

(Continued)

Interrupt causes	Interrupt number		Interrupt level *1		Interrupt vector *2	
	Decimal	Hexadecimal	Setting register	Register address	Offset	Vector address
External interrupt 7	25	19	ICR09	00000409н	398н	000FFF98 ${ }_{\text {H }}$
Reserved for system	26	1A	ICR10	0000040Ан	394	000FFF94н
UARTO receive complete	27	1B	ICR11	0000040Вн	390н	000FFF90н
UART1 receive complete	28	1C	ICR12	$0000040 \mathrm{CH}_{\text {н }}$	38 CH	000FFF8C
Reserved for system	29	1D	ICR13	0000040的	388н	000FFF88 ${ }_{\text {н }}$
UART0 transmit complete	30	1E	ICR14	0000040Ен	384	000FFF84н
UART1 transmit complete	31	1F	ICR15	0000040Fн	380н	000FFF80н
Reserved for system	32	20	ICR16	00000410н	37 CH	000FFF7С
DMAC0 (complete, error)	33	21	ICR17	00000411н	378 ${ }^{\text {+ }}$	000FFF78 ${ }_{\text {н }}$
DMAC1 (complete, error)	34	22	ICR18	00000412н	374	000FFF74н
Reserved for system	35	23	ICR19	00000413н	370н	000FFF70н
Reserved for system	36	24	ICR20	00000414н	36 CH	000FFF6CH
DMAC4 (complete, error)	37	25	ICR21	00000415н	368H	000FFF68 ${ }^{\text {H }}$
DMAC5 (complete, error)	38	26	ICR22	00000416н	364	000FFF64н
DMAC6 (complete, error)	39	27	ICR23	00000417н	360 H	000FFF660
Reserved for system	40	28	ICR24	00000418н	35 CH	000FFF5CH
A/D (successive approximation type)	41	29	ICR25	00000419н	358н	000FFF58\%
Reload timer 0	42	2A	ICR26	0000041 Ан	354 н	000FFF54 ${ }_{\text {н }}$
Reload timer 1	43	2B	ICR27	0000041 D	350н	000FFF50н
U/D counter 0	44	2 C	ICR28	$0000041 \mathrm{CH}_{\text {H }}$	34 CH	000FFF4CH
U/D counter 1	45	2D	ICR29	0000041 D	348 H	000FFF48 ${ }^{\text {¢ }}$
ICU0	46	2E	ICR30	0000041Ен	344 н	000FFF44н
ICU1	47	2 F	ICR31	0000041F	340	000FFF40н
ICU2	48	30	ICR32	00000420н	33 CH	000FFF3CH
ICU3	49	31	ICR33	00000421н	338 ${ }^{\text {+ }}$	000FFF38 ${ }_{\text {н }}$
OCU0	50	32	ICR34	00000422н	334	000FFF34н
OCU1	51	33	ICR35	00000423н	330	000FFF30н
OCU2	52	34	ICR36	00000424н	32 CH	000FFF2C ${ }_{\text {н }}$
OCU3	53	35	ICR37	00000425	328 ${ }^{\text {}}$	000FFF28н
OCU4	54	36	ICR38	00000426н	324 ${ }^{\text {H }}$	000FFF24н
OCU5	55	37	ICR39	00000427н	320н	000FFF20н

(Continued)
(Continued)

Interrupt causes	Interrupt number		Interrupt level *1		Interrupt vector *2	
	Decimal	Hexadecimal	Setting register	Register address	Offset	Vector address
OCU6	56	38	ICR40	00000428н	31 CH	000FFF1CH
OCU7	57	39	ICR41	00000429н	318 ${ }^{\text {+ }}$	000FFF18н
U-TIMER 0	58	3A	ICR42	0000042Ан	314	000FFF14н
U-TIMER 1	59	3B	ICR43	0000042Bн	310 н	000FFFF10н
Reserved for system	60	3C	ICR44	0000042CH	30 CH	000FFFOCH
I/O extended serial	61	3D	ICR45	0000042D	308H	000FFF08н
16-bit free-run timer	62	3E	ICR46	0000042Ен	304	000FFF04н
Delayed interrupt cause bit	63	3F	ICR47	0000042FH	300 H	000FFFF00н
Reserved for system (used in REALOS *2)	64	40	-	-	2 FCH	000FFEFCH
Reserved for system (used in REALOS *2)	65	41	-	-	2F8н	000FFEF8 ${ }_{\text {н }}$
Used in INT instructions	$\begin{gathered} 66 \\ \text { to } \\ 255 \end{gathered}$	$\begin{aligned} & 42 \\ & \text { to } \\ & \text { FF } \end{aligned}$	-	-	$\begin{gathered} 2 \mathrm{~F} 4 \mathrm{H} \\ \text { to } \\ 00 \mathrm{O}_{\mathrm{H}} \end{gathered}$	$\begin{gathered} \text { 000FFEF4н } \\ \text { to } \\ 000 F F D 00 н \end{gathered}$

*1: ICR sets an interrupt level corresponding to the interrupt request into a register provided in the interrupt controller. ICR is provided for each interrupt request.
*2: Vector addresses are given by adding an offset value corresponding to each EIT (exception/interrupt/trap) cause to the TBR value.
TBR (Table Base Register) holds the top address of EIT vector table. Default value (Initial value upon reset 000 FFCOOH) is used in " \square Interrupt causes, interrupt vectors and interrupt control register allocations."

PERIPHERAL RESOURCES

1. I/O Ports

There are 2 types of I/O port register structure - port data register (PDR0 to PDRI) and data direction register (DDR0 to DDRI, AIC), where bits PDR0 to PDR I and bits DDR0 to DDRI corresponds respectively. Each bit on the register corresponds to an external pin. In port registers input/output register of the port configures input/ output function of the port, while corresponding bit (pin) configures input/output function in data direction registers. Bit " 0 " specifies input and " 1 " specifies output.

- For input (DDR = "0") setting;

PDR reading operation: reads level of corresponding external pin
PDR writing operation: writes set value to PDR

- For output (DDR = " 1 ") setting;

PDR reading operation: reads PDR value PDR writing operation: outputs PDR value to corresponding external pin

- Block diagram

- Port data register		
Address		Initial value
000003н	PDR0	XXXXXXXX в (R/W)
000002н	PDR1	XXXXXXXX в (R/W)
000001н	PDR2	XXXXXXXX в (R/W)
000005 ${ }_{\text {H }}$	PDR6	XXXXXXXX в (R/W)
00000Вн	PDR8	XXX- - XXX в (R/W)
00000Ан	PDR9	- - XXXXXX $^{\text {b (R/W) }}$
000009н	PDRA	- XXXXXXX в (R/W)
000008H	PDRB	XXXXXXXX в (R/W)
000011H	PDRD	XXXXXXXX в (R/W)
000012H	PDRE	XXXXXXXX в (R/W)
000013H	PDRF	XXXXXXXX в (R/W)
000014H	PDRG	XXXXXXXX в (R/W)
000015н	PDRH	XXXXXXXX в (R/W)
000016н	PDRI	--- - XXXX в (R/W)

- Data direction register

Address		Initial value
000603н	DDR0	00000000 в (W)
000602н	DDR1	00000000 в (W)
000601H	DDR2	00000000 в (W)
000605	DDR6	00000000 в (W)
00060Вн	DDR8	000-000 в (W)
00060Ан	DDR9	- - 000000 в (W)
000609H	DDRA	- 0000000 в (W)
000608H	DDRB	00000000 в (W)
0000D1н	DDRD	00000000 в (W)
0000D2н	DDRE	00000000 в (W)
0000D3н	DDRF	00000000 в (W)
0000D4н	DDRG	00000000 в (W)
0000D5 ${ }^{\text {H }}$	DDRH	00000000 в (W)
0000D6 ${ }^{\text {H}}$	DDRI	- - - 0000 в (W)
0000D7H	AIC*	00000000 в (W)

Access type(s) in parenthesis
R/W : Read and write access type
W : Write only

- : Vacant

X : Not fixed

* : A/D converter input/general-purpose input port selective by port D input

2. DMA Controller (DMAC)

The DMA controller is a module embedded in FR 20 series devices, and performs DMA (Direct Memory Access) transfer.

DMA transfer performed by the DMA controller transfers data without intervention of CPU, contributing to enhanced performance of the system.

- Block diagram

FR20 CPU

- Registers

*1: 32-bit length, fix upper 16 bits except for the least-significant 3 bits to " 0 ".

*2: 16-bit length, fix upper 8 bits to " 0 ".

*3: 16-bit length, fix lower 8 bits to " 0 ".

3. UART

The UART is a serial I/O port for supporting asynchronous (start-stop system) communication or CLK synchronous communication.

The MB91103 consists of 2 channels of UART.

- Registers

Access type(s) in parenthesis
R/W : Read and write access type

- : Vacant

X : Not fixed

4. I/O Extended Serial Interface

This block is a serial interface of 8 -bit $\times 1$ structure enabling clock synchronous data transfer. Data transfer format of LSB first or MSB first can be selected.

DMA transfer operation is enabled by interrupt request.
There are two serial I/O operating modes.
Internal shift clock mode : In this mode, data transfer operation is synchronized with internal clock.
It can be selected from 10/20/80/160/320 frequency division of machine clock.
External shift clock mode : In this mode, data transfer operation is synchronized with clock input from external pin (SCO). Data transfer by CPU instructions is enabled when the general port sharing the external pin (SCO) is so configured.

- Block diagram

- Registers

Access type(s) in parenthesis
R/W : Read and write access type

- : Vacant

X : Not fixed

5. U-TIMER (16-bit timer for UART baud rate generation)

The U-TIMER is a 16 -bit timer for generating UART baud rate. Combination of chip operating frequency and reload value of U-TIMER allows flexible setting of baud rate.

The U-TIMER operates as an interval timer by using interrupt issued on counter underflow.
The MB91103 has 2 channel U-TIMER embedded on the chip. By combining 2 interval timers in cascade, an interval of up to $2^{32} \times \phi$ can be counted.

- Block diagram

- Registers

Access type(s) in parenthesis
R/W : Read and write access type

- : Vacant

X : Not fixed

6. 16-bit Reload Timer

The 16-bit timer consists of a 16-bit down counter, a 16-bit reload timer, a pre-scaler for generating internal count clock and control registers.

Internal clock can be selected from 3 types of internal clocks (divided by 2/8/32 of machine clock) or external clock.
The input/output pin (TO) outputs a deleted toggle wave on every underflow in the reload mode and outputs a square wave indicating the timer is in counting operation in the one-shot mode.

The input pin (TI) is configured as an event input in the event count mode, a trigger input in the internal clock mode and also operates as a gate input.
The external event count function in the reload mode can operate as a external clock divider.
The MB91103 consists of 2 channels of 16 -bit reload timer.

- Block diagram

- Registers

Address	bit 15	Initial value	
0000002Ен	TMCSR0	$\begin{array}{lllllllll} - & - & - & 0 & 0 & 0 & 0 & \text { в } \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \text { в } \end{array}$	(R/W)
00000036н	TMCSR1		(R/W)
0000002Ан	TMR0	$\begin{aligned} & X X X X X X X X B \\ & X X X X X X B \end{aligned}$	(R)
00000032н	TMR1	$\begin{aligned} & \operatorname{XXXXXXXX} \\ & X X X X X X \end{aligned}$	(R)
00000028н	TMRLR0	$\begin{aligned} & \operatorname{XXXXXXXX} \\ & \text { XXXXXXX } \end{aligned}$	(W)
00000030н	TMRLR1	$\begin{aligned} & \operatorname{XXXXXXXX} \\ & X X X X X X X \end{aligned}$	(W)

Access type(s) in parenthesis
R/W: Read and write type
R : Read only
W : Write only

- : Vacant

X : Not fixed

7. Real Time Input/Output Timer

The 16 -bit input/output timer consists of a 16 -bit free-run timer, 8 output compares and 4 input capture modules. By using these functions, 8 independent wave outputs based on the 16 -bit free-run timer as well as input pulse width measurement and external clock cycle measurement can be realized.

- Block diagram

(1) 16-bit Free-Run Timer

The 16-bit free-run timer consists of a 16-bit up/down counter and a control status register.
Count value of this timer is used in output compare and input capture blocks as a basic time.

- Count clock can be selected from 4 types of frequencies ($\phi / 4, \phi / 16, \phi / 32, \phi / 64$).
- Interrupt can be issued upon count overflow.
- Selecting a mode and setting the count value as equaling to the value of compare register "0" initializes the counter.

- Block diagram

- Registers

Address	bit 15	bit 8		bit 0	Initial value	
00000074		TCDT			$00000000 \text { в }$ 00000000 в	(R/W)
00000077 ${ }_{\text {H }}$			TCCS		00000000 в	(R/W)

Access type(s) in parenthesis
R/W: Read and write access type

(2) Output Compare

The output compare consists of a 16-bit compare register, compare output pin block and a control register. When the value set in the compare register matches with the 16 -bit free-run timer value, output level is reversed, enabling an interrupt request to be issued.

- 8 compare registers can operate independently. A pair of compare registers can be used for controlling output pin levels.
- Initial output level of output pins can be specified.
- An interrupt is issued when compare value matches with timer value.

- Block diagram

Combinations of compare register 0 and 1: ch.0, ch. $1 /$ ch.2, ch.3/ch.4, ch.5/ch.6, ch. 7

- Registers

Address	bit 15	Initial value	
00000058H	OPCP0	$\begin{aligned} & \text { XXXXXXXX } \\ & \text { XXXXXX } \end{aligned}$	(R/W)
0000005Ан	OPCP1	$\begin{aligned} & \operatorname{XXXXXXX} \\ & X X X X X X X \end{aligned}$	(R/W)
00000060н	OPCP2	$\begin{aligned} & \operatorname{XXXXXXX} \\ & X X X X X X \end{aligned}$	(R/W)
00000062н	OPCP3	$\begin{aligned} & \text { XXXXXXXXB} \\ & X X X X X X B \end{aligned}$	(R/W)
00000068H	OPCP4	$\begin{aligned} & \text { XXXXXXXX } \\ & \text { XXXXXX } \end{aligned}$	(R/W)
0000006Ан	OPCP5	$\begin{aligned} & \operatorname{XXXXXXXX} \\ & X X X X X X X \end{aligned}$	(R/W)
00000070н	OPCP6	$\begin{aligned} & \text { XXXXXXXB} \\ & X X X X X X B \end{aligned}$	(R/W)
00000072н	OPCP7	$\begin{aligned} & \text { XXXXXXXX } \\ & \text { XXXXXXB} \end{aligned}$	(R/W)
00000054н	OCSO		(R/W)
0000005 CH	OCS1	$\begin{array}{cccccccc} -\quad-1 & 0 & 0 & 0 & 0 & 0 & \text { в } \\ 0 & 0 & 0 & 0 & - & - & 0 & 0 \end{array}$	(R/W)
00000064н	OCS2	$\begin{array}{cccccccc} - & - & 0 & 0 & 0 & 0 & 0 & \text { в } \\ 0 & 0 & 0 & 0 & - & - & 0 & 0 \end{array}$	(R/W)
0000006Сн	OCS1	$\begin{array}{cccccccc} -\quad-\quad & 0 & 0 & 0 & 0 & 0 & \text { в } \\ 0 & 0 & 0 & 0 & - & - & 0 & 0 \end{array}$	(R/W)

Access type(s) in parenthesis
R/W: Read and write access type

- : Vacant

X : Not fixed

(3) Input Capture

The input capture consists of input capture data registers and input capture control status registers.
The input capture detects a rising edge, a falling edge or both edges of external input signal and hold the 16 -bit free-run timer value at the moment into the register. The input capture can issue an interrupt upon edge detection, if enabled.
Every input capture has a corresponding output pin.

- Effective edge of external input can be selected from rising, falling or both edges.
- The input capture issues an interrupt upon detection of an effective edge, if enabled.

- Block diagram

- Registers

Address	bit 15 bit 8		Initial value	
00000048н	IPCP		$\begin{aligned} & \text { XXXXXXX } \\ & \text { XXXXXX } \end{aligned}$	(R)
0000004Ан	IPCP		$\begin{aligned} & \text { XXXXXXXX } \\ & \text { XXXXXX } \end{aligned}$	(R)
00000050H	IPCP		$\begin{aligned} & \text { XXXXXXXX } \\ & \text { XXXXXXX } \end{aligned}$	(R)
00000052н	IPCP		$\begin{aligned} & \text { XXXXXXXB} \\ & \text { XXXXXX } \end{aligned}$	(R)
00000045 ${ }^{\text {H }}$		ICSO	00000000 в	(R/W)
0000004 D		ICS1	00000000 в	(R/W)

Access type(s) in parenthesis
R/W: Read and write access type
R : Read only
X : Not fixed

8. Up/down Counter

The up/down counter consists of 3 event input pins, a 16-bit up/down counter, 16-bit reload/compare register and peripheral circuits (control/status register) controlling these functions.

The MB91103 consists of 2 channels of counter/timer.

- Block diagram

- Registers

Access type(s) in parenthesis
R/W : Read and write access type
R : Read only
W : Write only

- : Vacant

9. Bit Search Module

The bit search module detects transitions of data (0 to $1 / 1$ to 0) on the data written on the input registers and returns locations of the transitions.

- Block diagram

- Registers

Access type(s) in parenthesis
R/W: Read and write access type
R : Read only
W : Write only

10. A/D Converter

The A/D converter converts an analog input voltage to a digital value.

- Block diagram

- Registers

Address	bit 15	bit 0	Initial value
0000003Ан	ADCS		
00000038н	ADCR		$\begin{aligned} & 000000 X X \text { в } \\ & \text { XXXXXXX } \end{aligned}$

Access type(s) in parenthesis
R/W: Read and write access type
R : Read only
X : Not fixed

11. Interrupt Controller

The interrupt controller processes interrupt acknowledgments and arbitration between interrupts.

- Block diagram

*1: DLY1 stands for delayed interrupt module (delayed interrupt generation block).
*2: INT0 is a wake-up signal to clock control block in the sleep or stop status.
*3: HLDCAN is a bus release request signal for bus masters other than CPU.
*4: LEVEL5 to LEVEL0 are interrupt level outputs.
*5: VCT5 to VCT0 are interrupt vector outputs.

MB91103 Series

- Registers

Address		bit 0
00000400 ${ }^{\text {H }}$	ICR00	
00000401H	ICR01	
00000402н	ICR02	
00000403H	ICR03	
00000404H	ICR04	
00000405	ICR05	
00000406H	ICR06	
00000407H	ICR07	
00000408H	ICR08	
00000409H	ICR09	
0000040 Ан	ICR10	
0000040Bн	ICR11	
$0000040 \mathrm{CH}^{\text {H }}$	ICR12	
0000040D	ICR13	
0000040Eн	ICR14	
0000040FH	ICR15	
00000410 ${ }^{\text {H}}$	ICR16	
00000411H	ICR17	
00000412H	ICR18	
00000413H	ICR19	
00000414H	ICR20	
00000415	ICR21	
00000416	ICR22	
00000417 ${ }^{\text {H }}$	ICR23	
00000418H	ICR24	
00000419 ${ }^{\text {H }}$	ICR25	

Access type(s) in parenthesis
R/W : Read and write access type

- : Vacant

Address		Initial value
0000041 Ан	ICR26	-- 11111 в (R/W)
0000041 В	ICR27	-- 11111 в (R/W)
0000041 CH	ICR28	-- 11111 в (R/W)
0000041 D	ICR29	-- 11111 в (R/W)
0000041EH	ICR30	---11111 в (R/W)
0000041FH	ICR31	-- 11111 в (R/W)
00000420H	ICR32	-- 11111 в (R/W)
00000421H	ICR33	-- 11111 в (R/W)
00000422H	ICR34	-- 11111 в (R/W)
00000423H	ICR35	-- 11111 в (R/W)
00000424 ${ }_{\text {H }}$	ICR36	-- 11111 в (R/W)
00000425H	ICR37	-- 11111 в (R/W)
00000426H	ICR38	-- 11111 в (R/W)
00000427H	ICR39	-- 11111 в (R/W)
00000428H	ICR40	-- 11111 в (R/W)
00000429H	ICR41	-- 11111 в (R/W)
0000042 Ан	ICR42	-- 11111 в (R/W)
0000042Bн	ICR43	-- 11111 в (R/W)
0000042CH	ICR44	-- 11111 в (R/W)
0000042D	ICR45	-- 11111 в (R/W)
0000042EH	ICR46	---11111 в (R/W)
0000042FH	ICR47	-- 11111 в (R/W)
00000431H	HRCL	-- 11111 в (R/W)
00000430 ${ }^{\text {H}}$	DICR	----- 0 в (R/W)

12. External Interrupt/NMI Control Block

The external interrupt/NMI control block controls external interrupt request signals input to NMI and INTO to INT 7 pins.

Detecting levels can be selected from "H", "L", rising edge and falling edge (not for NMI).
INT1 and INT0 can be used as a DMA request signal.

- Block diagram

- Registers

Address	bit 15	bit 8	bit 0	Initial value	
00000095		ENIR		00000000 в	(R/W)
00000094H	EIRR			00000000 в	(R/W)
00000098н		ELVR		$\begin{aligned} & 00000000 \text { в } \\ & 00000000 \text { в } \end{aligned}$	(R/W)

Access type(s) in parenthesis
R/W : Read and write access type

13. Clock Generation/control Block

The clock generation/control block consists of the following 6 blocks:

- CPU clock generation (including gear function)
- Peripheral clock generation (including gear function)
- Reset generation and cause hold
- Standby function
- DMA request prohibit
- PLL (duty ratio adjustment circuit included)

- Registers

Access type(s) in parenthesis
R/W: Read and write access type
W : Write only
$\overline{\mathrm{x}}$: Vacant
X : Not fixed

14. DRAM Controller

The DRAM controller controls interface between CPU and DRAM.
This function is active only when DRME bit of AMD4, AMD5 are set to " 1 ".
The DMCR register also controls parity check functions. This function is active other than the DRAM interface.

- Registers

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$(\mathrm{Vss}=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss-0.3	Vss +7.0	V	
Analog supply voltage *1	AV cc	Vss-0.3	Vss +7.0	V	
Analog reference voltage *1	AVRH	Vss-0.3	Vss +7.0	V	
Analog reference voltage *1	AVRL	Vss-0.3	Vss +7.0	V	
Input voltage *2	V	Vss-0.3	$\mathrm{Vcc}+0.3$	V	
Output voltage *2	Vo	Vss-0.3	$\mathrm{Vcc}+0.3$	V	
"L" level maximum output current *3	loL	-	10	mA	
"L" level average output current *4	lolav	-	8	mA	
"L" level maximum total output current	EloL	-	100	mA	
"L" level average total output current *5	Elolav	-	50	mA	
"H" level maximum output current *3	Іон	-	-10	mA	
"H" level average output current *4	Iohav	-	-4	mA	
"H" level maximum total output current	Гloн	-	-50	mA	
"H" level average total output current *5	ミlohav	-	-20	mA	
Power dissipation	Pd	-	990	mW	
Operating temperature	TA	-10	+70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: Make sure that the voltage does not exceed Vcc +0.3 V .
Make sure AV cc does not exceed Vcc when turning on the device.
*2: Vı and Vo must not exceed Vcc + 0.3 V.
*3: Maximum output current is a peak current value measured at a corresponding pin.
*4: Average output current is an average current for a 100 ms period at a corresponding pin.
*5: Average total output current is an average current for a 100 ms period for all corresponding pins.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

$(\mathrm{Vss}=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	V cc	4.5	5.5	V	Normal operation
		3.0	5.5	V	Retaining the RAM state in stop mode
Analog supply voltage	AV cc	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	
Analog reference voltage	AVRH	AVRL	AVcc	V	
	AVRL	AVss	AVRH	V	
Operating temperature	$\mathrm{T}_{\text {A }}$	-10	+70	${ }^{\circ} \mathrm{C}$	

Note: • Use external clock if source oscillating clock > 25 MHz .

- PLL oscillation stabilizing period $>100 \mu s$

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

$$
\left(\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
" H " level input voltage	VIH	Input other than following symbols	-	0.7 Vcc	-	V cct +0.3	V	
	Viнs	*1	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	Hysteresis input
	$\mathrm{V}_{\text {IHT }}$	*2	-	2.2	-	$\mathrm{V}_{\text {cc }}+0.3$	V	TTL level
	Vінм	MD0 to MD2	-	V cc -0.3	-	$\mathrm{V}_{\text {cc }}+0.3$	V	
"L" level input voltage	VIL	Input other than following symbols	-	Vss -0.3	-	0.3 Vcc	V	
	Vııs	*1	-	Vss -0.3	-	0.2 Vcc	V	Hysteresis input
	VILT	*2	-	Vss -0.3	-	0.8	V	TTL level
	VILM	MD0 to MD2	-	Vss -0.3	-	Vss +0.3	V	
Open-drain output pin application voltage	Vo	PF6, PF7	-	Vss -0.3	-	$\mathrm{Vcc}+0.3$	V	
"H" level output voltage	Vон	$\begin{aligned} & \text { D00 to D23 } \\ & \text { A00 to A31 } \\ & \text { P8 to PI } \\ & \text { (Except for PF6, PF7) } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	4.0	-	-	V	
"L" level output voltage	VoL1	D00 to D31 A00 to A23 P8 to PI (Except for PF6, PF7) (Except for PH4 to PH7) (Except for PIO to Pl2)	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V} \\ & \mathrm{loL}=8.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
	VoL2	$\begin{aligned} & \mathrm{PH} 4 \text { to } \mathrm{PH} 7 \\ & \text { PI0 to PI2 } \end{aligned}$	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V} \\ & \mathrm{loL}=12.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
	Vold	PF6, PF7	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V} \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Input leakage current (Hi-Z output leakage current)	ILI	D00 to D31 A00 to A23 P8 to PI	$\begin{aligned} & \mathrm{V}_{c c}=5.5 \mathrm{~V} \\ & 0.45 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{c c} \end{aligned}$	-	-	± 5	$\mu \mathrm{A}$	
Pull-up resistance	Rpull	RST	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=0.45 \mathrm{~V} \end{aligned}$	25	50	100	$\mathrm{k} \Omega$	
Power supply current	Icc	V cc	$\begin{aligned} & \mathrm{Fc}=25 \mathrm{MHz} \\ & \mathrm{Vcc}=5.5 \mathrm{~V} \end{aligned}$	-	-	180	mA	
	Iccs		$\begin{aligned} & \mathrm{F}_{\mathrm{c}}=25 \mathrm{MHz} \\ & \mathrm{Vcc}=5.5 \mathrm{~V} \end{aligned}$	-	-	100	mA	Sleep mode
Input capacitance	Cin	Except for Vcc, $\mathrm{V}_{\mathrm{ss}}, \mathrm{AV} \mathrm{cc}, \mathrm{AV} \mathrm{ss}$	-	-	10	-	pF	

*1: Hysteresis input pins : $\overline{H S T}, \overline{\mathrm{NMI}}, \mathrm{PE} 0$ to PE4, PE6, PE7, PF1, PF2, PF4, PF5, PG1 to PG3, PH0 to PH3, RST
*2: TTL level input pins :D00 to D31, RDY, BRQ, PAR0 to PAR3

4. AC Characteristics

(1) Clock Timing Rating
$\left(\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	$\begin{gathered} \text { Pin } \\ \text { name } \end{gathered}$	Condition	Value		Unit	Remarks
				Min.	Max.		
Clock frequency	Fc	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$	-	10	50	MHz	
Clock cycle time	tc	$\begin{aligned} & \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$		20	100	ns	
Frequency shift ratio (when locked)*1	Δf	-		-	5	\%	
Input clock pulse width	$\begin{aligned} & \mathrm{P}_{\mathrm{wH}} \\ & \mathrm{P}_{\mathrm{wL}} \end{aligned}$	X0		8.5	-	ns	
Input clock rising/falling time	$\begin{aligned} & \text { tcR } \\ & \text { tcc } \end{aligned}$	X0		-	8	ns	tcr + tcF
Internal operating clock frequency	fcp	-		0.625 *2	25	MHz	CPU system
	fcpp	-		0.625 *2	25	MHz	Peripheral system
Internal operating clock cycle time	tcp	-		40	1600 *2	ns	CPU system
	tcpp	-		40	1600 *2	ns	Peripheral system

*1: Frequency shift ratio stands for deviation ratio of the operating clock from the center frequency in the clock multiplication system.

$$
\Delta f=\frac{|\alpha|}{f_{0}} \times 100(\%)
$$

*2: These values are for a minimum clock of 10 MHz input to XO , a divide-by-2 system of the source oscillation and a $1 / 8$ gear.

- AC rating measurement conditions

(2) Clock Output Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Cycle time	toyc	CLK	-	tcp	-	ns	*1
CLK $\uparrow \rightarrow$ CLK \downarrow	tchcL	CLK		$\begin{gathered} 1 / 2 \times \text { tcrc } \\ -10 \end{gathered}$	$\begin{gathered} 1 / 2 \times \text { tcrc } \\ +10 \end{gathered}$	ns	*2
CLK $\downarrow \rightarrow$ CLK \uparrow	tclch	CLK		$\begin{gathered} 1 / 2 \times \text { tcyc } \\ -10 \end{gathered}$	$\begin{gathered} 1 / 2 \times \text { tcyc } \\ +10 \end{gathered}$	ns	*3

*1: tocc is a frequency for 1 clock cycle including a gear cycle.
*2: This rating is for a gear cycle of $\times 1$.
When a gear cycle of $1 / 2,1 / 4,1 / 8$ is selected, substitute n of the following equations with $1 / 2,1 / 4,1 / 8$, respectively.

- Min. : $(1-\mathrm{n} / 2) \times$ tcyc -10
- Max. : $(1-\mathrm{n} / 2) \times \mathrm{tcyc}+10$
*3: This rating is for a gear cycle of $\times 1$.
When a gear cycle of $1 / 2,1 / 4,1 / 8$ is selected, substitute n of the following equations with $1 / 2,1 / 4,1 / 8$, respectively.
- Min. : $\mathrm{n} / 2 \times \mathrm{tcyc}-10$
- Max. : $\mathrm{n} / 2 \times$ tcyc +10

The relation between X0 input and clock output for configured by CHC/CCK1/CCK0 settings of GCR (Gear control register) is as follows:

- Ceramic oscillator applications

Recommended circuit (2 contacts)

Recommended circuit (3 contacts)

* : Murata Mfg. Co., Ltd.
- Discreet type

Frequency range [MHz]	Model	Circuit parameter				Contact type
		$\begin{gathered} \mathrm{C1} \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{gathered} \mathrm{C2} \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{gathered} \mathbf{R f}{ }^{* 1} \\ {[\Omega]} \end{gathered}$	$\begin{gathered} \mathbf{R d}^{* 2} \\ {[\Omega]} \end{gathered}$	
10.00 to 13.00	CSA \square MTZ	30	30	-	0	2 contacts
	CST \square MTW	(30)	(30)	-	0	3 contacts
13.01 to 15.99	CSA \square MXZ040	15	15	-	0	2 contacts
	CST \square MXW0C3	(15)	(15)	-	0	3 contacts
16.00 to 19.99	CSA \square MXZ040	10	10	-	0	2 contacts
	******************	****	****	****	****	3 contacts
20.00 to 25.00	CSA \square MXZ040	5	5	-	0	2 contacts
	CST \square MXW0H1	(5)	(5)	-	0	3 contacts

*1: Feed-back resistance Rf internally connected in LSI.
*2: No damping resistance required.
(): C_{1} and C_{2} internally connected.

- SMD type

Frequency range [MHz]	Model	Circuit parameter				Contact type
		$\begin{gathered} \mathrm{C} 1 \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{gathered} \mathrm{C} 2 \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{gathered} \mathrm{Rf}^{* 1} \\ {[\Omega]} \end{gathered}$	$\begin{gathered} \left.\mathbf{R d}_{[2}{ }^{2}\right] \end{gathered}$	
10.00 to 13.00	CSACS \square MT	30	30	-	0	2 contacts
	CSTCS \square MT	(30)	(30)	-	0	3 contacts
13.01 to 15.99	CSACS \square MX040	15	15	-	0	2 contacts
	CSTCS \square MXOC3	(15)	(15)	-	0	3 contacts
16.00 to 19.99	CSACS \square MX040	10	10	-	0	2 contacts
	CSTCS \square MXOC2	(10)	(10)	-	0	3 contacts
20.00 to 25.00	CSACS \square MX040	5	5	-	0	2 contacts
	CSTCS $\square \mathrm{MXOH} 1$	(5)	(5)	-	0	3 contacts

*1: Feed-back resistance Rf internally connected in LSI.
*2: No damping resistance required.
(): C_{1} and C_{2} internally connected.
(3) Reset Input

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Reset input time	trstı	$\overline{\mathrm{RST}}$	-	tcp $\times 5$	-	ns	

ST

(4) Power-on Reset

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Power supply rising time	t_{R}	Vcc	-	-	30	ms	Vcc < 0.2 V before turning power supply
Power supply shut off time	toff	Vcc		1	-	ms	For repeated operations
Oscillation stabilizing time	tosc	-		$2 \times \operatorname{tc} \times 2^{21}$	-	ns	

(5) Normal Bus Access Read/write Operation

$\left(\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
$\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS5}}$ delay time	tchcsl	$\frac{\mathrm{CLK}}{\mathrm{CSO}} \text { to } \overline{\mathrm{CS5}}$	-	-	15	ns	
	tchCsh			-	15	ns	
Address delay time	tchav	$\begin{aligned} & \text { CLK } \\ & \text { A23 to A00 } \end{aligned}$		-	15	ns	
Data (parity) delay time	tchov	$\begin{aligned} & \text { CLK } \\ & \text { D31 to D00 } \\ & \text { PAR0 to PAR3 } \end{aligned}$		-	15	ns	
$\overline{\mathrm{RD}}$ delay time	tclrl	CLK		-	6	ns	
	tcler	RD		-	6	ns	
	tclwL	CLK		-	6	ns	
to WR3 delay time	tclwh	WR0 to WR3		-	6	ns	
Valid address \rightarrow valid data (parity) input time	tavov	$\begin{aligned} & \text { A23 to A00 } \\ & \text { D31 to D00 } \\ & \text { PAR0 to PAR3 } \end{aligned}$		-	$\begin{gathered} 3 / 2 \times \operatorname{tcvc} \\ -25 \end{gathered}$	ns	$\begin{aligned} & \star_{1} \\ & \star_{2} \end{aligned}$
$\overline{\mathrm{RD}} \downarrow \rightarrow$ valid data (parity) input time	trldv	$\overline{R D}$ D31 to D00 PAR0 to PAR3		-	tcyc - 10	ns	*1
Data (parity) set up $\rightarrow \overline{\mathrm{RD}} \uparrow$ time	tosrh			10	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ data (parity) hold time	trhox			0	-	ns	

*1: When bus timing is delayed by automatic wait insertion or RDY input, add (tcyc \times extended cycle number for delay) to this rating.
*2: This rating is for a gear cycle of $\times 1$.
When a gear cycle of $1 / 2,1 / 4,1 / 8$ is selected, substitute n in the following equation with $1 / 2,1 / 4,1 / 8$, respectively.

- Equation: $(2-\mathrm{n} / 2) \times \mathrm{tcyc}-25$

(6) Time-sharing Bus Read/Write Operation

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
ALE delay time	tсццн	$\begin{aligned} & \hline \text { CLK } \\ & \text { ALE } \end{aligned}$	-	-	6	ns	
	tclul			-	6	ns	
$\overline{\text { CS1 }}$ delay time	tchcsl	$\frac{\text { CLK }}{\text { CS1 }}$		-	15	ns	
	tchCSH			-	15	ns	
Address delay time	tchav	CLK D31 to D16		-	15	ns	
Data delay time	tchov	CLK D31 to D16		-	15	ns	
$\overline{\mathrm{RD}}$ delay time	tclri	$\frac{\mathrm{CLK}}{\mathrm{RD}}$		-	6	ns	
	tclrh			-	6	ns	
$\overline{\text { WR0, }} \overline{\text { WR1 }}$ delay time	tclw	$\frac{\text { CLK }}{\text { WR0, }} \overline{\text { WR1 }}$		-	6	ns	
	tclwh			-	6	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ valid data input time	trlov	RD D31 to D16		-	tcrc - 10	ns	
Data set up $\rightarrow \overline{\mathrm{RD}} \uparrow$ time	tosRH			10	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ data hold time	trhox			0	-	ns	

*: When bus timing is delayed by automatic wait insertion or RDY input, add (tcrc \times extended cycle number for delay) to this rating.

MB91103 Series

(7) Ready Input Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
ACLK delay time	tclakt	CLK ACLK	-	-	6	ns	
	tclakl			-	6	ns	
RDY set up time \rightarrow ACLK $\uparrow \downarrow$	trovs	$\begin{aligned} & \text { RDY } \\ & \text { ACLK } \end{aligned}$		10	-	ns	
ACLK $\uparrow \downarrow \rightarrow$ RDY hold time	troy	$\begin{aligned} & \text { ACLK } \\ & \text { RDY } \end{aligned}$		0	-	ns	

(8) Hold Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
$\overline{\text { BGRNT delay time }}$	tchbal	CLK BGRNT	-	-	6	ns	
	tснвGн			-	6	ns	
Pin floating $\rightarrow \overline{\text { BGRNT }} \downarrow$ time	txhaL	$\overline{\text { BGRNT }}$		tcyc - 10	tcyc + 10	ns	
$\overline{\text { BGRNT }} \uparrow \rightarrow$ pin valid time	thahv			tcyc - 10	tcyc + 10	ns	

Note: There is a delay time of more than 1 cycle from BRQ input to BGRNT change.

(9) Normal DRAM Mode Read/Write Cycle

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
RAS delay time	tclaah	$\begin{array}{\|l\|} \text { CLK } \\ \text { RAS } \end{array}$	-	-	6	ns	
	tchral			-	6	ns	
CAS delay time	tclcasl	$\begin{array}{\|l} \text { CLK } \\ \text { CAS } \end{array}$		-	6	ns	
	tclcash			-	6	ns	
ROW address delay time	tchrav	$\begin{aligned} & \text { CLK } \\ & \text { A23 to A00 } \end{aligned}$		-	15	ns	
COLUMN address delay time	tchcav			-	15	ns	
$\overline{\text { DW }}$ delay time	tchow	CLK		-	15	ns	
	tchown	DW		-	15	ns	
Output data (parity) delay time	tchov1	CLK D31 to D00 PAR0 to PAR3		-	15	ns	
RAS $\downarrow \rightarrow$ valid data (parity) input time	trldv	RAS D31 to D00 PAR0 to PAR3		-	$\begin{gathered} 5 / 2 \times \text { tcrc } \\ -16 \end{gathered}$	ns	$\begin{aligned} & \star_{1} \\ & { }_{2} \end{aligned}$
CAS $\downarrow \rightarrow$ valid data (parity) input time	tclov	CAS D31 to D00 PAR0 to PAR3		-	tcyc - 10	ns	*1
CAS $\uparrow \rightarrow$ data (parity) hold time	tcadh			0	-	ns	

CAS: CSOL to CS1H pins are for CAS signal outputs.
DW: DW0, DW1 and CSOH to CS1H are used for WE outputs.
*1: When Q1 cycle or Q4 cycle is extended for "1" cycle, add tcyc time to this rating.
*2: This rating is for a gear cycle of $\times 1$.
When a gear cycle of $1 / 2,1 / 4,1 / 8$ is selected, substitute " n " in the following equation with $1 / 2,1 / 4,1 / 8$, respectively.

- Equation: $(3-\mathrm{n} / 2) \times \mathrm{tcyc}-16$

(10) Normal DRAM Mode Fast Page Read/Write Cycle

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
RAS delay time	tclaah	CLK, RAS	-	-	6	ns	
CAS delay time	tclcasl	$\begin{aligned} & \text { CLK } \\ & \text { CAS } \end{aligned}$		-	6	ns	
	tclcash			-	6	ns	
COLUMN address delay time	tchcav	$\begin{aligned} & \text { CLK } \\ & \text { A23 to A00 } \end{aligned}$		-	15	ns	
$\overline{\text { DW }}$ delay time	tchown	$\frac{\text { CLK }}{\text { DW }}$		-	15	ns	
Output data (parity) delay time	tchov 1	CLK D31 to D00 PAR0 to PAR3		-	15	ns	
CAS $\downarrow \rightarrow$ valid data (parity) input time	tclov	CAS D31 to D00 PAR0 to PAR3		-	tcyc - 10	ns	*
CAS $\uparrow \rightarrow$ data (parity) hold time	tcadh			0	-	ns	

CAS: CSOL to CS1H pins are for CAS signal outputs.
$\overline{\mathrm{DW}}: \overline{\mathrm{DWO}}, \overline{\mathrm{DW}}$ and CSOH to CS1H are used for $\overline{\mathrm{WE}}$ outputs.

* : When Q4 cycle is extended for 1 cycle, add tcyc time to this rating.

MB91103 Series

(11) CBR Refresh

$\left(\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%\right.$, $\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
RAS delay time	tcleah	$\begin{aligned} & \text { CLK } \\ & \text { RAS } \end{aligned}$	-	-	6	ns	
	tchral			-	6	ns	
CAS delay time	tclcasl	$\begin{aligned} & \text { CLK } \\ & \text { CAS } \end{aligned}$		-	6	ns	
	tclcash			-	6	ns	

CAS: CSOL to CS1H pins are for CAS signal outputs.

(12) Self Refresh

$\left(\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
RAS delay time	tclrah	$\begin{array}{\|l\|} \hline \text { CLK } \\ \text { RAS } \end{array}$	-	-	6	ns	
	tchral			-	6	ns	
CAS delay time	tclcas	$\begin{aligned} & \text { CLK } \\ & \text { CAS } \end{aligned}$		-	6	ns	
	tclcash			-	6	ns	

CAS: CSOL to CS1H pins are for CAS signal outputs.

(13) UART Timing

$\left(\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%\right.$, $\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	-	Internal shift clock mode	8 tcycp	-	ns	
SCLK $\downarrow \rightarrow$ SOUT delay time	tstov	-		-80	80	ns	
Valid SIN \rightarrow SCLK \uparrow	tivs	-		100	-	ns	
SCLK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		60	-	ns	
Serial clock "H" pulse width	tshsL	-	External shift clock mode	4 tcycp	-	ns	
Serial clock "L" pulse width	tstsh	-		4 tcycp	-	ns	
SCLK $\downarrow \rightarrow$ SOUT delay time	tsıov	-		-	150	ns	
Valid SIN \rightarrow SCLK \uparrow	tivs	-		60	-	ns	
SCLK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		60	-	ns	

Notes: - This rating is for AC characteristics in CLK synchronous mode.

- tcycp is a cycle time of peripheral system clock.
- Internal shift clock mode

- External shift clock mode

(14) I/O Extended Serial Timing

$\left(\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%\right.$, $\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	-	Internal shift clock mode	8 tcycp	-	ns	
SCLK $\downarrow \rightarrow$ SOUT delay time	tslov	-		-	80	ns	
Valid SIN \rightarrow SCLK \uparrow	tivsh	-		1 tcycp	-	ns	
SCLK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		1 tcycp	-	ns	
Serial clock "H" pulse width	tshst	-	External shift clock mode	230	-	ns	Max. external frequency is 2 MHz
Serial clock "L" pulse width	tsLsh	-		230	-	ns	
SCLK $\downarrow \rightarrow$ SOUT delay time	tslov	-		-	2 tcycp	ns	
Valid SIN \rightarrow SCLK \uparrow	tivsh	-		1 tcycp	-	ns	
SCLK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		2 tcycp	-	ns	

Note: tcycp is a cycle time of peripheral system clock.

- Internal shift clock mode

- External shift clock mode

(15) Timer System Input Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Input pulse width	ttiwh ttiwl	TIO, TI1	-	2 tcycp	-	ns	

Note: tcycp is a cycle time of peripheral system clock.

TIO, TII

(16) Trigger System Input Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
A/D start trigger input time	tatgx	ATG	-	5 tcycp	-	ns	
Input capture input trigger	tinp	IC0 to IC3		5 tcycp	-	ns	

Note: tcycp is a cycle time of peripheral system clock.

(17) Up/Down Counter Input Timing

Note: tcycp is a cycle time of peripheral system clock.

(18) DMA Controller Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
DREQ input pulse width	torwh	$\begin{aligned} & \hline \text { DREQ0 } \\ & \text { DREQ1 } \end{aligned}$	-	2 tcyc	-	ns	
DACK "H" output pulse width	tdaw	DACK0 DACK1		tcyc	3 tovc	ns	
DACK "L" output pulse width	toawL	DACK0 DACK1		tcyc	3 toyc	ns	

CLK

DREQ0, DREQ1

DACKO,
DACK1 ("H" output)

5. A/D Conversion Block Electrical Characteristics

$\left(\mathrm{A} \mathrm{V}_{\mathrm{cc}}=\mathrm{V} \mathrm{cc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{AV}$ ss $=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leq \mathrm{AVRH}-\mathrm{AVRL}\right)$

Parameter	Symbol	Pin name	Value			Unit
			Min.	Typ.	Max.	
Resolution	-	-	-	10	10	BIT
Total error	-	-	-	-	± 3.0	LSB
Linearity error	-	-	-	-	± 2.0	LSB
Differentiation linearity error	-	-	-	-	± 1.5	LSB
Zero transition voltage	Vot	AN0 to AN7	AVRL - 1.5	AVRL + 0.5	AVRL + 2.5	LSB
Full-scale transition voltage	Vfst	AN0 to AN7	AVRH - 4.5	AVRH-1.5	AVRH + 0.5	LSB
Conversion time	-	-	5.6 *1	-	-	$\mu \mathrm{S}$
Analog port input current	Iain	AN0 to AN7	-	0.1	10	$\mu \mathrm{A}$
Analog input voltage	Vain	AN0 to AN7	AVRL	-	AVRH	V
Reference voltage	-	AVRH	AVRL	-	AVcc	V
	-	AVRL	AVss	-	AVRH	V
Power supply current	IA	AV cc	-	4	-	mA
	ІАн		-	-	$5^{* 2}$	$\mu \mathrm{A}$
Reference voltage supply current	IR	AVRH	-	200	-	$\mu \mathrm{A}$
	ІRH		-	-	170 *2	$\mu \mathrm{A}$
Conversion variance between channels	-	AN0 to AN7	-	-	4	LSB

*1: V cc $=5.0 \mathrm{~V} \pm 10 \%$, machine clock of 25 MHz
*2. Current value for A / D converters not in operation, CPU stop mode ($\mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{cc}=\mathrm{AVRH}=5.0 \mathrm{~V}$)
Notes: - As the absolute value of |AVRH-AVRL| decreases, relative error increases.

- Output impedance of external circuit of analog input under following conditions;

Output impedance of external circuit < $7 \mathrm{k} \Omega$ approx.
If output impedance of external circuit is too high, analog voltage sampling time may be too short for accurate sampling (sampling time is 5.6μ s for a machine clock of 25 MHz).

- Analog input circuit model plan

Ron $3=0.5 \mathrm{k} \Omega$ approx.
Ron4 $=0.5 \mathrm{k} \Omega$ approx.
$\mathrm{C}_{0}=60 \mathrm{pF}$ approx.
$\mathrm{C}_{1}=4 \mathrm{pF}$ approx.
Note: Listed values are for reference purposes only.

6. Definitions of A/D Converter Descriptions

- Resolution

The smallest change in analog voltage detected by A/D converter.

- Linearity error

A deviation of actual conversion characteristic from a line connecting the zero-traction point (between "00 0000 0000 " \leftrightarrow "00 000000001 ") to the full-scale transition point (between "11 11111110" \leftrightarrow " 111111 1111").

- Differential linearity error

A deviation of a step voltage for changing the LSB of output code from ideal input voltage.

- Total error

A difference between actual value and theoretical value. The overall error includes zero-transition error, fullscale transition error and linearity error.

[^1]
(Continued)

Vот: A voltage for causing transition of digital output from (000) H to (001) H

VFsT: A voltage for causing transition of digital output from (3FE)H to (3FF)H

OUTPUT VS LOAD CAPACITANCE CHARACTERISTIC

INSTRUCTIONS

1. How to Read Instruction Set Summary

(1) Names of instructions.

Instructions marked with * are not included in CPU specifications. These are extended instruction codes added/extended at assembly language levels.
(2) Addressing modes specified as operands are listed in symbols.

Refer to " 2 . Addressing mode symbols" for further information.
(3) Instruction types.
(4) Hexa-decimal expressions of instructions.
(5) Number of machine cycles needed for execution.
a: Memory access cycle. May be extended by Ready function.
b: b: Memory access cycle. May be extended by Ready function.
If an object register in a LD operation is referenced by an immediately following instruction, the interlock function is activated and number of cycles needed for execution increases.
c: If an immediately following instruction operates to an object of R15, SSP or USP in read/write mode or if the instruction belongs to instruction format A group, the interlock function is activated and number of cycles needed for execution increases by 1 to make the total number of 2 cycles needed.
d: If an immediately following instruction refers to MDH/MDL, the interlock function is activated and number of cycles needed for execution increases by 1 to make the total number of 2 cycles needed.
For $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d , minimum execution cycle is 1 .
(6) Change in flag sign.

- Flag meanings

N : Negative flag
Z: Zero flag
V: Over flag
C: Carry flag

- Flag change

C: Change

- : No change

0 : Clear
1 : Set
(7) Operation carried out by instruction.

2. Addressing Mode Symbols

Ri	Register direct (R0 to R15, AC, FP, SP)
Rj	: Register direct (R0 to R15, AC, FP, SP)
R13	: Register direct (R13, AC)
Ps	: Register direct (Program status register)
Rs	: Register direct (TBR, RP, SSP, USP, MDH, MDL)
CRi	: Register direct (CR0 to CR15)
CRj	: Register direct (CR0 to CR15)
\#i8	: Unsigned 8-bit immediate (-128 to 255)
	Note: -128 to -1 are interpreted as 128 to 255
\#i20	: Unsigned 20-bit immediate (-0X80000 to 0XFFFFFF)
	Note: -0X7FFFF to -1 are interpreted as 0X7FFFF to 0XFFFFF
\#i32	: Unsigned 32-bit immediate (-0X80000000 to 0XFFFFFFFF)
	Note: -0X80000000 to -1 are interpreted as 0X80000000 to 0XFFFFFFFF
\#s5	: Signed 5-bit immediate (-16 to 15)
\#s10	: Signed 10-bit immediate (-512 to 508, multiple of 4 only)
\#u4	: Unsigned 4-bit immediate (0 to 15)
\#u5	: Unsigned 5-bit immediate (0 to 31)
\#u8	: Unsigned 8-bit immediate (0 to 255)
\#u10	: Unsigned 10-bit immediate (0 to 1020, multiple of 4 only)
@dir8	: Unsigned 8-bit direct address (0 to 0XFF)
@dir9	: Unsigned 9-bit direct address (0 to 0X1FE, multiple of 2 only)
@dir10	: Unsigned 10-bit direct address (0 to 0X3FC, multiple of 4 only)
label9	: Signed 9-bit branch address (-0×100 to 0XFC, multiple of 2 only)
label12	: Signed 12-bit branch address (-0X800 to 0X7FC, multiple of 2 only)
label20	: Signed 20-bit branch address (-0X80000 to 0X7FFFF)
label32	: Signed 32-bit branch address (-0X80000000 to 0X7FFFFFFF)
@Ri	: Register indirect (R0 to R15, AC, FP, SP)
@Rj	: Register indirect (R0 to F15, AC, FP, SP)
@(R13, Rj)	Register relative indirect (Rj: R0 to R15, AC, FP, SP)
@(R14, disp10) :	: Register relative indirect (disp10: -0X200 to 0X1FC, multiple of 4 only)
@(R14, disp9)	: Register relative indirect (disp9: -0X100 to 0XFE, multiple of 2 only)
@(R14, disp8)	: Register relative indirect (disp8: -0X80 to 0X7F)
@(R15, udisp6) :	: Register relative (udisp6: 0 to 60, multiple of 4 only)
@Ri+	: Register indirect with post-increment (R0 to R15, AC, FP, SP)
@R13+	: Register indirect with post-increment (R13, AC)
@SP+	: Stack pop
@-SP	: Stack push
(reglist)	: Register list

MB91103 Series

3. Instruction Types

Type A

Type B

Type C

Type *C'

ADD, ADDN, CMP, LSL, LSR and ASR instructions only

Type D

OP	u8/rel8/dir/reglist
8	8

OP	SUB-OP	Ri
8	4	4

Type F

OP	rel11
11	

4. Detailed Description of Instructions

- Add/subtract operation instructions

Mnemonic		Type	OP	Cycle	N Z V C	Operation	Remarks
$\begin{array}{\|l} \hline \text { ADD } \\ \text { * ADD } \end{array}$	$\begin{aligned} & \mathrm{Rj}, \mathrm{Ri} \\ & \# \mathrm{~s} 5, \mathrm{Ri} \end{aligned}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{C}^{\prime} \end{aligned}$	$\begin{aligned} & \text { A6 } \\ & \text { A4 } \end{aligned}$	1	$\begin{aligned} & \hline \text { C C C C } \\ & \text { C C C C } \end{aligned}$	$\begin{aligned} & \mathrm{Ri}+\mathrm{Rj} \rightarrow \mathrm{Ri} \\ & \mathrm{Ri}+\mathrm{s} 5 \rightarrow \mathrm{Ri} \end{aligned}$	MSB is interpreted as a sign in assembly language
$\begin{aligned} & \text { ADD } \\ & \text { ADD2 } \end{aligned}$	\#u4, Ri \#u4, Ri	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { A4 } \\ & \text { A5 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { C C C C } \\ & \text { C C C C } \end{aligned}$	$\begin{aligned} & \mathrm{Ri}+\operatorname{extu}(\mathrm{i} 4) \rightarrow \mathrm{Ri} \\ & \mathrm{Ri}+\mathrm{extu}(\mathrm{i} 4) \rightarrow \mathrm{Ri} \end{aligned}$	Zero-extension Sign-extension
ADDC	Rj, Ri	A	A7	1	CCCC	$R i+R j+c \rightarrow R i$	Add operation with sign
ADDN * ADDN ADDN ADDN2	Rj, Ri \#s5, Ri \#u4, Ri \#u4, Ri	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C}^{\prime} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	A2 A0 A0 A1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & \mathrm{Ri}+\mathrm{Rj} \rightarrow \mathrm{Ri} \\ & \mathrm{Ri}+\mathrm{s} 5 \rightarrow \mathrm{Ri} \\ & \mathrm{Ri}+\mathrm{extu}(\mathrm{i}) \rightarrow \mathrm{Ri}) \rightarrow \\ & \mathrm{Ri}+\text { extu (i4) } \rightarrow \mathrm{Ri} \end{aligned}$	MSB is interpreted as a sign in assembly language Zero-extension Sign-extension
SUB	Rj, Ri	A	AC	1	CCCC	$\mathrm{Ri}-\mathrm{Rj} \rightarrow \mathrm{Ri}$	
SUBC	Rj, Ri	A	AD	1	CCCC	$\mathrm{Ri}-\mathrm{Rj}-\mathrm{c} \rightarrow \mathrm{Ri}$	Subtract operation with carry
SUBN	Rj, Ri	A	AE	1	- - - -	$\mathrm{Ri}-\mathrm{Rj} \rightarrow \mathrm{Ri}$	

- Compare operation instructions

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
CMP	Rj, Ri	A	AA	1	CCCC	Ri-Rj	
* CMP	\#s5, Ri	C'	A8	1	CCCC	Ri - s5	MSB is interpreted as a sign in assembly laMnguage
CMP	\#u4, Ri	C	A8	1	CCCC	Ri + extu (i4)	Zero-extension
CMP2	\#u4, Ri	C	A9	1	CCCC	Ri + extu (i4)	Sign-extension

- Logical operation instructions

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
AND	Rj, Ri	A	82	1	CC--	Ri \& $=$ Rj	Word
AND	Rj, @Ri	A	84	1+2a	C C - -	(Ri) $\&=R \mathrm{j}$	Word
ANDH	Rj, @Ri	A	85	1+2a	C C - -	(Ri) $\&=R \mathrm{j}$	Half word
ANDB	Rj , @Ri	A	86	1+2a	C C - -	(Ri) \& $=R \mathrm{j}$	Byte
OR	Rj, Ri	A	92	1	CC--	Ri $\mid=R \mathrm{j}$	Word
OR	Rj, @Ri	A	94	1+2a	C C - -	(Ri) $\mid=\mathrm{Rj}$	Word
ORH	Rj, @Ri	A	95	1+2a	C C - -	(Ri) $\mid=\mathrm{Rj}$	Half word
ORB	Rj , @Ri	A	96	1+2a	C C - -	(Ri) $\mid=\mathrm{Rj}$	Byte
EOR	Rj, Ri	A	9A	1	C C - -	$\mathrm{Ri} \wedge=\mathrm{Rj}$	Word
EOR	Rj, @Ri	A	9C	1+2a	CC--	$(\mathrm{Ri})^{\wedge}=\mathrm{Rj}$	Word
EORH	Rj , @Ri	A	9D	1+2a	C C - -	$(\mathrm{Ri})^{\wedge}=\mathrm{Rj}$	Half word
EORB	Rj, @Ri	A	9E	1+2a	C C - -	$(\mathrm{Ri})^{\wedge}=\mathrm{Rj}$	Byte

- Bit manipulation instructions

	Mnemonic		Type	OP	Cycle	N Z V C	Operation	Remarks
BANDL BANDH * BAND	\#u4, @Ri \#u4, @Ri \#u8, @Ri		$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	$\begin{aligned} & 1+2 a \\ & 1+2 a \end{aligned}$		(Ri) $\&=(0 x F 0+u 4)$ (Ri) $\&=((u 4 \ll 4)$ $+0 \times 0 \mathrm{~F}$) (Ri) $\&=u 8$	Manipulate lower 4 bits Manipulate upper 4 bits
BORL BORH * BOR	\#u4, @Ri \#u4, @Ri \#u8, @Ri	*2	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 90 \\ & 91 \end{aligned}$	$\begin{aligned} & 1+2 a \\ & 1+2 a \end{aligned}$		(Ri) $\mid=u 4$ (Ri) $\mid=(u 4 \ll 4)$ (Ri) $\mid=u 8$	Manipulate lower 4 bits Manipulate upper 4 bits
BEORL BEORH * BEOR	\#u4, @Ri \#u4, @Ri \#u8, @Ri	*3	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 98 \\ & 99 \end{aligned}$	$\begin{aligned} & 1+2 a \\ & 1+2 a \end{aligned}$		$(\mathrm{Ri})^{\wedge}=u 4$ $(\mathrm{Ri})^{\wedge}=(\mathrm{u} 4 \ll 4)$ $\left(\right.$ Ri) ${ }^{\wedge}=u 8$	Manipulate lower 4 bits Manipulate upper 4 bits
BTSTL BTSTH	\#u4, @Ri \#u4, @Ri		$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 88 \\ & 89 \end{aligned}$	$\begin{aligned} & 2+a \\ & 2+a \end{aligned}$	$\begin{aligned} & 0 \mathrm{C}-- \\ & \mathrm{C} \text { C - - } \end{aligned}$	(Ri) \& u4 (Ri) \& (u4 $\ll 4$)	Test lower 4 bits Test upper 4 bits

*1: Assembler generates BANDL if result of logical operation "u8\&0x0F" leaves an active (set) bit and generates BANDH if "u8\&0xF0" leaves an active bit. Depending on the value in the "u8" format, both BANDL and BANDH may be generated.
*2: Assembler generates BORL if result of logical operation "u8\&0x0F" leaves an active (set) bit and generates BORH if "u8\&0xF0" leaves an active bit.
*3: Assembler generates BEORL if result of logical operation "u8\&0x0F" leaves an active (set) bit and generates BEORH if "u8\&0xF0" leaves an active bit.

- Add/subtract operation instructions

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
MUL MULU MULH MULUH	$R \mathrm{R}, \mathrm{Ri}$ Rj, Ri $R \mathrm{R}, \mathrm{Ri}$ Rj, Ri	A A A A	$\begin{aligned} & \mathrm{AF} \\ & \mathrm{AB} \\ & \mathrm{BF} \\ & \mathrm{BB} \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline \text { C C C - } \\ & \text { C C C }-1 \\ & \text { C C - - } \\ & \text { C C - - } \end{aligned}$	$\begin{aligned} & \hline \mathrm{Ri}{ }^{*} \mathrm{Rj} \rightarrow \mathrm{MDH}, \mathrm{MDL} \\ & \mathrm{Ri} \mathrm{Rj}_{\mathrm{Mj}} \rightarrow \mathrm{MDH}, \mathrm{MDL} \\ & \mathrm{Ri} \text { * } \mathrm{Rj} \rightarrow \mathrm{MDL} \\ & \mathrm{Ri} \text { * } \mathrm{Rj} \rightarrow \mathrm{MDL} \end{aligned}$	$32 \text {-bit*32-bit }=64 \text {-bit }$ Unsigned 16 -bit* ${ }^{*} 16$-bit $=32$-bit Unsigned
DIVOS DIVOU DIV1 DIV2 DIV3 DIV4S * DIV * DIVU	$R \mathrm{Ri}$ Ri Ri Ri Ri Ri		$\begin{aligned} & \hline 97-4 \\ & 97-5 \\ & 97-6 \\ & 97-7 \\ & 9 \mathrm{~F}-6 \\ & 9 \mathrm{~F}-7 \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ 1 \\ d \\ 1 \\ 1 \\ 1 \\ 36 \end{gathered}$	$\begin{aligned} & ---- \\ & -\overline{-}-\bar{C} \\ & -C-C \\ & -C-C \\ & ----- \\ & -\bar{C}-\bar{C} \\ & -C-C \end{aligned}$	MDL/Ri \rightarrow MDL, MDL\%Ri \rightarrow MDH MDL/Ri \rightarrow MDL, MDL\%Ri \rightarrow MDH	Step calculation 32 -bit/32-bit $=32$-bit

*1: DIVOS, DIV1 $\times 32$, DIV2, DIV3 and DIV4S are generated. A total instruction code length of 72 bytes.
*2: DIVOU and DIV1 $\times 32$ are generated. A total instruction code length of 66 bytes.

- Shift instructions

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
LSL	Rj, Ri	A	B6	1	C C-C	$\mathrm{Ri} \ll \mathrm{Rj} \rightarrow \mathrm{Ri}$	Logical shift
* LSL	\#u5, Ri (u5: 0 ~ 31)	C'	B4	1	C C-C	$\mathrm{Ri} \ll \mathrm{L} 5 \rightarrow \mathrm{Ri}$	
LSL	\#u4, Ri	C	B4	1	C C-C	$\mathrm{Ri} \ll \mathrm{u} 4 \rightarrow \mathrm{Ri}$	
* LSL2	\#u4, Ri	C	B5	1	C C-C	$\mathrm{Ri} \ll(\mathrm{u} 4+16) \rightarrow \mathrm{Ri}$	
LSR	Rj, Ri	A	B2	1	C C-C	$\mathrm{Ri} \gg \mathrm{Rj} \rightarrow \mathrm{Ri}$	Logical shift
* LSR	\#u5, Ri (u5: 0 ~ 31)	C^{\prime}	B0	1	C C-C	$\mathrm{Ri} \gg \mathrm{u} 5 \rightarrow \mathrm{Ri}$	
LSR	\#u4, Ri	C	B0	1	CC-C	$\mathrm{Ri} \gg \mathrm{u} 4 \rightarrow \mathrm{Ri}$	
* LSR2	\#u4, Ri	C	B1	1	C C-C	$\mathrm{Ri} \gg(\mathrm{u} 4+16) \rightarrow \mathrm{Ri}$	
ASR	Rj, Ri	A	BA	1	C C-C	$\mathrm{Ri} \gg \mathrm{Rj} \rightarrow \mathrm{Ri}$	Logical shift
* ASR	\#u5, Ri (u5: 0 ~ 31)	C'	B8	1	C C-C	$\mathrm{Ri} \gg \mathrm{u} 5 \rightarrow \mathrm{Ri}$	
ASR	\#u4, Ri	C	B8	1	C C-C	$\mathrm{Ri} \gg \mathrm{u} 4 \rightarrow \mathrm{Ri}$	
* ASR2	\#u4, Ri	C	B9	1	C C-C	$\mathrm{Ri} \gg(\mathrm{u} 4+16) \rightarrow \mathrm{Ri}$	

- Immediate value set/16-bit/32-bit immediate value transfer instruction

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
LDI:32	\#i32, Ri	E	9F-8	3	- - - -	i32 \rightarrow Ri	
LDI:20	\#i20, Ri	C	9B	2	- - - -	$\mathrm{i} 20 \rightarrow \mathrm{Ri}$	Upper 12-bit is zero-extended
LDI:8	\#i8, Ri	B	C0	1	- - - -	$\text { i8 } \rightarrow \mathrm{Ri}$	Upper 24-bit is zero-extended

* : If an immediate value is given in absolute, assembler automatically makes $\mathrm{i} 8, \mathrm{i} 20$ or i 32 selection.

If an immediate value contains relative value or external reference, assembler selects i32.

- Memory load instructions

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
LD	@Rj, Ri	A	04	b	----	$(\mathrm{Rj}) \rightarrow \mathrm{Ri}$	
LD	@(R13, Rj), Ri	A	00	b	- - - -	$(\mathrm{R} 13+\mathrm{Rj}) \rightarrow \mathrm{Ri}$	
LD	@(R14, disp10), Ri	B	20	b	-	$(\mathrm{R} 14+$ disp10) $\rightarrow \mathrm{Ri}$	
LD	@(R15, udisp6), Ri	C	03	b	- - - -	(R15 + udisp6) \rightarrow Ri	
LD	@R15+, Ri	E	07-0	b	- - - -	$(\mathrm{R15)} \rightarrow \mathrm{Ri}, \mathrm{R} 15+=4$	
LD	@R15 +, Rs	E	07-8	b	----	$($ R15) \rightarrow Rs, R15 + = 4	Rs: Special register
LD	@R15 +, PS	E	07-9	$1+a+b$	CCCC	$($ R15) \rightarrow PS, R15 + = 4	
LDUH	@Rj, Ri	A	05	b	- - - -	$(\mathrm{Rj}) \rightarrow \mathrm{Ri}$	Zero-extension
LDUH	@(R13, Rj), Ri	A	01	b	- - - -	$(\mathrm{R} 13+\mathrm{Rj}) \rightarrow \mathrm{Ri}$	Zero-extension
LDUH	@(R14, disp9), Ri	B	40	b		$(\mathrm{R14}+\mathrm{disp9}) \rightarrow \mathrm{Ri}$	Zero-extension
LDUB	@Rj, Ri	A	06	b	- - - -	$(\mathrm{Rj}) \rightarrow \mathrm{Ri}$	Zero-extension
LDUB	@(R13, Rj), Ri	A	02	b	- - - -	$(\mathrm{R} 13+\mathrm{Rj}) \rightarrow \mathrm{Ri}$	Zero-extension
LDUB	@(R14, disp8), Ri	B	60	b		$(\mathrm{R14}+\mathrm{disp8}) \rightarrow \mathrm{Ri}$	Zero-extension

* : Assembler calculates and set the result in the field of 08,04 format given by hardware specification.
disp10/4 $\rightarrow 08$, disp9/2 $\rightarrow 08$, disp8 $\rightarrow 08$, disp10, disp9, disp8 are signed
udisp6/4 \rightarrow 04, udisp6 are unsigned.
- Memory store instructions

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
ST	Ri, @Rj	A	14	a	---	$\mathrm{Ri} \rightarrow(\mathrm{Rj})$	Word
ST	Ri, @(R13, Rj)	A	10	a	- - - -	$\mathrm{Ri} \rightarrow(\mathrm{R13}+\mathrm{Rj})$	Word
ST	Ri, @(R14, disp10)	B	30	a	- -	$\mathrm{Ri} \rightarrow$ (R14 + disp10)	Word
ST	Ri, @(R15, udisp6)	C	13	a	- - - -	$\mathrm{Ri} \rightarrow$ (R15 + usidp6)	
ST	Ri, @-R15	E	17-0	a	- - - -	R15-= 4, Ri \rightarrow (R15)	
ST	Rs, @-R15	E	17-8	a	- - - -	R15-= 4, Rs \rightarrow (R15)	Rs: Special register
ST	PS, @-R15	E	17-9	a	- - - -	R15 - = 4, PS \rightarrow (R15)	
STH	Ri, @Rj	A	15	a	- - - -	$\mathrm{Ri} \rightarrow(\mathrm{Rj})$	Half word
STH	Ri, @(R13, Rj)	A	11	a	- - - -	$\mathrm{Ri} \rightarrow(\mathrm{R13}+\mathrm{Rj})$	Half word
STH	Ri, @(R14, disp9)	B	50	a	- - - -	$\mathrm{Ri} \rightarrow(\mathrm{R14}+$ disp9)	Half word
STB	Ri, @Rj	A	16	a	- - - -	$\mathrm{Ri} \rightarrow(\mathrm{Rj})$	Byte
STB	Ri, @(R13, Rj)	A	12	a	- - - -	$\mathrm{Ri} \rightarrow(\mathrm{R13}+\mathrm{Rj})$	Byte
STB	Ri, @(R14, disp8)	B	70	a	- - - -	$\mathrm{Ri} \rightarrow$ (R14 + disp8)	Byte

* : Assembler calculates and set the result in the field of 08,04 format given by hardware specification.
disp10/4 $\rightarrow 08$, disp9/2 $\rightarrow 08$, disp8 $\rightarrow 08$, disp10, disp9, disp8 are signed
udisp6/4 \rightarrow 04, udisp6 are unsigned.
- Transfer instructions between registers

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
MOV	Rj, Ri	A	8B	1	- -	$\mathrm{Rj} \rightarrow \mathrm{Ri}$	Transfer between general-purpose registers
MOV	Rs, Ri	A	B7	1	- - - -	$\mathrm{Rs} \rightarrow \mathrm{Ri}$	Rs: Special register
MOV	Ri, Rs	A	B3	1	- - - -	$\mathrm{Ri} \rightarrow \mathrm{Rs}$	Rs: Special register
MOV	PS, Ri	E	17-1	1	- - - -	$\mathrm{PS} \rightarrow \mathrm{Ri}$	
MOV	Ri, PS	E	07-1	c	CCCC	$\mathrm{Ri} \rightarrow \mathrm{PS}$	

* : Special registers Rs:TBR, RP USP, SSP, MDH, MDL
- Normal branch (non-delay) instructions

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
JMP	@Ri	E	97-0	2	----	$\mathrm{Ri} \rightarrow \mathrm{PC}$	
$\begin{aligned} & \text { CALL } \\ & \text { CALL } \end{aligned}$	label12 @Ri	F	$\begin{gathered} \text { D0 } \\ 97-1 \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	- - - -	$\begin{aligned} & \mathrm{PC}+2 \rightarrow \mathrm{RP}, \mathrm{PC}+2+ \\ & (\mathrm{label} 12-\mathrm{PC}-2) \rightarrow \mathrm{PC} \\ & \mathrm{PC}+2 \rightarrow \mathrm{RP}, \mathrm{Ri} \rightarrow \mathrm{PC} \end{aligned}$	
RET		E	97-2	2	----	RP \rightarrow PC	Return
INT	\#u8	D	1F	$3+3 \mathrm{a}$ $3+3 \mathrm{a}$	---- ----	$\begin{aligned} & \text { SSP }-=4, \mathrm{PS} \rightarrow \text { (SSP), } \\ & \text { SSP }-=4, \mathrm{PC}+2 \rightarrow \\ & \text { (SSP), } 0 \rightarrow 1 \text { flag, } \\ & 0 \rightarrow \text { S flag, (TBR }+ \\ & 0 \times 3 F C-48 \times 4) \rightarrow \mathrm{PC} \\ & \text { SSP }-4, \text { PS } \rightarrow \text { (SSP), } \\ & \text { SSP }-4, \text { PC }+2 \rightarrow \\ & \text { (SSP) } 0 \rightarrow \text { Slag, } \\ & (T B R+0 \times 3 D 8) \rightarrow \text { PC } \end{aligned}$	For emulator
RETI		E	97-3	2+2a	CCCC	$\begin{aligned} & \text { (R15) } \rightarrow \text { PC, R15 }-=4, \\ & (\text { R15 }) \rightarrow \text { PS, R15 }-=4 \end{aligned}$	
BRA	label9	D	E0	2	- -	$\begin{aligned} & \mathrm{PC}+2+\text { (label9 - } \\ & \mathrm{PC}-2) \rightarrow \mathrm{PC} \end{aligned}$	
BNO	label9	D	E1	1		Non-branch	
BEQ	label9	D	E2	2/1	- - - -	$\begin{aligned} & \text { if }(Z==1) \text { then } \\ & P C+2+\text { (label9 - } \\ & P C-2) \rightarrow P C \end{aligned}$	
BNE	label9	D	E3	2/1	- - - -	$\mathrm{PCx} / \mathrm{Z}==0$	
BC	label9	D	E4	2/1	- - - -	PCs/C = = 1	
BNC	label9	D	E5	2/1	- - - -	$\mathrm{PCs} / \mathrm{C}==0$	
BN	label9	D	E6	2/1	- - - -	PCs/N = = 1	
BP	label9	D	E7	2/1	- - - -	$\mathrm{PCs} / \mathrm{N}==0$	
BV	label9	D	E8	2/1	- - - -	PCs/V = = 1	
BNV	label9	D	E9	2/1	----	$\mathrm{PCs} / \mathrm{V}==0$	
BLT	label9	D	EA	2/1	- - - -	PCs/V xor $\mathrm{N}==1$	
BGE	label9	D	EB	2/1	- - - -	PCs/V xor $\mathrm{N}==0$	
BLE	label9	D	EC	2/1	- - - -	$\mathrm{PCs} /(\mathrm{V}$ xor N$)$ or $\mathrm{Z}==1$	
BGT	label9	D	ED	2/1	- - - -	$\mathrm{PCs} /(\mathrm{V}$ xor N$)$ or $\mathrm{Z}==0$	
BLS	label9	D	EE	2/1	- - - -	$\mathrm{PCs} / \mathrm{C}$ or $\mathrm{Z}==1$	
BHI	label9	D	EF	2/1		PCs/C or $\mathrm{Z}==0$	

Notes: • Number of cycles " $2 / 1$ " indicates that 2 cycles are needed for branch and 1 cycle needed for non-branch.

- Assembler calculates and set the result in the field of rel11 and rel8 format given by hardware specification. (label12 - PC - 2)/2 \rightarrow rel11, (label9 - PC - 2)/2 \rightarrow rel8, label12, label9 are signed.
- RETI must be operated while S flag $=0$.
- Branch instructions with delays

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
JMP:D	@Ri	E	9F-0	1	----	$\mathrm{Ri} \rightarrow \mathrm{PC}$	
$\begin{aligned} & \text { CALL:D } \\ & \text { CALL:D } \end{aligned}$	label12 @Ri	$\begin{aligned} & \mathrm{F} \\ & \mathrm{E} \end{aligned}$	$\begin{gathered} \hline \text { D8 } \\ 9 F-1 \end{gathered}$	1 1	- - - -	$\begin{aligned} & \mathrm{PC}+4 \rightarrow \mathrm{RP}, \mathrm{PC}+2+ \\ & (\text { label12 }-\mathrm{PC}-2) \rightarrow \mathrm{PC} \\ & \mathrm{PC}+4 \rightarrow \mathrm{RP}, \mathrm{Ri} \rightarrow \mathrm{PC} \end{aligned}$	
RET:D		E	9F-2	1	----	$\mathrm{RP} \rightarrow \mathrm{PC}$	Return
BRA:D BNO:D BEQ:D	label9 label9 label9	$\begin{aligned} & \hline D \\ & D \\ & D \end{aligned}$	F0	1 1 1	---- ---- ----	$\begin{aligned} & \mathrm{PC}+2+\text { (label9 - } \\ & \mathrm{PC}-2) \rightarrow \mathrm{PC} \\ & \text { Non-branch } \\ & \text { if }(Z=1) \text { then } \\ & \mathrm{PC}+2+(\text { label } 9- \\ & \mathrm{PC}-2) \rightarrow \mathrm{PC} \end{aligned}$	
BNE:D	label9	D	F3	1	- - - -	PCs/Z = = 0	
BC:D	label9	D	F4	1	-	PCs/C = = 1	
BNC:D	label9	D	F5	1	- - - -	$\mathrm{PCs} / \mathrm{C}==0$	
$\mathrm{BN}: \mathrm{D}$	label9	D	F6	1	- - - -	PCs/N = = 1	
BP:D	label9	D	F7	1	- - - -	$\mathrm{PCs} / \mathrm{N}==0$	
BV : D	label9	D	F8	1	- - - -	$\mathrm{PCs} / \mathrm{V}=1$	
BNV:D	label9	D	F9	1	- - - -	$\mathrm{PCs} / \mathrm{V}==0$	
BLT:D	label9	D	FA	1	- - - -	PCs/V xor $\mathrm{N}==1$	
BGE:D	label9	D	FB	1	- - - -	PCs/V xor $\mathrm{N}==0$	
BLE:D	label9	D	FC	1	- - - -	$\mathrm{PCs} /(\mathrm{V}$ xor N) or $\mathrm{Z}==1$	
BGT:D	label9	D	FD	1	- - - -	$\mathrm{PCs} /(\mathrm{V}$ xor N$)$ or $\mathrm{Z}==0$	
BLS:D	label9	D	FE	1	----	$\mathrm{PCs} / \mathrm{C}$ or $\mathrm{Z}==1$	
BHI:D	label9	D	FF	1	- - - -	PCs/C or $\mathrm{Z}==0$	

Notes: - Assembler calculates and set the result in the field of rel11 and rel8 format given by hardware specification. (label12 - PC - 2)/2 \rightarrow rel11, (label9 - PC - 2)/2 \rightarrow rel8, label12, label9 are signed.

- Delayed branch operation always executes next instruction (delay slot) before making a branch.
- Instructions allowed to be stored in the delay slot are all 1-cycle, a, b, c and d-cycle instructions. Multiplecycle instructions are no to allowed on the delay slot.
- Others

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
NOP		E	9F-A	1	----	No changes	
ANDCCR ORCCR	$\begin{aligned} & \text { \#u8 } \\ & \text { \#u8 } \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 83 \\ & 93 \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{c} \end{aligned}$	$\begin{array}{lll} \hline \text { C C C C } \\ \text { C C C C } \end{array}$	CCR and u8 \rightarrow CCR CCR or u8 \rightarrow CCR	
STILM	\#u8	D	87	1	- -	i8 \rightarrow ILM	Set ILM immediate value
ADDSP	\#s10	D	A3	1	- - - -	R 15 + = s 10	ADD SP instruction
EXTSB EXTUB EXTSH EXTUH	$\begin{aligned} & \mathrm{Ri} \\ & \mathrm{Ri} \\ & \mathrm{Ri} \\ & \mathrm{Ri} \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \hline 97-8 \\ & 97-9 \\ & 97-A \\ & 97-B \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & ---- \\ & ---- \\ & ---- \end{aligned}$	Sign extension $8 \rightarrow 32$-bit Zero extension $8 \rightarrow 32$-bit Sign extension $16 \rightarrow 32$ bit Zero extension $16 \rightarrow 32$-bit	
LDM0 LDM1 * LDM	(reglist) (reglist) (reglist)	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & \hline 8 C \\ & 8 D \end{aligned}$			(R15) \rightarrow reglist, R15 increment (R15) \rightarrow reglist, R15 increment (R15) \rightarrow reglist, R15 increment	Load-multi R0 to R7 Load-multi R8 to R15 Load-multi R0 to R15
STM0 STM1 * STM2	(reglist) (reglist) (reglist)	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$8 \mathrm{E}$ $8 \mathrm{~F}$			R15 decrement, reglist \rightarrow (R15) R15 decrement, reglist \rightarrow (R15) R15 decrement, reglist \rightarrow (R15)	Store-multi R0 to R7 Store-multi R8 to R15 Store-multi R0 to R15
ENTER	\#u10	D	OF	1+a	- - - -	$\begin{aligned} & \text { R14 } \rightarrow \text { (R15-4), } \\ & \text { R15-4 } \rightarrow \text { R14, } \\ & \text { R15-u10 } \rightarrow \text { R15 } \end{aligned}$	Entrance processing of function
LEAVE		E	9F-9	b	- - - -	$\begin{aligned} & \mathrm{R} 14+4 \rightarrow \mathrm{R} 15, \\ & (\mathrm{R} 15-4) \rightarrow \mathrm{R} 14 \end{aligned}$	Exit processing of function
XCHB	@Rj, Ri	A	8A	2a	-- - -	$\mathrm{Rj} \rightarrow$ TEMP $(\mathrm{Rj}) \rightarrow \mathrm{Ri}$ TEMP $\rightarrow(\mathrm{Rj})$	For SEMAFO management Byte data

*1: For s10 format, assembler calculates s10/4 and convert to s8 format. s10 is signed.
*2: If either of R0 to R7 is specified in reglist, assembler generates LDM0. If either of R8 to R15 is specified, assembler generates LDM1. Both LDM0 and LDM1 may be generated.
*3: If either of R0 to R7 is specified in reglist, assembler generates STM0. If either of R8 to R15 is specified, assembler generates STM1. Both STM0 and STM1 may be generated.
*4: For u10 format, assembler calculates u10/4 and convert to $\mathbf{s 8}$ format. u10 is unsigned.
Notes: - Number of cycles needed for execution of LDM0 (reglist) and LDM1 (reglist) is given by the following calculation;
$a^{*}(n-1)+b+1$ where n is number of registers specified.

- Number of cycles needed for execution of STM0 (reglist) and STM1 (reglist) is given by the following calculation; $\mathrm{a}^{*} \mathrm{n}+1$ where n is number of registers specified.
- 20-bit normal branch macro instructions

Mnemonic		Operation	Remarks
* CALL20	label20, Ri	Next instruction address \rightarrow RP, label $20 \rightarrow$ PC	Ri: Temporary register *1
* BRA20	label20, Ri	label20 \rightarrow PC	Ri: Temporary register *2
* BEQ20	label20, Ri	if ($Z==1$) then label20 \rightarrow PC	Ri: Temporary register *3
* BNE20	label20, Ri	ifs $/ \mathrm{Z}==0$	Ri: Temporary register *3
* BC20	label20, Ri	ifs/C $=$ = 1	Ri: Temporary register *3
* BNC20	label20, Ri	ifs/C $=$ = 0	Ri: Temporary register *3
* BN20	label20, Ri	ifs/ $\mathrm{N}==1$	Ri: Temporary register *3
* BP20	label20, Ri	ifs/ $\mathrm{N}=0$	Ri: Temporary register *3
* BV20	label20, Ri	ifs/V $=$ = 1	Ri: Temporary register *3
* BNV20	label20, Ri	ifs/V $=$ = 0	Ri: Temporary register *3
* BLT20	label20, Ri	ifs/ V xor $\mathrm{N}==1$	Ri: Temporary register *3
* BGE20	label20, Ri	ifs/ V xor $\mathrm{N}==0$	Ri: Temporary register *3
* BLE20	label20, Ri	ifs/(V $\operatorname{xor} \mathrm{N})$ or $\mathrm{Z}==1$	Ri: Temporary register *3
* BGT20	label20, Ri	ifs/(V xor N) or $\mathrm{Z}==0$	Ri: Temporary register *3
* BLS20	label20, Ri	ifs/C or $\mathrm{Z}==1$	Ri: Temporary register *3
* BHI20	label20, Ri	ifs/C or $\mathrm{Z}==0$	Ri: Temporary register *3

*1: CALL20
(1) If label20-PC-2 is between -0×800 and $+0 \times 7 \mathrm{fe}$, instruction is generated as follows; CALL label12
(2) If label20-PC-2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;
LDI:20 \#label20, Ri
CALL @Ri
*2: BRA20
(1) If label20-PC-2 is between -0×100 and $+0 \times f e$, instruction is generated as follows; BRA label9
(2) If label20-PC-2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;
LDI:20 \#label20, Ri
JMP @Ri
*3: Bcc20 (BEQ20 to BHI20)
(1) If label20-PC-2 is between -0×100 and $+0 \times f e$, instruction is generated as follows; Bcc label9
(2) If label20-PC-2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows; Bxcc false $\quad x c c$ is a revolt condition of $c c$
LDI:20 \#label20, Ri JMP @Ri
false:

- 20-bit delayed branch macro instructions

Mnemonic	Operation	Remarks
* CALL20:D label20, Ri	Next instruction address + $2 \rightarrow$ RP, label $20 \rightarrow$ PC	Ri: Temporary register *1
* BRA20:D label20, Ri	label20 \rightarrow PC	Ri: Temporary register *2
* BEQ20:D label20, Ri	if ($Z==1$) then label20 \rightarrow PC	Ri: Temporary register *3
* BNE20:D label20, Ri	ifs $/ \mathrm{Z}==0$	Ri: Temporary register *3
* BC20:D label20, Ri	ifs/C $=$ = 1	Ri: Temporary register *3
* BNC20:D label20, Ri	ifs/C $==0$	Ri: Temporary register *3
* BN20:D label20, Ri	ifs/ $\mathrm{N}=$ = 1	Ri: Temporary register *3
* BP20:D label20, Ri	ifs/ $\mathrm{N}=0$	Ri: Temporary register *3
* BV20:D label20, Ri	ifs $/ \mathrm{V}==1$	Ri: Temporary register *3
* BNV20:D label20, Ri	ifs/V $==0$	Ri: Temporary register *3
* BLT20:D label20, Ri	ifs/V xor $N==1$	Ri: Temporary register *3
* BGE20:D label20, Ri	ifs/V xor $\mathrm{N}==0$	Ri: Temporary register *3
* BLE20:D label20, Ri	ifs/(V xor N) or $\mathrm{Z}==1$	Ri: Temporary register *3
* BGT20:D label20, Ri	ifs/(V xor N) or $\mathrm{Z}==0$	Ri: Temporary register *3
* BLS20:D label20, Ri	ifs/C or $\mathrm{Z}==1$	Ri: Temporary register *3
* BHI20:D label20, Ri	ifs/C or $\mathrm{Z}==0$	Ri: Temporary register *3

*1: CALL20:D
(1) If label20-PC-2 is between -0×800 and $+0 \times 7 \mathrm{fe}$, instruction is generated as follows; CALL:D label12
(2) If label20-PC-2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;
LDI:20 \#label20, Ri
CALL:D @Ri
*2: BRA20:D
(1) If label20-PC-2 is between -0×100 and $+0 \times f e$, instruction is generated as follows; BRA:D label9
(2) If label20-PC-2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;
LDI:20 \#label20, Ri JMP:D @Ri
*3: Bcc20:D (BEQ20:D to BHI20:D)
(1) If label20-PC-2 is between -0×100 and $+0 \times f e$, instruction is generated as follows; Bcc:D label9
(2) If label20-PC-2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;
Bxcc false $x c c$ is a revolt condition of $c c$
LDI:20 \#label20, Ri
JMP:D @Ri
false:

- 32-bit normal macro branch instructions

Mnemonic		Operation	Remarks
* CALL32	label32, Ri	Next instruction address \rightarrow RP, label32 \rightarrow PC	Ri: Temporary register *1
* BRA32	label32, Ri	label32 \rightarrow PC	Ri: Temporary register *2
* BEQ32	label32, Ri	if $(Z==1)$ then label32 \rightarrow PC	Ri: Temporary register *3
* BNE32	label32, Ri	ifs $/ \mathrm{Z}==0$	Ri: Temporary register *3
* BC32	label32, Ri	ifs/C $=$ = 1	Ri: Temporary register *3
* BNC32	label32, Ri	ifs/C $=$ = 0	Ri: Temporary register *3
* BN32	label32, Ri	ifs/ $\mathrm{N}==1$	Ri: Temporary register *3
* BP32	label32, Ri	ifs/ $\mathrm{N}=0$	Ri: Temporary register *3
* BV32	label32, Ri	ifs $/ \mathrm{V}==1$	Ri: Temporary register *3
* BNV32	label32, Ri	ifs/V $==0$	Ri: Temporary register *3
* BLT32	label32, Ri	ifs/ V xor $\mathrm{N}==1$	Ri: Temporary register *3
* BGE32	label32, Ri	ifs/ V xor $\mathrm{N}==0$	Ri: Temporary register *3
* BLE32	label32, Ri	ifs/(Vxor N) or $\mathrm{Z}==1$	Ri: Temporary register *3
* BGT32	label32, Ri	ifs/(V xor N) or $\mathrm{Z}==0$	Ri: Temporary register *3
* BLS32	label32, Ri	ifs/C or $\mathrm{Z}==1$	Ri: Temporary register *3
* BHI32	label32, Ri	ifs/C or $\mathrm{Z}==0$	Ri: Temporary register *3

*1: CALL32
(1) If label32-PC-2 is between -0×800 and $+0 \times 7 \mathrm{fe}$, instruction is generated as follows; CALL label12
(2) If label32-PC-2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;
LDI:32 \#label32, Ri
CALL @Ri
*2: BRA32
(1) If label32-PC-2 is between -0×100 and $+0 \times f e$, instruction is generated as follows; BRA label9
(2) If label32-PC-2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;
LDI:32 \#label32, Ri
JMP @Ri
*3: Bcc32 (BEQ32 to BHI32)
(1) If label32-PC-2 is between -0×100 and $+0 \times f e$, instruction is generated as follows; Bcc label9
(2) If label32-PC-2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;
Bxcc false $\quad x c c$ is a revolt condition of $c c$
LDI:32 \#label32, Ri
JMP @Ri
false:

- 32-bit delayed macro branch instructions

Mnemonic	Operation	Remarks
* CALL32:D label32, Ri	Next instruction address $+2 \rightarrow \mathrm{RP}$, label32 \rightarrow PC	Ri: Temporary register *1
* BRA32:D label32, Ri	label32 \rightarrow PC	Ri: Temporary register *2
* BEQ32:D label32, Ri	if $(Z==1)$ then label32 \rightarrow PC	Ri: Temporary register *3
* BNE32:D label32, Ri	ifs $/ \mathrm{Z}==0$	Ri: Temporary register *3
* BC32:D label32, Ri	ifs/C $==1$	Ri: Temporary register *3
* BNC32:D label32, Ri	ifs/C $=$ = 0	Ri: Temporary register *3
* BN32:D label32, Ri	ifs/N $==1$	Ri: Temporary register *3
* BP32:D label32, Ri	ifs/ $\mathrm{N}=0$	Ri: Temporary register *3
* BV32:D label32, Ri	ifs $/ \mathrm{V}==1$	Ri: Temporary register *3
* BNV32:D label32, Ri	ifs/V $==0$	Ri: Temporary register *3
* BLT32:D label32, Ri	ifs/V xor $\mathrm{N}==1$	Ri: Temporary register *3
* BGE32:D label32, Ri	ifs/V xor $\mathrm{N}==0$	Ri: Temporary register *3
* BLE32:D label32, Ri	ifs/(V xor N) or $\mathrm{Z}==1$	Ri: Temporary register *3
* BGT32:D label32, Ri	ifs/(V xor N) or $\mathrm{Z}==0$	Ri: Temporary register *3
*BLS32:D label32, Ri	ifs/C or $Z==1$	Ri: Temporary register *3
* BHI32:D label32, Ri	ifs/C or $\mathrm{Z}==0$	Ri: Temporary register *3

*1: CALL32:D
(1) If label32-PC -2 is between -0×800 and $+0 x 7 \mathrm{fe}$, instruction is generated as follows; CALL:D label12
(2) If label32-PC-2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;
LDI:32 \#label32, Ri
CALL:D @Ri
*2: BRA32:D
(1) If label32-PC-2 is between -0×100 and $+0 \times f e$, instruction is generated as follows; BRA:D label9
(2) If label32-PC-2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;
LDI:32 \#label32, Ri
JMP:D @Ri
*3: Bcc32:D (BEQ32:D to BHI32:D)
(1) If label32-PC-2 is between -0×100 and $+0 \times f e$, instruction is generated as follows; Bcc:D label9
(2) If label32-PC-2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;
Bxcc false $x c c$ is a revolt condition of $c c$
LDI:32 \#label32, Ri
JMP:D @Ri
false:

- Direct addressing instructions

Mnemonic			Type	OP	Cycle	N Z V C	Operation

Note: Assembler calculates as follows and set the result value to dir8, dir9 and dir10 fields.
$\operatorname{dir} 8 \rightarrow \operatorname{dir}, \operatorname{dir} 9 / 2 \rightarrow \operatorname{dir}, \operatorname{dir} 10 / 4 \rightarrow \operatorname{dir}, \operatorname{dir} 8$, dir9, dir10 are unsigned.

- Resource instructions

- Co-processor control instructions

\{CRi | CRj\}: = CR0 | CR1 | CR2 | CR3 | CR4 | CR5 | CR6 | CR7 | CR8 | CR9 | CR10 |CR11|CR12|CR13| CR14|CR15
u4: Specify channel
u8: Specify command

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
COPOP	\#u4, \#u8, CRj, CRi	E	9F-C	2+a	-	Calculation	
COPLD	\#u4, \#u8, Rj, CRi	E	9F-D	1+2a	-	$\mathrm{Rj} \rightarrow \mathrm{CRi}$	
COPST	\#u4, \#u8, CRj, Ri	E	9F-E	1+2a	- - - -	$\mathrm{CRj} \rightarrow \mathrm{Ri}$	
COPSV	\#u4, \#u8, CRj, Ri	E	9F-F	1+2a	- - - -	$\mathrm{CRj} \rightarrow \mathrm{Ri}$	No error traps

Note: These instructions are not valid because this model does not have a co-processor.

ORDERING INFORMATION

Part number	Package	Remarks
MB91103	160-pin Plastic QFP FPT-160P-M03	

PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329

North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122

Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LIMITED \#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9707
© FUJITSU LIMITED Printed in Japan

[^0]: * : FPT-160P-M03

[^1]: 1LSB' (Ideal value) $=\frac{\text { AVRH }- \text { AVRL }}{1024}[V]$
 $\begin{array}{r}\text { Total error of } \\ \text { digital output } \mathrm{N}\end{array}=\frac{\mathrm{V}_{\mathrm{NT}}-\left\{1 \mathrm{LSB}^{\prime} \times(\mathrm{N}-1)+0.5 \mathrm{LSB}^{\prime}\right\}}{1 \mathrm{LSB}^{\prime}}$

 Vot' $\quad($ Ideal value $)=$ AVRL +0.5 LSB' [V]
 VFST' $^{\prime} \quad$ (Ideal value) $=A V R L+1.5 L S B^{\prime}[V]$
 $\mathrm{V}_{\text {NT: }}$ A voltage for causing transition of digital output from $(\mathrm{N}-1)$ to N

