16-bit Proprietary Microcontrollers

CMOS

F²MC-16L MB90650A Series

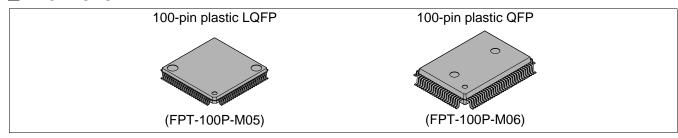
MB90652A/653A/654A/F654A/V650A

DESCRIPTION

The MB90650A series are 16-bit microcontrollers designed for high speed real-time processing in consumer product applications such as controlling cellular phones, CD-ROMs, or VTRs. Based on the F²MC⁻¹-16L CPU core, an F²MC-16L is used as the CPU. This CPU includes high-level language-support instructions and robust task switching instructions, and additional addressing modes. In order to reduce the consumption current, dual-clock (main/sub) is used. Furthermore, low consumption power supply is achieved by using stop mode, sleep mode, watch mode, pseudo-watch mode, CPU intermittent operation mode.

Microcontrollers in this series have built-in peripheral resources including 10-bit A/D converter, 8-bit D/A converter, UART, 8/16-bit PPG, 8/16-bit up/down counter/timer, I²C interface^{*2}, 8/16-bit I/O timer (input capture, output compare, and 16-bit free-run timer).

- *1:F²MC stands for FUJITSU Flexible Microcontroller.
- *2:Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.


FEATURES

F²MC-16L CPU

- Minimum execution time: 83.3 ns/3 MHz oscillation (Uses PLL clock multiplication) maximum multiplier = 4
- Instruction set optimized for controller applications
 Object code compatibility with F²MC-16(H)

PACKAGES

(Continued)

Wide range of data Types (bit, byte, word, and long word) Improved instruction cycles provide increased speed Additional addressing modes: 23 modes High code efficiency Access methods (bank access, linear pointer) High precision operations are enhanced by use of a 32-bit accumulator Extended intelligent I/O service (access area extended to 64 Kbytes) Maximum memory space: 16 Mbytes

 Enhanced high level language (C) and multitasking support instructions Use of a system stack pointer
 Enhanced pointer indirect instructions
 Barrel shift instructions

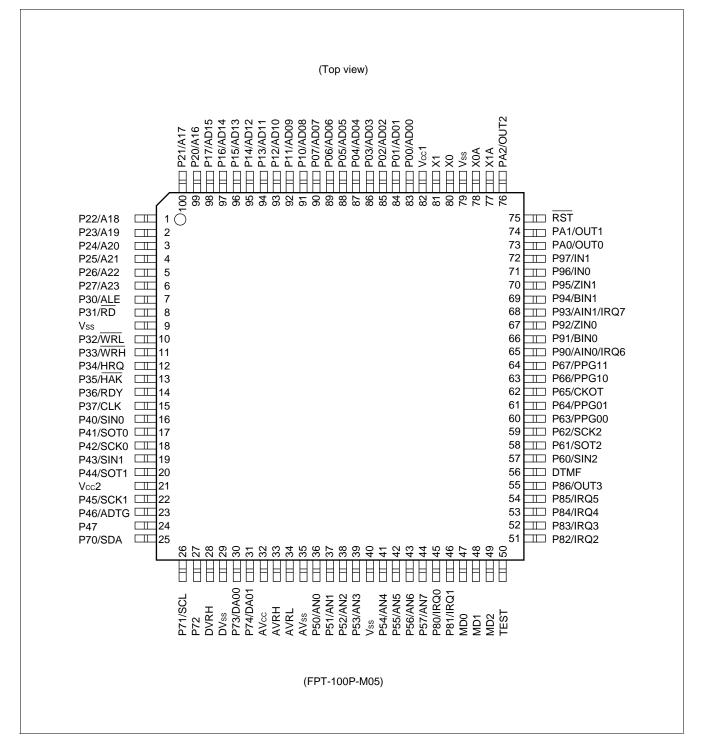
- Improved execution speed: Four byte instruction queue
- Powerful interrupt function
- Automatic data transfer function that does not use instruction (extended I²OS)

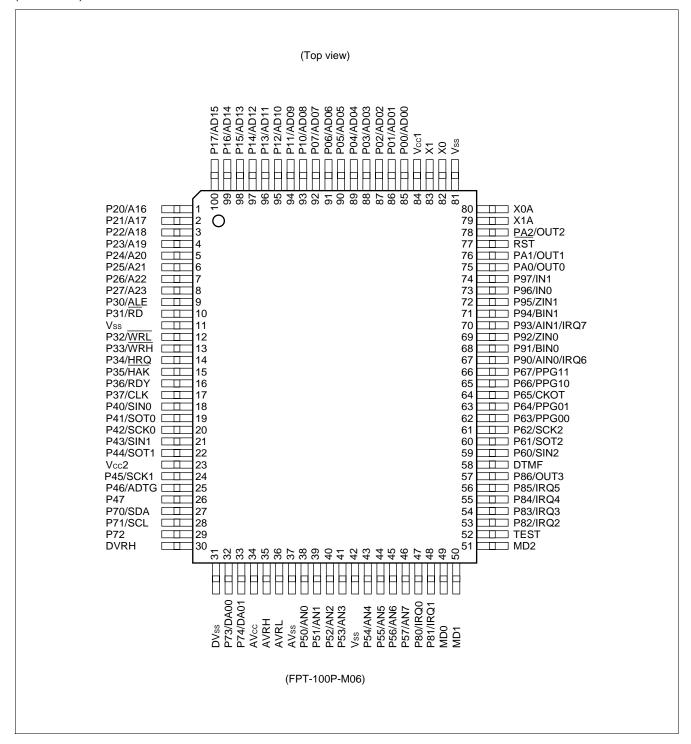
■ PRODUCT LINEUP

Part number Item	MB90652A	MB90653A	MB90654A	MB90F654A	MB90V650A*			
Classification	Mask RC	DM product	Mask ROM product	FLASH product	For evaluation			
ROM size	64 Kbytes	128 Kbytes	Kbytes	—				
RAM size	3 Kbytes	5 Kbytes	8 Kt	oytes	6 Kbytes			
Power supply voltage	2.2 V	to 3.6 V	2.2 V to 3.6 V	2.4 V to 3.6 V	2.7 V to 5.5 V			
CPU functions	The number of instructions: 340Instruction bit length: 8/16 bitsInstruction length: 1 to 7 bytesData bit length: 1/4/8/16/32 bitsMinimum execution time: 83.3 ns/3 MHz (PLL multiplier = 4)Interrupt processing time: 2 μs/12 MHz (minimum)							
Ports		I/O ports (N-channel open-drain) : 4 I/O ports (CMOS) : 75 (Input pull-up resistors available: 24/ Can be set as N-channel open-drain: 8) Total : 79						
A/D converter	Analog inputs: 8 channelsAnalog inputs: 8 chann10-bit resolution10-bit resolutionConversion time: minimumConversion time:8.17 μs/12 MHzminimum 8.17 μs/12 M							
D/A converter		2 channels (independent), 8-bit resolution, R-2R type						
8/16-bit up/down counter/timer				2 channels selected with a compare function				
I ² C interface		Ma	1 chan ster mode/slave	nnel mode available				
UART				nel communication s communicatior	1			
I/O extended serial interface		LSB-fir	8 bits × 2 c st or MSB-first c	hannels operation selecta	ble			
8/16-bit PPG		8 bits \times 2 c	hannels/16 bits	\times 1 channel sele	ectable			
16-bit I/O timer	1 channel (Input capture \times 2 channels, output compare \times 4 channels, and free-run timer \times 1 channel)							
DTP/external interrupt			8 inpu	uts				
Timer functions	Tim	nebase timer (18	-bit)/watchdog ti	imer (18-bit)/wat	ch timer (15-bit)			
DTMF generator	Supports	every ITU-T (CC	ITT) tone for ou DTMF gen	• •	MHz shall be used for			
Low-power consumption modes	CPU in		ion mode, sub c tch mode, pseu	•	mode, sleep mode,			

(Continued)

Part number Item	MB90652A	MB90653A	MB90654A	MB90F654A	MB90V650A*		
PLL function	Selectable multiplier: 1/2/3/4 (Set a multiplier that does not exceed the assured operation frequency range.)						
Other	—						
Package	FPT-100P-M05, FPT-100P-M06 PGA-256C-A02						


* : MB90V650A has products of single clock power supply and dual clock power supply.


Model : Single clock system MB90V650ACR-ES

Dual clock system MB90V650ACR-ES-H

Note : MB90V650A device is assured only when operate with the tools, under the condition of power supply voltage : 2.7 V to 3.3 V, operating temperature: 0°C to 70°C and operating frequency: 1.5 MHz to 12 MHz For more information about each package, see section "PACKAGE DIMENSIONS".

■ PIN ASSIGNMENTS

■ PIN DESCRIPTION

Pin no.		D'	Circuit	Function				
LQFP*1	QFP*2	Pin name	type	Function				
80	82	X0	Α	Crystal oscillator pin				
81	83	X1	Α	Crystal oscillator pin				
77	79	X1A	В	Crystal oscillator pins (32 kHz)				
78	80	X0A	В	Crystal oscillator pins (32 kHz)				
47 to 49	49 to 51	MD0 to MD2	D	Operating mode selection pins Connect directly to Vcc or Vss.				
50	52	TEST	D	Test input pin This pin must always be fixed to "H".				
75	77	RST	С	Reset input pin				
83 to 90	85 to 92	P00 to P07	E (STBC)	General-purpose I/O ports Pull-up resistors can be set (RD07 to RD00 = "1") using the pull-up resistor setting register (RDR0). The setting does not apply for ports set as outputs (D07 to D00 = "1": invalid at the output setting).				
		AD00 to AD07		In external bus mode, the pins function as the lower data I/O or lower address outputs (AD00 to AD07).				
91 to 98	93 to 100	P10 to P17	E (STBC)	General-purpose I/O ports Pull-up resistors can be set (RD17 to RD10 = "1") using the pull-up resistor setting register (RDR1). The setting does not apply for ports set as outputs (D17 to D10 = "1": invalid at the output setting).				
		AD08 to AD15		In 16-bit external bus mode, the pins function as the upper data I/O or middle address outputs (AD08 to AD15).				
99, 100,	1, 2,	P20, P21, P22 to P27	I	General-purpose I/O ports In external bus mode, pins for which the corresponding bit in the external address output control register (HACR) is "1" function as the general-purpose I/O pots.				
1 to 6	3 to 8	A16, A17, A18 to A23	(STBC)	External address bus output pins (A16 to A23) In external bus mode, pins for which the corresponding bit in the external address output control register (HACR) is "0" function as the upper address output pins (A16 to A23).				
7	9	P30		General-purpose I/O port Functions as the ALE pin in external bus mode.				
		ALE	(STBC)	Functions as the address latch enable signal.				
8	10	P31		General-purpose I/O port Functions as the RD pin in external bus mode.				
	RD		(STBC)	Functions as the read strobe output (\overline{RD}) .				
10	12	P32	I (STBC)	General-purpose I/O port Functions as the WRL pin in external bus mode if the WRE bit in the ECSR register is "1".				
		WRL		Functions as the lower data write strobe output (\overline{WRL}).				

Pin no.		Din nomo	Circuit	Eurotion			
LQFP*1	QFP*2	Pin name	type	Function			
11 13		P33	I (STBC)	General-purpose I/O port Functions as the WRH pin in 16-bit external bus mode if the WRE bit in the ECSR register is "1".			
		WRH		Functions as the upper data write strobe output (\overline{WRH}).			
12	14	P34	I (STBC)	General-purpose I/O port Functions as the HRQ pin in external bus mode if the HDE bit in the ECSR register is "1".			
		HRQ		Functions as the hold request input pin (HRQ).			
13	15	P35	I (STBC)	General-purpose I/O port Functions as the HAK pin in external bus mode if the HDE bit in the ECSR register is "1".			
		HAK		Functions as the hold acknowledge output (HAK) pin.			
14	16	P36	I (STBC)	General-purpose I/O port Functions as the RDY pin in external bus mode if the RYE bit in the ECSR register is "1".			
		RDY		Functions as the external ready input (RDY) pin.			
15	15 17 P37		I (STBC)	General-purpose I/O port Functions as the CLK pin in external bus mode if the CKE bit in the ECSR register is "1".			
		CLK		Functions as the machine cycle clock output (CLK) pin.			
16	18	P40	H (STBC)	General-purpose I/O port When UART0 is operating, the data at the pin is used as the serial input (SIN0). Can be set as an open-drain output port (OD40 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D40 = "0": invalid at the input setting).			
		SIN0		Functions as the UART0 serial input (SIN0).			
17	19	P41	G (STBC)	General-purpose I/O port Functions as the SOT0 pin if the SOE bit in the UMC register is "1". Can be set as an open-drain output port (OD41 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D41 = "0": invalid at the input setting).			
		SOT0	-	Functions as the UART0 serial data output pin (SOT0).			

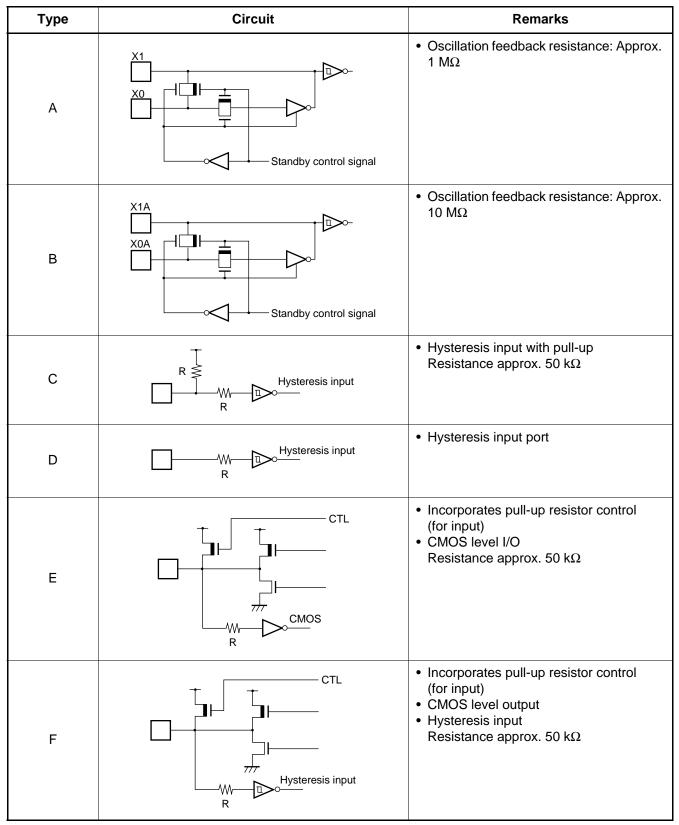
Pin	no.	Din nomo	Circuit	Function		
LQFP*1	QFP*2	Pin name	type	T unction		
18	18 20		H (STBC)	General-purpose I/O port When UART0 is operating in external shift clock mode, the data at the pin is used as the clock input (SCK0). Also, functions as the SCK0 pin if the SOE bit in the UMC register is "1". Can be set as an open-drain output port (OD42 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D42 = "0": invalid at the input setting).		
		SCK0		Functions as the UART0 serial clock I/O pin (SCK0).		
19	21	P43	3 H (STBC) General-purpose I/O port When I/O extended serial is operating, the data a used as the serial input (SIN1). Can be set as an open-drain output port (OD43 = open-drain control register (ODR4). The setting does not apply for ports set as inputs invalid at the input setting).			
		SIN1	-	Functions as the serial input for I/O extended serial data.		
20	22	P44	G (STBC)	General-purpose I/O port Functions as the SOT1 pin if the SOE bit in the UMC register is "1". Can be set as an open-drain output port (OD44 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D44 = "0": invalid at the input setting).		
		SOT1		Functions as the output pin (SOT1) for I/O extended serial data.		
22	24	P45	H (STBC)	General-purpose I/O port When I/O extended serial is operating in external shift clock mode, the data at the pin is used as the clock input (SCK1). Also, functions as the SCK1 pin if the SOE bit in the UMC register is "1". Can be set as an open-drain output port (OD45 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D45 = "0": invalid at the input setting).		
		SCK1		Functions as the I/O extended serial clock I/O pin (SCK1).		
23	25	P46	G (STBC)	General-purpose I/O port Can be set as an open-drain output port (OD46 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D46 = "0": invalid at the input setting).		
		ADTG		Functions as the external trigger input pin for the A/D converter.		
24	26	P47	K (NMOS/H) (STBC)	Open-drain type general-purpose I/O port		

Pin	no.	D .	Circuit				
LQFP*1	QFP*2	Pin name	type	Function			
36 to 39,	38 to 41,	P50 to P53, P54 to P57	L	General-purpose I/O ports			
41 to 44	43 to 46	AN0 to AN3, AN4 to AN7	(STBC)	The pins are used as analog inputs (AN0 to AN7) when the A/D converter is operating.			
57	59	P60	F (STBC)	General-purpose I/O port A pull-up resistor can be set (RD60 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D60 = "1": invalid at the output setting).			
		SIN2		Functions as a data input pin (SIN2) for I/O extended serial.			
58	60	P61	E (STBC)	General-purpose I/O port Function as the SOT2 pin if the SOE bit in the UMC register is "1". A pull-up resistor can be set (RD61 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D61 = "1": invalid at the suttout eatting)			
		SOT2	_	invalid at the output setting). Functions as an output pin (SOT2) for I/O extended serial data.			
59	61	P62	F (STBC)	General-purpose I/O port When I/O extended serial is operating in external shift clock mode, the data at the pin is used as the clock input (SCK2). Also, functions as the SCK2 pin if the SOE bit in the UMC register is "1". A pull-up resistor can be set (RD62 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D62 = "1": invalid at the output setting).			
		SCK2	-	Functions as the I/O extended serial clock I/O pin (SCK2).			
60	62	P63	E (STBC)	General-purpose I/O port A pull-up resistor can be set (RD63 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D63 = "1": invalid at the output setting).			
		PPG00		Functions as the PPG00 output when PPG output is enabled.			
61	63	P64	E (STBC)	General-purpose I/O port A pull-up resistor can be set (RD64 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D64 = "1": invalid at the output setting).			
		PPG01		Functions as the PPG01 output when PPG output is enabled. <i>(Continued)</i>			

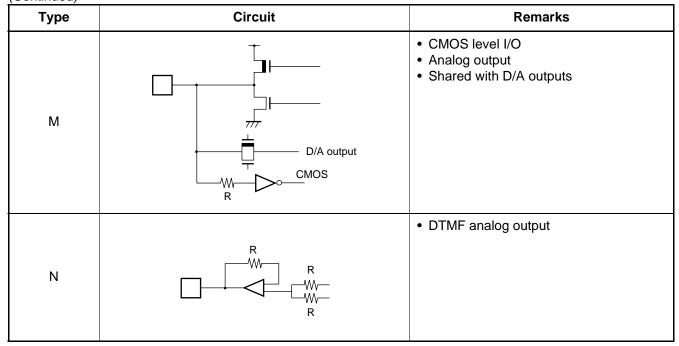
Pin	no.	D'a a caso	Circuit	F rance the m	
LQFP*1	QFP*2	Pin name	type	Function	
62	64	P65	E (STBC)	General-purpose I/O port A pull-up resistor can be set (RD65 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D65 = "1": invalid at the output setting).	
		СКОТ		Functions as the CKOT output when CKOT is operating.	
63	65	P66	E (STBC)	General-purpose I/O port A pull-up resistor can be set (RD66 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D66 = "1": invalid at the output setting).	
		PPG10		Functions as the PPG10 output when PPG output is enabled.	
64	66	P67	E (STBC)	General-purpose I/O port A pull-up resistor can be set (RD67 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D67 = "1": invalid at the output setting).	
		PPG11		Functions as the PPG11 output when PPG output is enabled.	
		P70		Open-drain type I/O port	
25	27	SDA	K (NMOS/H) (STBC)	(NMOS/H)	I ² C interface data I/O pin This function is valid when I ² C interface operations are enabled. Set port output to Hi-Z (PDR = 1) during I ² C interface operations.
		P71		Open-drain type I/O port	
26	28	SCL	K (NMOS/H) (STBC)	I ² C interface clock I/O pin This function is valid when I ² C interface operations are enabled. Set port output to Hi-Z (PDR = 1) during I ² C interface operations.	
27	29	P72	K (STBC)	Open-drain type I/O port	
30	32	P73	M (STBC)	Open-drain type I/O port Functions as a D/A output pin when DAE0 = "1" in the D/A control register (DACR).	
		DA00		Functions as D/A output 0 when the D/A converter is operating.	
31	33	P74	M (STBC)	General-purpose I/O port Functions as a D/A output pin when DAE1 = "1" in the D/A control register (DACR).	
		DA01		Functions as D/A output 1 when the D/A converter is operating.	
45	47	P80	J	General-purpose I/O port	
		IRQ0	-	Functions as external interrupt request I/O 0.	

Pin no.		D .	Circuit			
LQFP*1	QFP*2	Pin name	type	Function		
40	40	P81		General-purpose I/O port		
46	48	IRQ1	– J	Functions as external interrupt request I/O 1.		
51 53	P82		General-purpose I/O port			
51	53	IRQ2	– J	Functions as external interrupt request I/O 2.		
52	E A	P83		General-purpose I/O port		
52	54	IRQ3	– J	Functions as external interrupt request I/O 3.		
53	55	P84	J	General-purpose I/O port		
55	55	IRQ4	J	Functions as external interrupt request I/O 4.		
54	56	P85	_ J	General-purpose I/O port		
54	50	IRQ5	J	Functions as external interrupt request I/O 5.		
55	57	P86		General-purpose I/O port This applies in all cases.		
		OUT3	(STBC)	Event output for channel 3 of the output compare		
		P90		General-purpose I/O port		
65	67	AIN0	J	Input to channel 0 of the 8/16-bit up/down counter/timer		
		IRQ6		Functions as an interrupt request input.		
66	68	P91	J	General-purpose I/O port		
00	00	BIN0	(STBC)	Input to channel 0 of the 8/16-bit up/down counter/timer		
67	69	P92	J	General-purpose I/O port		
07	03	ZIN0	(STBC)	Input to channel 0 of the 8/16-bit up/down counter/timer		
		P93		General-purpose I/O port		
68	70	AIN1	J	Input to channel 1 of the 8/16-bit up/down counter/timer		
		IRQ7		Functions as an interrupt request input.		
69	71	P94	J	General-purpose I/O port		
09	/ 1	BIN1	(STBC)	Input to channel 1 of the 8/16-bit up/down counter/timer		
70	72	P95	J	General-purpose I/O port		
70	12	ZIN1	(STBC)	Input to channel 1 of the 8/16-bit up/down counter/timer		
71	73	P96	J	General-purpose I/O port		
71	75	IN0	(STBC)	Trigger input for channel 0 of the input capture		
72	74	P97	J	General-purpose I/O port		
12	/ 4	IN1	(STBC)	Trigger input for channel 1 of the input capture		
73	75	PA0	I	General-purpose I/O port		
15	15	OUT0	(STBC)	Event output for channel 0 of the output compare		

(Continued)


Pin	no.	Din nome	Circuit	Function		
LQFP*1	QFP*2	Pin name	type	Function		
74	76	PA1	I	General-purpose I/O port		
74	70	OUT1	(STBC)	Event output for channel 1 of the output compare		
76	78	PA2	I	General-purpose I/O port		
70	70	OUT2	(STBC)	Event output for channel 2 of the output compare		
82	84	Vcc1		Power supply (3.0 V) input pin		
21	23	Vcc2		Power supply (3.0 V/5.0 V) input pin		
9, 40, 79	11, 42, 81	Vss	_	Power supply (0.0 V) input pin		
32	34	AVcc		A/D converter power supply pin		
33	35	AVRH		A/D converter external reference power supply pin		
34	36	AVRL		A/D converter external reference power supply pin		
35	37	AVss		A/D converter power supply pin		
28	30	DVRH		D/A converter external reference power supply pin		
29	31	DVss		D/A converter power supply pin		
56	58	DTMF	Ν	DTMF output pin		

*1: FPT-100P-M05


*2: FPT-100P-M06

Note : STBC = Incorporates standby control NMOS = N-ch open-drain output

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
G	Open-drain control signal	 CMOS level I/O Incorporates open-drain control
н	Open-drain control signal 777 Hysteresis input R	 CMOS level output Hysteresis input Incorporates open-drain control
I		CMOS level I/O
J	Hysteresis input R	 CMOS level output Hysteresis input
к	Digital output	 Hysteresis input N-ch open-drain output
L	THE CMOS R Analog input	CMOS level I/O Analog input (Continued)

HANDLING DEVICES

1. Preventing Latch-up

Latch-up occurs in a CMOS IC if a voltage greater than V_{CC} or less than V_{SS} is applied to an input or output pin or if the voltage applied between V_{CC} and V_{SS} exceeds the rating.

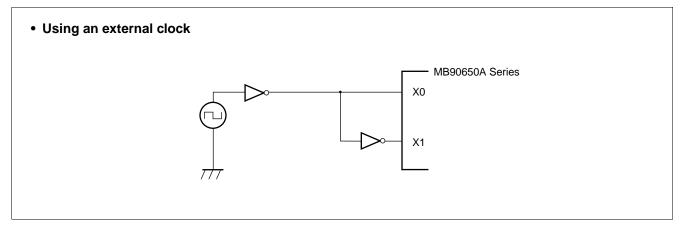
If latch-up occurs, the power supply current increases rapidly resulting in thermal damage to circuit elements. Therefore, ensure that maximum ratings are not exceeded in circuit operation.

For the same reason, also ensure that the analog supply voltage does not exceed the digital supply voltage.

2. Treatment of Unused Pins

Leaving unused input pins unconnected can cause misoperation. Always pull-up or pull-down unused pins.

3. External Reset Input


To reliably reset the controller by inputting an "L" level to the RST pin, ensure that the "L" level is applied for at least five machine cycles. Take particular note when using an external clock input.

4. Vcc and Vss Pins

Ensure that all Vcc pins are at the same voltage. The same applies for the Vss pins.

5. Precautions when Using an External Clock

Drive the X0 pin only when using an external clock.

6. A/D Converter Power Supply and the Turn-on Sequence for Analog Inputs

Always turn off the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) before turning off the digital power supply (Vcc).

When turning the power on or off, ensure that AVRH does not exceed AVcc.

Also, when using the analog input pins as input ports, ensure that the input voltage does not exceed AVcc.

7. Turn-on Sequence for D/A Converter Power Supply

Always turn on the D/A converter power supply (DVR), after turning off the digital power supply (Vcc).

And in the turning off the power supply sequence always turn off the digital power supply (V_{CC}) after turning off the D/A converter power supply (DVR).

8. Initializing

In this device there are some kinds of inner resisters which are initialized only by power on reset. It is possible to initialize these resisters by turning on the power supply again.

9. Power Supply Pins

When there are several V_{cc} and V_{ss} pins, those pins that should have the same electric potential are connected within the device when the device is designed in order to prevent misoperation, such as latchup. However, all of those pins must be connected to the power supply and ground externally in order to reduce unnecessary emissions, prevent misoperation of strobe signals due to an increase in the ground level, and to observe the total output current standards.

In addition, give a due consideration to the connection in that current supply be connected to V_{cc} and V_{ss} with the lowest possible impedance.

Finally, it is recommended to connect a capacitor of about 0.1 μ F between V_{cc} and V_{ss} near this device as a bypass capacitor.

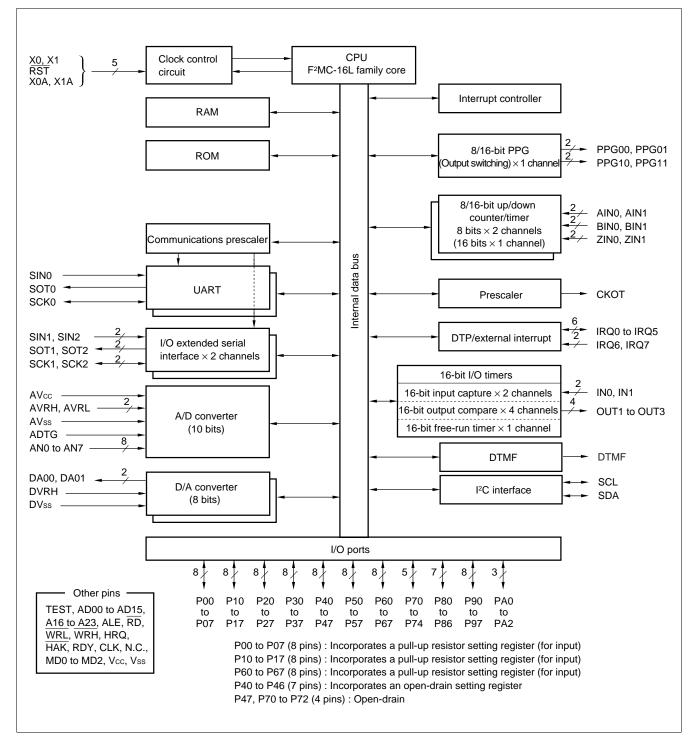
10. Crystal Oscillation Circuit

Noise in the vicinity of the X0 and X1 pins will cause this device to operate incorrectly. Design the printed circuit board so that the bypass capacitor connecting X0, X1 and the crystal oscillator (or ceramic oscillator) to ground is located as close to the device as possible, and that the wiring does not cross the other wirings.

In addition, because printed circuit board artwork in which the area around the X0 and X1 pins is surrounded by ground provides stable operation, such an arrangement is strongly recommended.

11. About 2 Power Supplies

The MB90650A series usually uses the 3-V power supply as the main power source. With Vcc1 = 3 V and Vcc2 = 5 V, however, it can interface with P20/A16 to P27/A23, P30/ALE to P37/CLK, P40/SIN0 to P47, and P70/SDA to P72 for the 5-V power supply separately from the 3-V power supply at all operation mode. Note, however, that the analog power supplies such as A/D and D/A can be used only as 3-V power supplies.

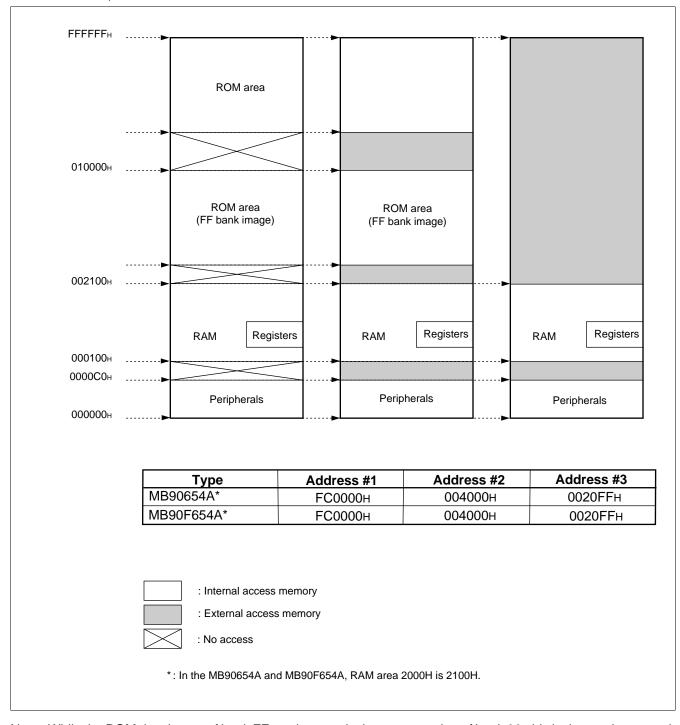

12. When not Using a Sub Clock Signal

Also when the sub-clock is not used, X0A and X1A pins should be connected to an oscillator.

13. Caution on Operations during PLL Clock Mode

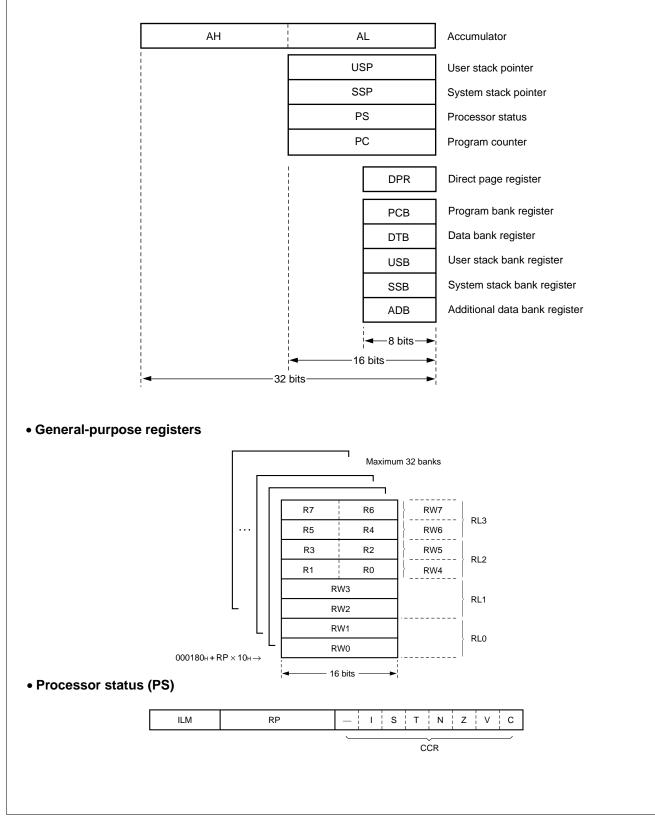

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

BLOCK DIAGRAM


MEMORY MAP

MB90652A, MB90653A, MB90V650A

Note : While the ROM data image of bank FF can be seen in the upper portion of bank 00, this is done only to permit effective use of the C compiler's small model. Because the lower 16 bits are the same, it is possible to reference tables in ROM without declaring the "far" specification in the pointer. For example, to access to 00C000H is to access to the ROM content of FFC000H in practice. Because the ROM area of FF bank exceeds 48 Kbytes, all the area can be seen in bank 00. So, the image for FF4000H to FFFFFFH can be seen in bank 00, while FE0000H to FF3FFFH can only be seen in bank FF and FE.


• MB90654A, MB90F654A

Note : While the ROM data image of bank FF can be seen in the upper portion of bank 00, this is done only to permit effective use of the C compiler's small model. Because the lower 16 bits are the same, it is possible to reference tables in ROM without declaring the "far" specification in the pointer. For example, to access to 00C000H is to access to the ROM content of FFC000H in practice. Because the ROM area of FF bank exceeds 48 Kbytes, all the area can be seen in bank 00. So, the image for FF4000H to FFFFFFH can be seen in bank 00, while FE0000H to FF3FFFH can only be seen in bank FF and FE.

■ F²MC-16L CPU PROGRAMMING MODEL

Dedicated registers

22

■ I/O MAP

Address	Register	Register name	Read/ write	Resource name	Initial value
00н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 data register	PDR4	R/W	Port 4	1XXXXXXXB
05н	Port 5 data register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 data register	PDR7	R/W	Port 7	XX111в
08н	Port 8 data register	PDR8	R/W	Port 8	-XXXXXXXB
09н	Port 9 data register	PDR9	R/W	Port 9	XXXXXXXXB
0Ан	Port A data register	PDRA	R/W	Port A	XXXв
0Bн to 0Fн		(Rese	erved area)		
10н	Port 0 direction register	DDR0	R/W	Port 0	0000000в
11 н	Port 1 direction register	DDR1	R/W	Port 1	0000000в
12н	Port 2 direction register	DDR2	R/W	Port 2	0000000в
13 н	Port 3 direction register	DDR3	R/W	Port 3	0000000в
14 H	Port 4 direction register	DDR4	R/W	Port 4	-000000в
15 н	Port 5 direction register	DDR5	R/W	Port 5	0000000в
16 н	Port 6 direction register	DDR6	R/W	Port 6	0000000в
17 н	Port 7 direction register	DDR7	R/W	Port 7	в
18 н	Port 8 direction register	DDR8	R/W	Port 8	-000000в
19 н	Port 9 direction register	DDR9	R/W	Port 9	0000000в
1Ан	Port A direction register	DDRA	R/W	Port A	000в
1 Вн	Port 4 pin register	ODR4	R/W	Port 4	-000000в
1Cн	Port 0 resistance register	RDR0	R/W	Port 0	0000000в
1Dн	Port 1 resistance register	RDR1	R/W	Port 1	0000000в
1Eн	Port 6 resistance register	RDR6	R/W	Port 6	0000000в
1Fн	Analog input enable register	ADER	R/W	Port 5, A/D	11111111в
20н	Serial mode register 0	SMR0	R/W		0000000в
21н	Serial control register 0	SCR0	R/W	UART0	00000100в
22н	Serial input register/ serial output register 0	SIDR/ SODR0	R/W	0,4(10	XXXXXXXXB

Address	Register	Register name	Read/ write	Resource name	Initial value
23н	Serial status register 0	SSR0	R/W	UART0	00001-00в
24н	Serial mode control status register 0	SMCS0	R/W	0000в	
25н	Serial mode control status register 0	SMCS0	R/W	I/O extended serial interface 0	0000010в
26н	Serial data register 0	SDR0	R/W		XXXXXXXXB
27н	Clock division control register	CDCR	R/W	Communications prescaler	01111в
28н	Serial mode control status register 1	SMCS1	R/W		0000в
29н	Serial mode control status register 1	SMCS1	R/W	I/O extended serial interface 1	0000010в
2Ан	Serial data register 1	SDR1	R/W		XXXXXXXXB
2Bн to 2Fн		(Rese	erved area	a)	
30н	Interrupt/DTP enable register	ENIR	R/W		0000000в
31н	Interrupt/DTP source register	EIRR	R/W	- - 	0000000в
32н				DTP/external interrupts	0000000в
33н	Request level setting register	ELVR	R/W		0000000в
34н to 35н		(Rese	erved area	a)	
36н	Control status register 1	ADCS1		,	0000000в
37н	Control status register 2	ADCS2	R/W		0000000в
38н	Data register 1	ADCR1		A/D converter	XXXXXXXXB
39н	Data register 2	ADCR2	R		XXXXXXXXB
ЗАн	D/A converter data register 0	DAT0	R/W		XXXXXXXXB
3Вн	D/A converter data register 1	DAT1	R/W		XXXXXXXXB
3Сн	D/A control register channel 0	DACR0	R/W	D/A converter	Ов
3Dн	D/A control register channel 1	DACR1	R/W	-	Ов
3Ен	Clock control register	CLKR	R/W	Clock output control register	0000в
3Fн		(Rese	erved area	a)	
40н	Reload register lower channel 0	PRLL0	R/W		XXXXXXXX
41н	Reload register upper channel 0	PRLH0	R/W	-	XXXXXXXXB
42н	Reload register lower channel 1	PRLL1	R/W		XXXXXXXXB
43н	Reload register upper channel 1	PRLH1	R/W	-	XXXXXXXXB
44 _H	PPG0 operation mode control register channel 0	PPGC0	R/W	8/16-bit PPG	0X000XX1B
45 н	PPG1 operation mode control register channel 1	PPGC1	R/W		0X000001в
46н	PPG0, PPG1 output control register channel 0, channel 1	PPGOE	R/W		0000000в
47H to $4F$ H		(Rese	erved area	a)	
50н	Lower compare register channel 0	OCCP0	R/W	16-bit I/O timer output compare (channel 0 to channel 3)	XXXXXXXXB

Address	Register	Register name	Read/ write	Resource name	Initial value
51н	Upper compare register channel 0	OCCP0	R/W		XXXXXXXXB
52н	Lower compare register channel 1	00004			XXXXXXXXB
53н	Upper compare register channel 1	OCCP1	R/W		XXXXXXXXB
54н	Lower compare register channel 2	000000			XXXXXXXXB
55н	Upper compare register channel 2	OCCP2	R/W	16-bit I/O timer	XXXXXXXXB
56 н	Lower compare register channel 3	00000		Output compare	XXXXXXXXB
57 н	Upper compare register channel 3	OCCP3	R/W	(channel 0 to channel 3)	XXXXXXXXB
58 н	Compare control status register channel 0	OCS0	R/W		000000в
59 н	Compare control status register channel 1	OCS1	R/W		00000в
5Ан	Compare control status register channel 2	OCS2	R/W		000000в
5Вн	Compare control status register channel 3	OCS3	R/W		00000в
5Cн to 5Fн		(Rese	erved area	a)	1
60н	Lower input capture register channel 0	10000	R		XXXXXXXX
61н	Upper input capture register channel 0	IPCP0	R	16-bit I/O timer	XXXXXXXXB
62н	Lower input capture register channel 1	10004	R	Input capture	XXXXXXXXB
63н	Upper input capture register channel 1	IPCP1	R	(channel 0, channel 1)	XXXXXXXXB
64н	Input capture control status register	ICS0, 1	R/W		0000000в
65н		(Rese	erved area	a)	1
66н	Lower timer data register	TCDTL	R/W		0000000в
67н	Upper timer data register	TCDTH	R/W	16-bit I/O timer Free-run timer	0000000в
68 H	Timer control status register	TCCS	R/W		0000000в
69н to 6Fн		(Rese	erved area	a)	1
70 н	Up/down count register channel 0	UDCR0	_		0000000в
71н	Up/down count register channel 1	UDCR1	R		0000000в
72н	Reload compare register channel 0	RCR0		8/16-bit up/down counter/timer	0000000в
73н	Reload compare register channel 1	RCR1	W	counter/timer	0000000в
74 н	Counter status register channel 0	CSR0	R/W		0000000в
75н		(Rese	erved area	a)	
76н		CCRL0	_ ***		00001000в
77н	Counter control register channel 0	CCRH0	R/W	8/16-bit up/down counter/timer	0000000в
78 н	Counter status register channel 1	CSR1	R/W		0000000в
79 н	-	(Rese	erved area	a)	1
7Ан	Counter control register channel 1	CCRL1	R/W	8/16-bit up/down counter/timer	0000000в

Address	Register	Register name	Read/ write	Resource name	Initial value					
7 Вн	Counter control register channel 1	CCRH1	R/W	8/16-bit up/down counter/timer	Х0001000в					
$7C_{\rm H}$ to $7F_{\rm H}$		(Rese	rved area	a)	L					
80н	I ² C bus status register	IBSR	R		0000000в					
81н	I ² C bus control register	IBCR	R/W		0000000в					
82н	I ² C bus clock control register	ICCR	R/W	I ² C interface	0XXXXXB					
83н	I ² C bus address register	IADR	R/W		-XXXXXXXB					
84 _H	I ² C bus data register	IDAR	R/W		XXXXXXXXB					
85н to 87н		(Reserved area)								
88 H	DTMF control register	DTMC		_	0000000в					
89н	DTMF data register	DTMD			000Х0000в					
8A to 9EH	(Reserved a	rea) (Acces	sing 90н	to 9E _H is prohibited)	L					
9 F н	Delayed interrupt generation/ release register	DIRR	R/W	Delayed interrupt generation module	Ов					
А0н	Low-power consumption mode control register	LPMCR	R/W	Low-power consumption mode	00011000в					
А1н	Clock selection register	CKSCR	R/W	Low-power consumption mode	11111100в					
A2н to A4н		(Rese	rved area	a)	L					
А5н	Auto-ready function selection register	ARSR	W	External bus pin control circuit	001100в					
А6н	External address output control register	HACR	W	External bus pin control circuit	00000000в					
А7н	Bus control signal selection register	ECSR	W	External bus pin control circuit	0000*00-в					
А8н	Watchdog timer control register	WDTC	R/W	Watchdog timer	XXXXX111 _B					
А9н	Timebase timer control register	TBTC	R/W	Timebase timer	100000в					
ААн	Watch timer control register	WTC	R/W	Watch timer	1Х-00000в					
AB _H to AF _H		(Rese	rved area	a)						

(Continued)

Address	Register	Register name	Read/ write	Resource name	Initial value					
В0н	Interrupt control register 00	ICR00	R/W		00000111в					
В1н	Interrupt control register 01	ICR01	R/W		00000111в					
В2н	Interrupt control register 02	ICR02	R/W		00000111в					
ВЗн	Interrupt control register 03	ICR03	R/W		00000111в					
В4н	Interrupt control register 04	ICR04	R/W		00000111в					
В5н	Interrupt control register 05	ICR05	R/W		00000111в					
В6н	Interrupt control register 06	ICR06	R/W		00000111в					
В7н	Interrupt control register 07	ICR07	R/W	Interrupt controller	00000111в					
В8н	Interrupt control register 08	ICR08	R/W	Interrupt controller	00000111в					
В9н	Interrupt control register 09	ICR09	R/W		00000111в					
ВАн	Interrupt control register 10	ICR10	R/W		00000111в					
ВВн	Interrupt control register 11	ICR11	R/W		00000111в					
ВСн	Interrupt control register 12	ICR12	R/W		00000111в					
BDн	Interrupt control register 13	ICR13	R/W		00000111в					
ВЕн	Interrupt control register 14	ICR14	R/W		00000111в					
BFн	Interrupt control register 15	ICR15	R/W		00000111в					
COн to FFн	FFн (External area)									

About Programming

R/W : Readable and writable

- R : Read only
- W : Write only

Explanation of initial values

- 0: The initial value of this bit is "0".
- 1: The initial value of this bit is "1".
- * : The initial value of this bit is "0" or "1".
- X: The initial value of this bit is undefined.
- -: This bit is not used. The initial value is undefined.
- Note : Areas below address 0000FF_H not listed in the table are reserved areas. These addresses are accessed by internal access. No access signals are output on the external bus.

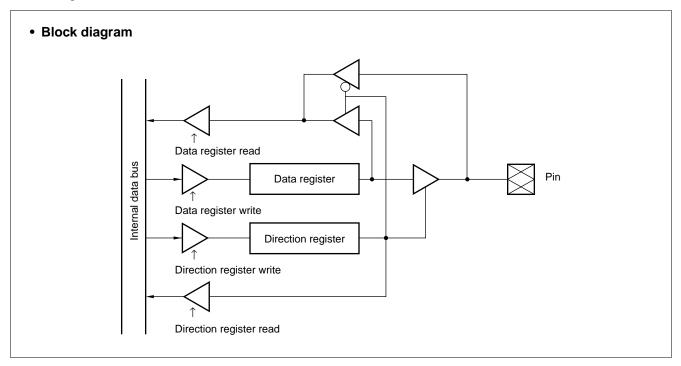
■ INTERRUPT VECTOR AND INTERRUPT CONTROL REGISTER ASSIGNMENTS TO **INTERRUPT SOURCES**

	I ² OS	Interru	pt vector	Interrupt control register		
Interrupt source	support	Number	Address	Number	Address	
Reset	×	#08	FFFFDCH	_	—	
INT 9 instruction	×	#09	FFFFD8H		—	
Exception	×	#10	FFFFD4H	_		
A/D converter	0	#11	FFFFD0H		000080.	
Timebase timer interval interrupt	×	#12	FFFFCCH	ICR00	0000В0н	
DTP/external interrupt 0 (External interrupt 0)	0	#13	FFFFC8H	ICR01	0000B1	
16-bit free-run timer (I/O timer) overflow	0	#14	FFFFC4H		0000B1н	
I/O extended serial interface 1	0	#15	FFFFC0H	ICR02	0000B2H	
DTP/external interrupt 1 (External interrupt 1)	0	#16	FFFFBCH		0000B2H	
I/O extended serial interface 2	0	#17	FFFFB8H		000082	
DTP/external interrupt 2 (External interrupt 2)	0	#18	FFFFB4н	ICR03	0000ВЗн	
DTP/external interrupt 3 (External interrupt 3)	0	#19	FFFFB0H	ICR04	0000B4н	
8/16-bit PPG 0 counter borrow	0	#20	FFFFACH	ICK04	0000 D4 H	
8/16-bit up/down counter/timer 0 compare	0	#21	FFFFA8H			
8/16-bit up/down counter/timer 0 underflow/overflow, up/down invert	0	#22	FFFFA4H	ICR05	0000B5н	
8/16-bit PPG 1 counter borrow	0	#23	FFFFA0H	ICR06	0000B6H	
DTP/external interrupt 4/5 (External interrupt 4/5)	0	#24	FFFF9CH		UUUUDOH	
Output compare (channel 2) match (I/O timer)	0	#25	FFFF98⊦	ICR07	0000 B7 н	
Output compare (channel 3) match (I/O timer)	0	#26	FFFF94H		0000 D 7H	
Watch prescaler	×	#27	FFFF90H	ICR08	0000B8н	
DTP/external interrupt 6 (External interrupt 6)	0	#28	FFFF8CH		UUUUDOH	
8/16-bit up/down counter/timer 1 compare	0	#29	FFFF88н			
8/16-bit up/down counter/timer 1 underflow/overflow, up/down invert	0	#30	FFFF84 _H	ICR09	0000В9н	
Input capture (channel 0) read (I/O timer)	0	#31	FFFF80H	ICR10	0000ВАн	
Input capture (channel 1) read (I/O timer)	0	#32	FFFF7C _H		UUUUDAH	
Output compare (channel 0) match (I/O timer)	0	#33	FFFF78н	ICR11	0000BBн	
Output compare (channel 1) match (I/O timer)	0	#34	FFFF74 _H		UUUUDDH	
Completion of flash memory write/erase	×	#35	FFFF70H		0000BCн	
DTP/external interrupt 7 (External interrupt 7)	0	#36	FFFF6CH	ICR12	UUUUDCH	
UART0 receive complete	0	#37	FFFF68H	ICR13	0000BDн	
UART0 transmit complete	0	#39	FFFF60H	ICR14	0000BEн	
I ² C interface	×	#41	FFFF58H	ICP15		
Delayed interrupt generation module	×	#42	FFFF54н	ICR15	0000BFн	

Indicates that the interrupt request flag is cleared by the I²OS interrupt clear signal.
 Indicates that the interrupt request flag is cleared by the I²OS interrupt clear signal (stop request present).
 Indicates that the interrupt request flag is not cleared by the I²OS interrupt clear signal.

Note: For resources in which two interrupt sources share the same interrupt number, the I2OS interrupt clear signal clears both interrupt request flags.

PERIPHERAL RESOURCES


1. Parallel Ports

(1) I/O Ports

Each port pin can be specified as either an input or output by its corresponding direction register when the pin is not set for use by a peripheral. When a port is set as an input, reading the data register always reads the value corresponding to the pin level. When a port is set as an output, reading the data register reads the data register latch value. The same applies when reading using a read-modify-write instruction.

When used as control outputs, reading the data register reads the control output value, irrespective of the direction register value.

Note that if a read-modify-write instruction (set bit or similar instruction) is used to set output data in the data register before switching a pin from input to output, the instruction reads the input level at the pin and not the data register latch value.

(2) Port Direction Registers

Port 0 data register (PDR	0)										
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
	Address : 000000H	P07	P06	P05	P04	P03	P02	P01	P00	XXXXXXXXB	R/W*
Port 1 data register (PDR	1)										
U (bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
	Address : 000001н	P17	P16	P15	P14	P13	P12	P11	P10	XXXXXXXXB	R/W*
Port 2 data register (PDR	2)		1	1			1				
U (bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
	Address : 000002н	P27	P26	P25	P24	P23	P22	P21	P20	XXXXXXXXB	R/W*
Port 3 data register (PDR	3)	L	1	1							
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
	Address : 000003н	P37	P36	P35	P34	P33	P32	P31	P30	XXXXXXXXB	R/W*
Port 4 data register (PDR	4)				1	1					
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
	Address : 000004H	P47	P46	P45	P44	P43	P42	P41	P40	1XXXXXXXB	R/W*
Port 5 data register (PDR	5)										
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
	Address : 000005н	P57	P56	P55	P54	P53	P52	P51	P50	XXXXXXXXB	R/W*
Port 6 data register (PDR	6)										
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
	Address : 000006н	P67	P66	P65	P64	P63	P62	P61	P60	XXXXXXXXB	R/W*
Port 7 data register (PDR	7)										
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
	Address : 000007н	_	—	—	P74	P73	P72	P71	P70	XX111в	R/W*
Port 8 data register (PDR	8)		1.11.0			1.11.0	1.11.0		1.11.0		A
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
	Address : 000008н	_	P86	P85	P84	P83	P82	P81	P80	- XXXXXXX _В	R/W*
Port 9 data register (PDR	9)	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	A 00000
											Access
	Address : 000009н	P97	P96	P95	P94	P93	P92	P91	P90	XXXXXXXXB	R/W*
Port A data register (PDR	(A)	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
	Address : 00000Aн				511 4	511.5	PA2	PA1	PA0	XXX _B	R/W*
	AUU 53 . UUUUUAH						FAZ	FAI	FAU	AAAB	r\/ VV
* . The operation of ro	R/W : Readable and w — : Unused X : Indeterminate		te ie e	liabtly	diffor	ont from	m roog	linger	writin	a to momoriy a	s follows
*: The operation of rea	aung or whiting to t	$^{\prime}$ O POI	19199	ngnuy	unere		meat	an iy ol	VVIILIII	g to memory, a	3 10110113.

- Input mode Read: Reads the corresponding pin level. Write: Writes to the output latch.
- Output mode Read: Reads the value of the data register latch. Write: The value is output from the corresponding pin.

(3) Port Direction Registers

Port 0 direction register (D	DR0)	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Acces
	Address : 000010н	D07	D06	D05	D04	D03	D02	D01	D00	00000000в	R/W
		L					I				
Port 1 direction register (D	DR1)	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Acces
	Address : 000011н	D17	D16	D15	D14	D13	D12	D11	D10	0000000в	R/W
Port 2 direction register (D	DR2)	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Acces
	Address : 000012 _H	D27	D26	D25	D24	D23	D22	D21	D20	0000000в	R/W
		L	-	-		-					
Port 3 direction register (D	DR3)	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Acce
	Address : 000013⊦	D37	D36	D35	D34	D33	D32	D31	D30	00000000в	R/W
			200	200	501	200	DOL	201	200		
Port 4 direction register (D	DR4)	L 1 7	L'I O	1.1. E	L 11 A	h'i o	L'I O	L 1 A	L'I O	Initial value	A
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Acce
	Address : 000014н		D46	D45	D44	D43	D42	D41	D40	-0000000в	R/W
Port 5 direction register (D	DR5)										
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Acce
	Address : 000015H	D57	D56	D55	D54	D53	D52	D51	D50	0000000в	R/W
Port 6 direction register (D	DR6)										
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Acce
	Address : 000016H	D67	D66	D65	D64	D63	D62	D61	D60	0000000в	R/W
Port 7 direction register (D	DR7)										
	·	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Acce
	Address : 000017 _H	_	_	—	D74	D73	_	_	—	в	R/W
Port 8 direction register (D											
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Acce
	Address : 000018н	_	D86	D85	D84	D83	D82	D81	D80	-0000000в	R/W
Port 9 direction register (D											
Fort 9 direction register (L	JDR9)	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Acce
	Address : 000019н	D97	D96	D95	D94	D93	D92	D91	D90	0000000в	R/W
Port A direction register (I	DDRA)	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Acce
	Address : 00001AH		_	_	_	_	DA2	DA1	DA0	000в	R/W
		L	I	1		I		L			
	R/W: Readable and	writable									
	— : Unused										

(Continued)

* : The operation of reading or writing to I/O ports is slightly different from reading or writing to memory, as follows.

Input mode

Read: Reads the corresponding pin level.

Write: Writes to the output latch.

• Output mode

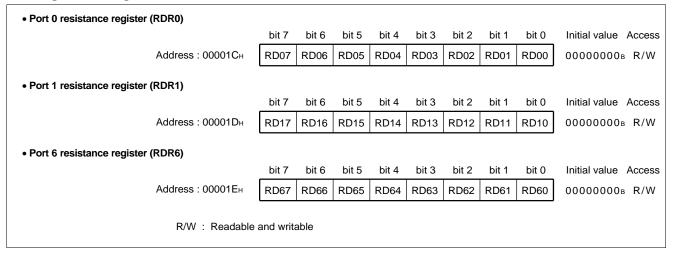
Read: Reads the value of the data register latch.

Write: The value is output from the corresponding pin.

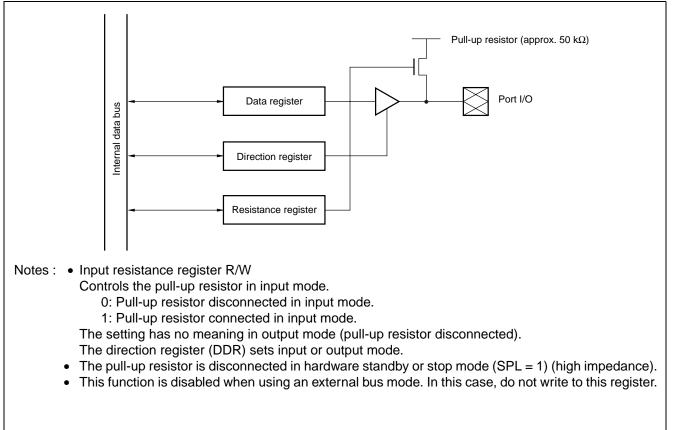
When pins are used as ports, the register bits control the corresponding pins as follows.

- 0: Input mode
- 1: Output mode

Bits are set to "0" by a reset.

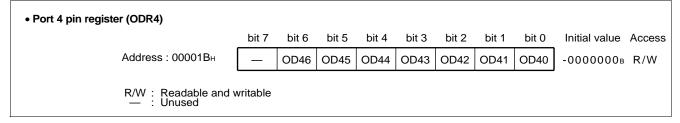

• P47, P70 to P72

No DDR for this port. Data is always available in this port, so when using P70 and P71 as I²C pin, set PDR value to "1". (Otherwise when using P70 and P71 by themselves, turn off the I²C.)

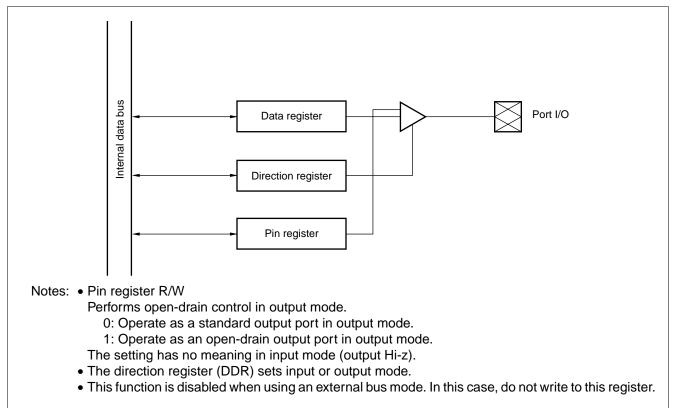

As this port is open-drain output style, so when using this port as an input port, in order to turn off the output transistor, set the output data resister value to "1" and add the pull up resister to the external pin.

(4) Port Resistance Registers

• Register configuration

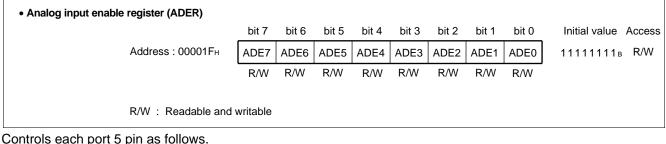


Block diagram



(5) Port Pin Register

• Register configuration



• Block diagram

(6) Analog Input Enable Register

• Register configuration

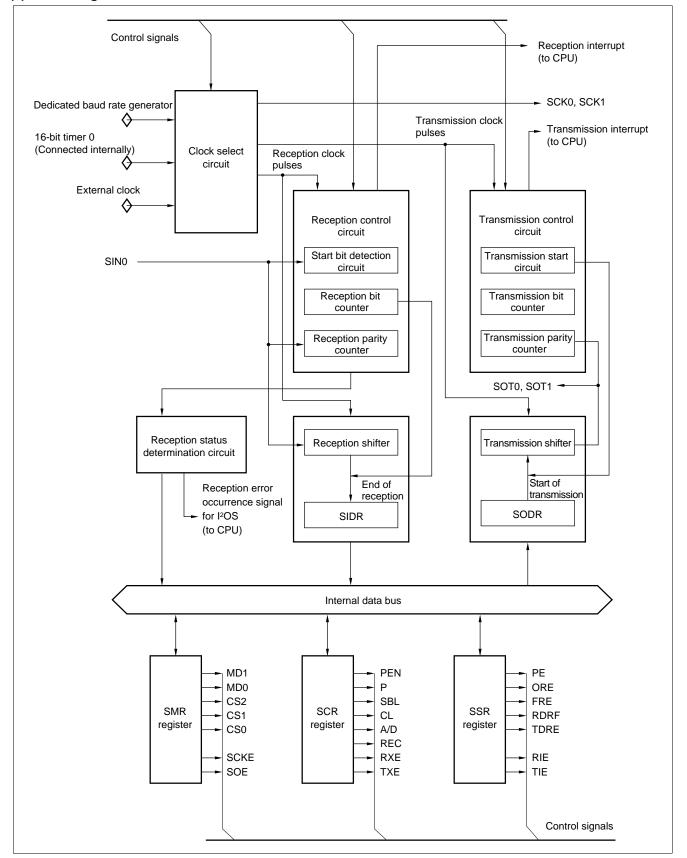
0: Port input mode 1: Analog input mode

Set to "1" by a reset.

2. UART

The UART is a serial I/O port that can be used for CLK asynchronous (start-stop synchronization) or CLK synchronous communications. The UART has the following features.

- Full duplex, double buffered
- Supports asynchronous (start-stop synchronization) and CLK synchronous data transfer
- Supports multi-processor mode
- Built-in dedicated baud rate generator


Asynchronous: 9615 bps, 31250 bps, 4808 bps, 2404 bps and 1202 bps CLK synchronous : 1 Mbps, 500 Kbps, 250 Kbps, 125 Kbps and 62.5 Kbps

For a 6, 8, 10 or 12 MHz clock.

- Supports flexible baud rate setting using an external clock
- Error detect function (parity, framing, and overrun)
- NRZ type transmission signal
- Intelligent I/O service support

(1) Register Configuration

bit <u>15</u>	bit 15			bit 8 bit 7 bit						
	CDCR	_								
	SCR	SMR								
	SSR		SIDR (R) /SODR (W							
 ←	8 bits		•		- 8 bits					
Serial mode register 0 (SMR0)										
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address :	000020н	MD1	MD0	CS2	CS1	CS0	Reserved	SCKE	SOE	0000000в
Serial control register 0 (SCR0)		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
• Senal control register 0 (SCR0)		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address :	000021н	PEN	Р	SBL	CL	A/D	REC	RXE	TXE	00000100в
Serial input register/serial output regi	ister 0 (SIDR	R/W	R/W	R/W	R/W	R/W	W	R/W	R/W	
		bit 7	, bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address :	000022н	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB
Serial status register 0 (SSR0)		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	, ,
		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address :	000023н	PE	ORE	FRE	RDRF	TDRE	_	RIE	TIE	00001-00в
Clock division control register (CDCF	8)	R	R	R	R	R	_	R/W	R/W	,
	•	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address :	000027н	MD	_	_	_	DIV3	DIV2	DIV1	DIV0	01111в
		R/W	_			R/W	R/W	R/W	R/W	,
R : Re: W : Wri — : Uni	te only	vritable								

3. I/O Extended Serial Interface

I/O extended serial interface consists of an 8-bit serial I/O interface that can perform clock synchronous data transfer. Either LSB-first or MSB-first data transfer can be selected.

The following two serial I/O operation modes are available.

- Internal shift clock mode: Data transfer is synchronized with the internal clock.
- External shift clock mode: Data transfer is synchronized with the clock input from the external pin (SCK). By
 manipulating the general-purpose port that shares the external pin (SCK), this
 mode also enables the data transfer operation to be driven by CPU instructions.

(1) Register Details

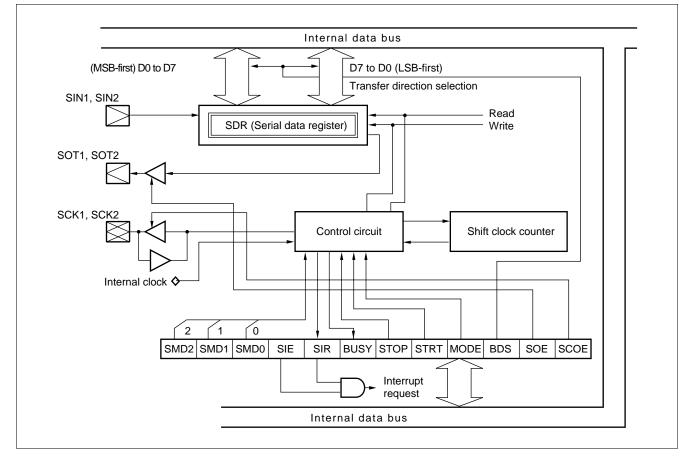
Serial mode control status register 0, 1 (SMCS0, SMCS1)										
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value	
Address : 000025н 000029н	SMD2	SMD1	SMD0	SIE	SIR	BUSY	STOP	STRT	00000010в	
	R/W	R/W	R/W	R/W	R/W*1	R	R/W	R/W*2		
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	
Address : 000024н 000028н	_	—	—	—	MODE	BDS	SOE	SCOE	0000в	
	_	_	_	_	R/W	R/W	R/W	R/W		
Serial data register 0, 1 (SDR0, SDR1)										
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	
Address : 000026н 00002Ан	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
R/W : Readable and writable R : Read only — : Unused X : Indeterminate										
*1: Only "0" can be written.										

*2: Only "1" can be written. Reading always returns "0".

This register controls the transfer operation mode of the serial I/O. The following describes the function of each bit.

bit 3: Serial mode selection bit (MODE)

This bit selects the conditions for starting operation from the halted state. Changing the mode during operation is prohibited


MODE Operation							
0	Start when STRT is set to "1". [Initial value]						
1	Start on reading from or writing to the serial data register.						

The bit is initialized to "0" by a reset. The bit is readable and writable. Set to "1" when using the intelligent I/O

bit 2: Transfer direction selection bit (BDS: Bit Direction Select)

Selects as follows at the time of serial data input and output whether the data are to be transferred in the order from LSB to MSB or vice versa.

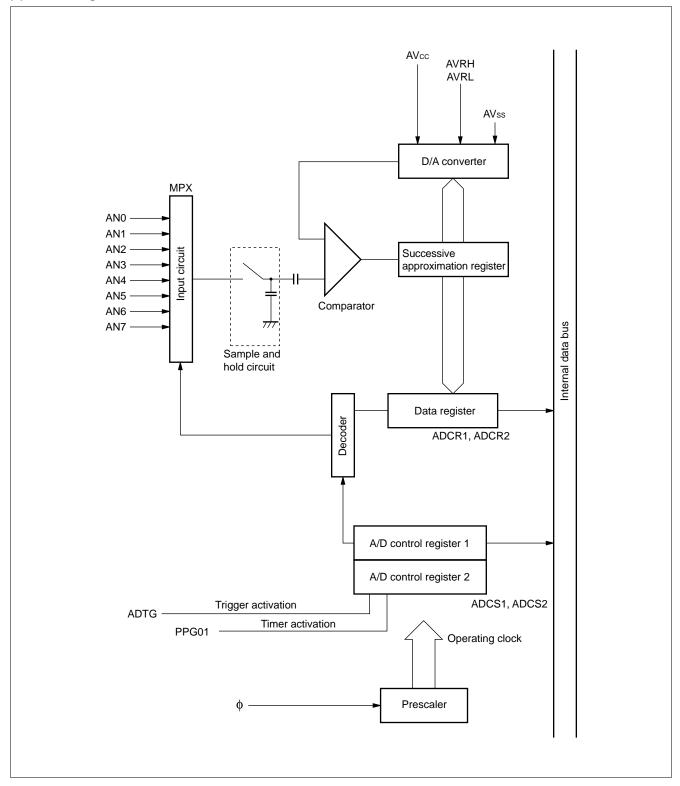
MODE	Operation
0	LSB-first [Initial value]
1	MSB-first

4. A/D Converter

The A/D converter converts analog input voltages to digital values. The A/D converter has the following features.

- Conversion time: Minimum of 8.167 μs per channel (for a 12 MHz machine clock)
- Uses RC-type successive approximation conversion with a sample and hold circuit.
- 10-bit resolution
- Eight program-selectable analog input channels

Single conversion mode:	Selectively convert a one channel.
Scan conversion mode:	Continuously convert multiple channels. Maximum of 8 program-
	selectable channels.
Continuous conversion mode:	Repeatedly convert specified channels.
Stop conversion mode:	Convert one channel then halt until the next activation. (Enables
	synchronization of the conversion start timing.)

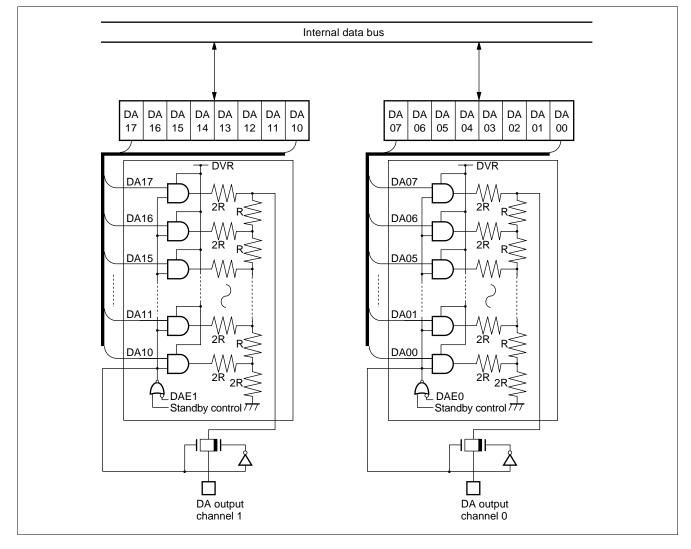

• An A/D conversion completion interrupt request to the CPU can be generated on the completion of A/D conversion. This interrupt can activate I²OS to transfer the result of A/D conversion to memory and is suitable for continuous operation.

1

• Activation by software, external trigger (falling edge), or timer (rising edge) can be selected.

(1) Register Configuration

	bit	15			bit 8	bit 7			bit	D
			ADC	S2			ADC	S1		
			ADCR2				ADCI			
		•	8 bit	s ——			— 8 bit	s ——		
Control status register 1 (ADC	S1)									
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Ac	ldress : 000036н	MD1	MD0	ANS2	ANS1	ANS0	ANE2	ANE1	ANE0	0000000в
Control status register 2 (ADC	CS2)	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Ac	ldress : 000037н	BUSY	INT	INTE	PAUS	STS1	STS0	STRT	DA	0000000в
Data register 1 (ADCR1)		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Ac	dress : 000038н	7	6	5	4	3	2	1	0	XXXXXXXXB
Data register 2 (ADCR2)		R	R	R	R	R	R	R	R	
		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Ac	ldress : 000039н	—	—	_	—	—	—	9	8	XXXXXXXXB
		R	R	R	R	R	R	R	R	
R	/: Readable and wr : Read only : Indeterminate	itable								



5. D/A Converter

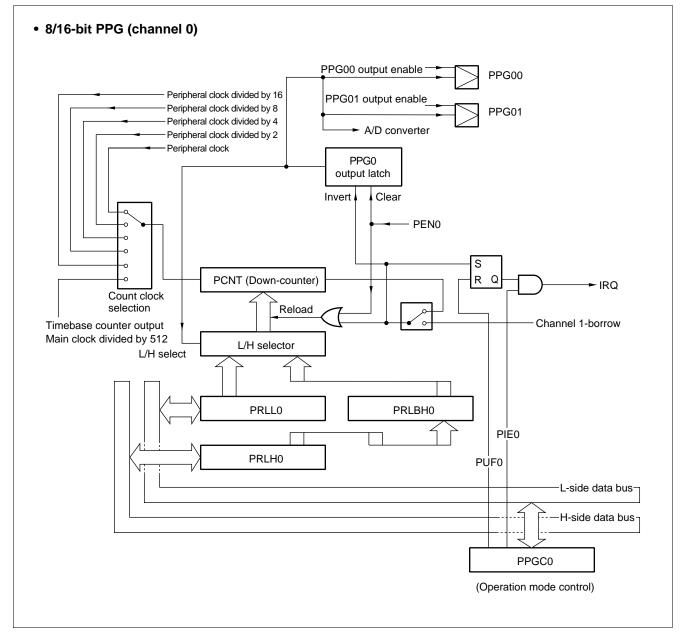
D/A converter is an R-2R type D/A converter with 8-bit resolution. The device contains two D/A converters. The D/A control register controls the output of the two D/A converters independently.

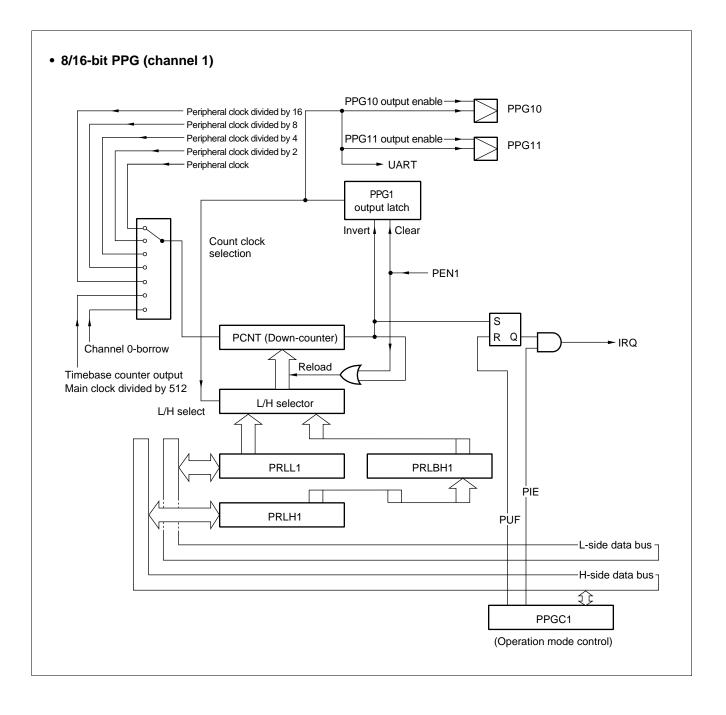
(1) Register Configuration

D/A converter data register 0 (DAT0)									
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address : 00003AH	DA07	DA06	DA05	DA04	DA03	DA02	DA01	DA00	XXXXXXXXB
D/A converter data register 1 (DAT1)	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address : 00003BH	DA17	DA16	DA15	DA14	DA13	DA12	DA11	DA10	XXXXXXXXB
D/A control register channel 0 (DACR0)		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address : 00003CH	—			—				DAE0	Ов
D/A control register channel 1 (DACR1)	_	_	_	_	_	_	_	R/W	
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address : 00003DH	—			_		-	-	DAE1	Ов
	_	_	_	_	_	_	_	R/W	
R/W : Readable and wi — : Unused X : Indeterminate	itable								

6. 8/16-bit PPG

8/16-bit PPG is an 8-bit reload timer module. The block performs PPG output in which the pulse output is controlled by the operation of the timer.


The hardware consists of two 8-bit down-counters, four 8-bit reload registers, one 16-bit control register, two external pulse output pins, and two interrupt outputs. The PPG has the following functions.


- 8-bit PPG output in two channels independent operation mode:
 - Two independent PPG output channels are available.
- 16-bit PPG output operation mode: One 16-bit PPG output channel is available.
- 8 + 8-bit PPG output operation mode: Variable-period 8-bit PPG output operation is available by using the output of channel 0 as the clock input to channel 1.
- PPG output operation:

Outputs pulse waveforms with variable period and duty ratio. Can be used as a D/A converter in conjunction with an external circuit.

(1) Register Configuration

PPG0 operation mode control register channel 0 (PPGC0)											
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value		
Address : 000044н	PEN0	_	PE00	PIE0	PUF0	_	_	Reserved	0Х000ХХ1в		
-	R/W		R/W	R/W	R/W	_	_	_			
PPG1 operation mode control register channel 1 (PPGC1)											
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value		
Address : 000045н	PEN1	—	PE10	PIE1	PUF1	MD1	MD0	Reserved	0Х00001в		
	R/W	_	R/W	R/W	R/W	R/W	R/W	_			
• PPG0, PPG1 output control register channel 0,	channel 1	I (PPGC	E)								
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value		
Address : 000046н	PCS2	PCS1	PCS0	PCM2	PCM1	PCM0	PE11	PE01	0000000в		
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reload register upper channel 0, channel 1 (PR	RLH0, PRL	.H1)									
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value		
Address : 000041н 000043н									XXXXXXXXB		
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reload register lower channel 0, channel 1 (PR	LLO, PRL	L1)									
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value		
Address : 000040н 000042н									XXXXXXXXB		
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
R/W : Readable and writable X : Indeterminate											

7. 8/16-bit Up/Down Counter/Timer

8/16-bit up/down counter/timer is an up/down counter/timer and consists of six event input pins, two 8-bit up/ down counters, two 8-bit reload/compare registers, and their control circuits.

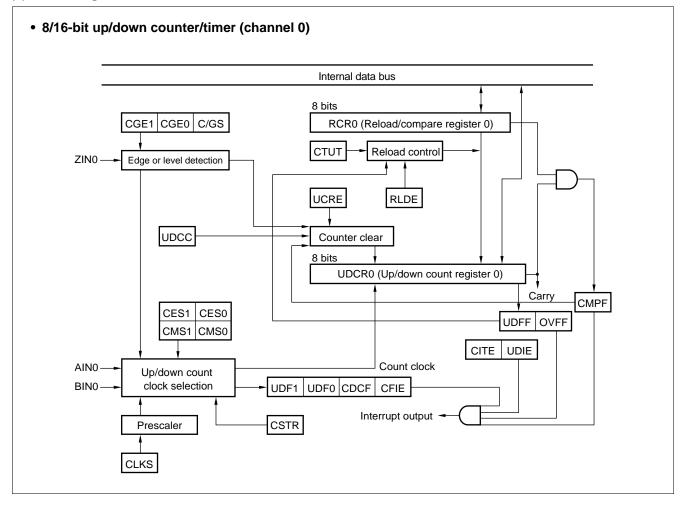
(1) Main Functions

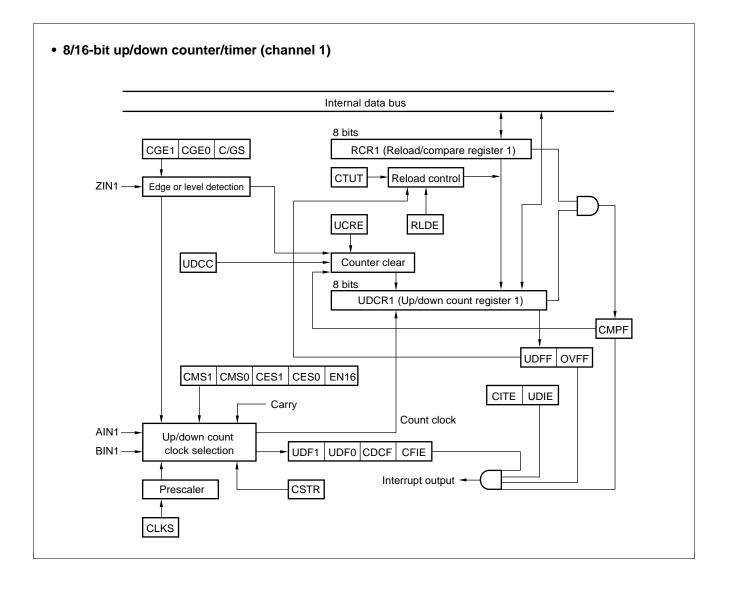
- The 8-bit count register can count in the range 0 to 256 (or 0 to 65535 in 1×16 -bit operation mode).
- The count clock selection can select between four different count modes.

Count modes	Timer mode
	Up/down counter mode
	Phase difference count mode (× 2)
	Phase difference count mode (× 8)
• Two different internal count clocks are available	ble in timer mode.
Count clock (at 12 MHz operation)	166 ns (6 MHz: Divide by 2)
	0.67 μs (1.5 MHz: Divide by 8)
• In up/down count mode, you can select which	n edge to detect on the external pin input signal.
Detected edge	Detect falling edges
C C	Detect rising edges
	— Detect both rising and falling edges
	Edge detection disabled
Phase difference count mode is suitable for mo	ptor encoder counting. By inputting the A. B. and 2

- Phase difference count mode is suitable for motor encoder counting. By inputting the A, B, and Z phase outputs from the encoder, a high-precision rotational angle, speed, or similar count can be implemented simply.
- Two different functions can be selected for the ZIN pin.

ZIN pin Counter clear function Gate function

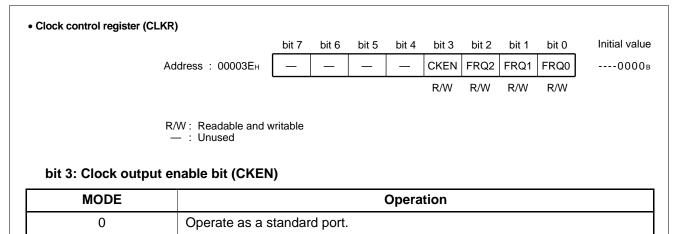

• Compare and reload functions are available and can be used either independently or together. A variablewidth up/down count can be performed by activating both functions.


Compare/reload function	Compare function (Output an interrupt when a compare occurs.)
	 Compare function (Output an interrupt and clear the counter when a compare occurs.)
	 Reload function (Output an interrupt and reload when an underflow occurs.)
	— Compare/reload function
	(Output an interrupt and clear the counter when a com- pare occurs. Output an interrupt and reload when an underflow occurs.)
	Compare/reload disabled
MALE ALL AND AND AND A REAL AND A	(1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

- Whether or not to generate an interrupt when a compare, reload (underflow), or overflow occurs can be set independently.
- The previous count direction can be determined from the count direction flag.
- An interrupt can be generated when the count direction changes.

(2) Register Configuration

bit			bit 8	bit 7			bi	t 0]		
	UD	CR1			UD	CR0				
	RC	CR1			RC	R0				
	(Revers	ed area)		CS	R0				
	CC	RH0			CC	RL0				
	(Revers	ed area)		CS	R1				
	сс	RH1			CC	RL1		1		
		bits —	-	-	—— 8 t	oits —	•	-		
Up/down count register channel 0	(UDCR0)									
	,	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address	з: 000070н	D07	D06	D05	D04	D03	D02	D01	D00	0000000в
Up/down count register channel 1	(UDCR1)	R	R	R	R	R	R	R	R	
	. /	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Addres	s : 000071н	D17	D16	D15	D14	D13	D12	D11	D10	0000000в
Reload compare register channel	0 (RCR0)	R	R	R	R	R	R	R	R	
	• ()	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Addres	s : 000072н	D07	D06	D05	D04	D03	D02	D01	D00	0000000в
Reload compare register channel		W	W	W	W	W	W	W	W	
• Reload compare register channer		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address	s : 000073н	D17	D16	D15	D14	D13	D12	D11	D10	0000000в
Counter status register channel 0,	obannal 1 (CS		W	W	W	W	W	W	W	
• Counter status register channel 0,		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Addres	s: 000074н 000078н	CSTR	CITE	UDIE	CMPF	OVFF	UDFF	UDF1	UDF0	0000000в
Occurrence and the society of the society of		R/W	R/W	R/W	R/W	R/W	R/W	R	R	
Counter control register channel (, channel 1 (C	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Addres	s : 000076н 00007Ан	_	СТИТ	UCRE			CGSC	CGE1	CGE0	00001000в 00000000в
		_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	00000000
Counter control register channel ((CCRHU)	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Addres	s : 000077н	M16E	CDCF	CFIE	CLKS	CMS1	CMS0	CES1	CES0	0000000в
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Counter control register channel 1	(CCRH1)	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Addres	s : 00007Вн	_	CDCF	CFIE	CLKS	CMS1	CMS0	CES1	CESO	Х0001000в
		_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
R : F W : V — : L	Readable and w Read only Vrite only Jnused ndeterminate	vritable								



8. Clock Output Control Register

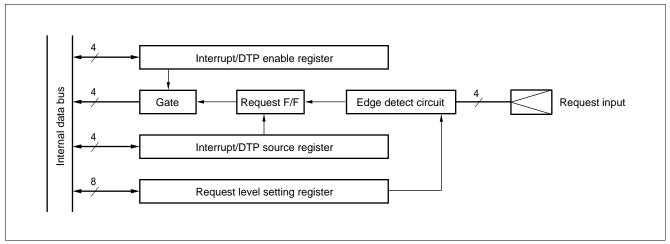
Clock output control register outputs the divided machine clock.

(1) Register Configuration

1

bit 2 to bit 0: Clock output frequency select bit (FRQ2 to FRQ0)

Operate as the clock output.


FRQ2	FRQ1	FRQ0	Output clock	$\phi = 12 \text{ MHz}$	ϕ = 8 MHz	$\phi = 4 \text{ MHz}$
0	0	0	φ/2 ¹	167 ns	250 ns	500 ns
0	0	1	φ/ 2 ²	333 ns	500 ns	1 μs
0	1	0	φ/2 ³	667 ns	1 μs	2 μs
0	1	1	ф/2 ⁴	1.33 μs	2 µs	4 μs
1	0	0	φ/2 ⁵	2.67 μs	4 μs	8 µs
1	0	1	ф/2 ⁶	5.33 μs	8 µs	16 µs
1	1	0	φ/2 ⁷	10.67 μs	16 μs	32 µs
1	1	1	φ/ 2 ⁸	21.33 μs	32 µs	64 μs

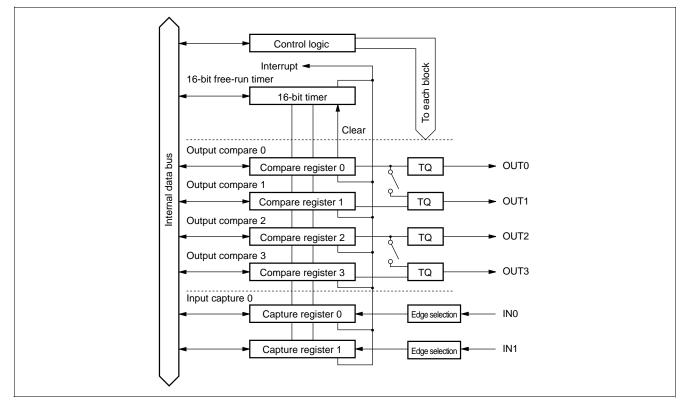
9. DTP/External Interrupts

The DTP (Data Transfer Peripheral) is a peripheral block that interfaces external peripherals to the F²MC-16L CPU. The DTP receives DMA and interrupt processing requests from external peripherals and passes the requests to the F²MC-16L CPU to activate the intelligent I/O service or interrupt processing. Two request levels ("H" and "L") are provided for the intelligent I/O service. For external interrupt requests, generation of interrupts on a rising or falling edge as well as on "H" and "L" levels can be selected, giving a total of four types.

(1) Register Configuration

Interrupt/DTP enable register (ENIR)										
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	
Address : 000030н	EN7	EN6	EN5	EN4	EN3	EN2	EN1	EN0	0000000в	
Interrupt/DTP source register (EIRR)	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value	
Address : 000031н	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	0000000в	
Request level setting register (ELVR)	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	
Address : 000032н	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	0000000в	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value	
Address : 000033H	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4	0000000в	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
R/W : Readable and v	vritable									

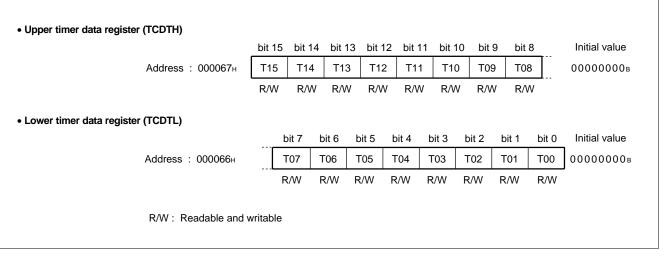
10. 16-bit I/O Timer


The 16-bit I/O timer consists of one 16-bit free-run timer, two output compare, and two input capture modules.

Based on the 16-bit free-run timer, these functions can be used to generate two independent waveform outputs and to measure input pulse widths and external clock periods.

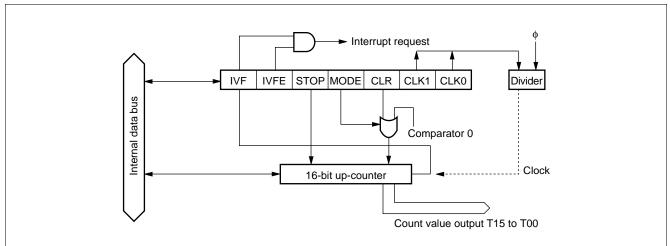
• Register configuration

• 16-bit free-run timer			
TCDTL : 000066н TCDTH : 000067н	bit 15	bit 0 Timer data register lower, upper (TCDTL, TCDTH	I)
TCCS : 000068H		TCCS Timer control status register (TCCS)	
 16-bit output compare 			
ОССР0 : 000050н, 51н ОССР1 : 000052н, 53н ОССР2 : 000054н, 55н ОССР3 : 000056н, 57н	bit 15	bit 0 Compare register channel 0 to channel 3 lower, upper (OCCP0 to OCCP3)	
ОСS0 : 000058н ОСS1 : 000059н ОСS2 : 00005Ан ОСS3 : 00005Вн	OCS	Compare control status register channel 0 to channel 3 (OCS0 to OCS3)	
16-bit input capture			
IPCP0 : 000060н, 61н IPCP1 : 000062н, 63н ICS0, 1 : 000064н	bit 15	bit 0 Input capture register channel 0, channel 1 lower, upper (IPCP0, IPCP1) ICS Input capture control status register (ICS0, 1)	


• Block diagram

(1) 16-bit Free-run Timer

The 16-bit free-run timer consists of a 16-bit up-counter, a control register, and a prescaler. The output of the timer/counter is used as the base time for the input capture and output compare.

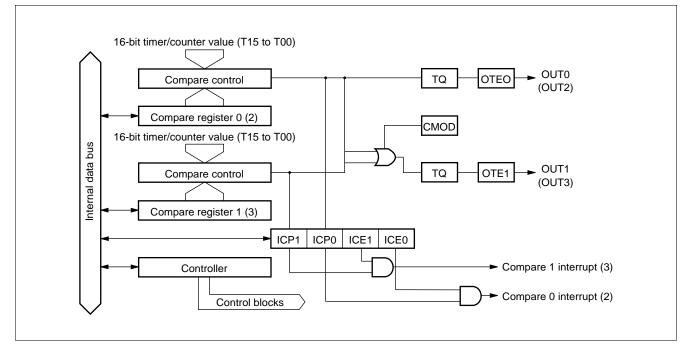

- The operating clock for the counter can be selected from four different clocks. Four internal clocks ($\phi/4$, $\phi/16$, $\phi/32$, $\phi/64$)
- Interrupts can be generated when a counter value overflow or compare match with compare register 0 occurs (the appropriate mode must be set for a compare match).
- The counter can be initialized to 0000_H by a reset, software clear, or compare match with compare register 0.
- Register details

The count value of the 16-bit free-run timer can be read from this register. The count is cleared to " 0000_B " by a reset. Writing to this register sets the timer value. However, only write to the register when the timer is halted (STOP = "1"). Always use word access.

The 16-bit free-run timer is initialized by the following.

- Reset
- The clear bit (CLR) of the control status register
- A match between the timer/counter value and compare register 0 of the output compare (if the appropriate mode is set)
- Block diagram

(2) Output Compare


The output compare consists of two 16-bit compare registers, compare output latches, and control registers. The modules can invert the output level and generate an interrupt when the 16-bit free-run timer value matches the compare register value.

- The four compare registers can be operated independently. Each compare register has a corresponding output pin and interrupt flag.
- The four compare registers can be paired to control the output pins. Invert the output pins using the four compare registers.
- Initial values can be set for the output pins.
- An interrupt can be generated when a compare match occurs.

• Register configuration

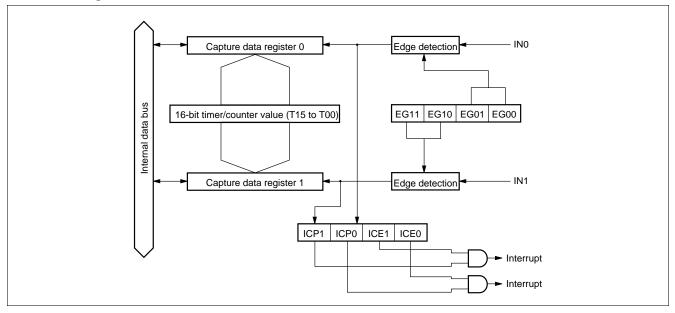
Upper compare register channel 0 to channel 3 OCCP0 : 000051H	bit 15	0 to OC bit 14	CP3) bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value			
ОССР0 : 000051н ОССР1 : 000053н ОССР2 : 000055н	C15	C14	C13	C12	C11	C10	C09	C08	XXXXXXXXXB			
OCCP3 : 000057H	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Lower compare register channel 0 to channel 3 (OCCP0 to OCCP3)												
OCCP0 : 000050H	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value			
ОССР1 : 000052н ОССР2 : 000054н	C07	C06	C05	C04	C03	C02	C01	C00	XXXXXXXXB			
ОССР3 : 000056н	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Compare control status register channel 0 to channel 3 (OCS0 to OCS3)												
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value			
ОСS1 : 000059н ОСS3 : 00005Вн		_	_	CMOD	OTE1	OTE0	OTDI	OTD0	00000в			
	—	—	—	R/W	R/W	R/W	R/W	R/W				
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value			
OCS0 : 000058н OCS2 : 00005Ан	ICP1	ICP0	ICE1	ICE0	_	_	CST1	CST0	000000в			
	R/W	R/W	R/W	R/W	—	—	R/W	R/W				
R/W: Readable and writab — : Unused X : Indeterminate	le											

• Block diagram

(3) Input Capture

The input capture consists of two independent external input pins, their corresponding capture registers, and a control register. The value of the 16-bit free-run timer can be stored in the capture register and an interrupt generated when the specified edge is detected on the signal from the external input pin.

- The edge to detect on the external input signal is selectable. Detection of rising edges, falling edges, or either edge can be specified.
- The two input capture channels can operate independently.
- An interrupt can be generated on detection of the specified edge on the external input signal.


The input capture interrupt can activate the intelligent I/O service.

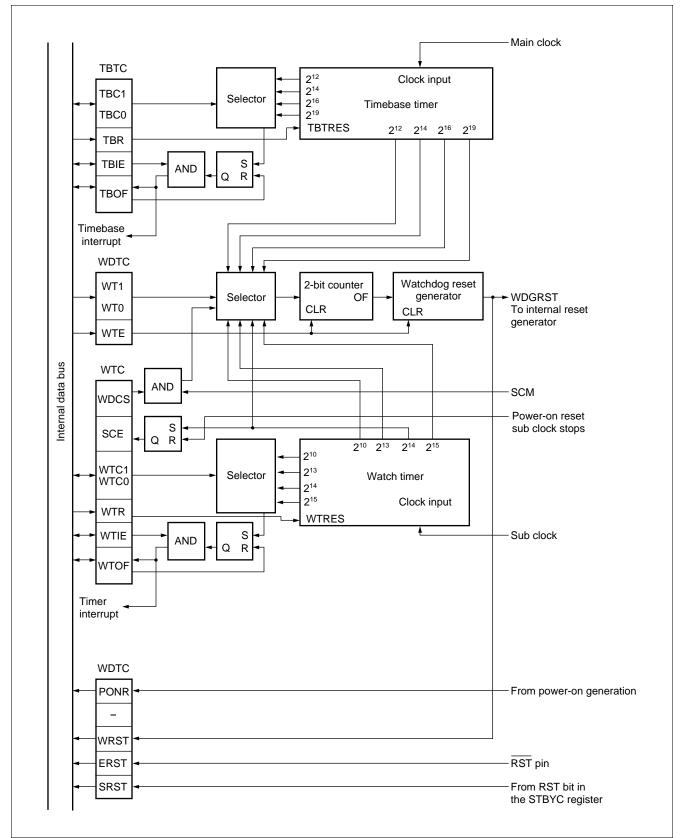
• Register details

Input capture register channel 0, channel 1 (IPCP0, IPCP1)										
	bit 1	5 bit 14	bit 13	bit '	12 bit ²	11 bit 1	0 bit	9 bit	8	Initial value
IPCP0 : 000061н IPCP1 : 000063н	CP1	5 CP14	CP13	CP1	12 CP1	1 CP1	0 CPC	09 CP0	08	XXXXXXXXB
	R	R	R	R	R	R	R	R		
		bit 7	oit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
IPCP0 : 000060н IPCP1 : 000062н		CP07 C	P06	CP05	CP04	CP03	CP02	CP01	CP00	XXXXXXXXB
		R	R	R	R	R	R	R	R	
Input capture control status register (ICS0, 1)										
	bit 7	7 bit 6	bit 5	bit	4 bit	3 bit 2	2 bit	1 bit	0	Initial value
000064н	ICP [,]	1 ICP0	ICE1	ICE	EG1	I1 EG1	0 EGC	01 EG0	00	0000000в
	R/W	/ R/W	R/W	R/V	V R/V	V R/V	/ R/\	// R/	W	
R/W: Readable and writat R : Read only χ : Indeterminate	ble									

The 16-bit free-run timer value is stored in these registers when the specified edge is detected on the input waveform from the corresponding external pin. (Always use word access. Writing is prohibited.)

Block diagram

11. Watchdog Timer, Timebase Timer, and Watch Timer

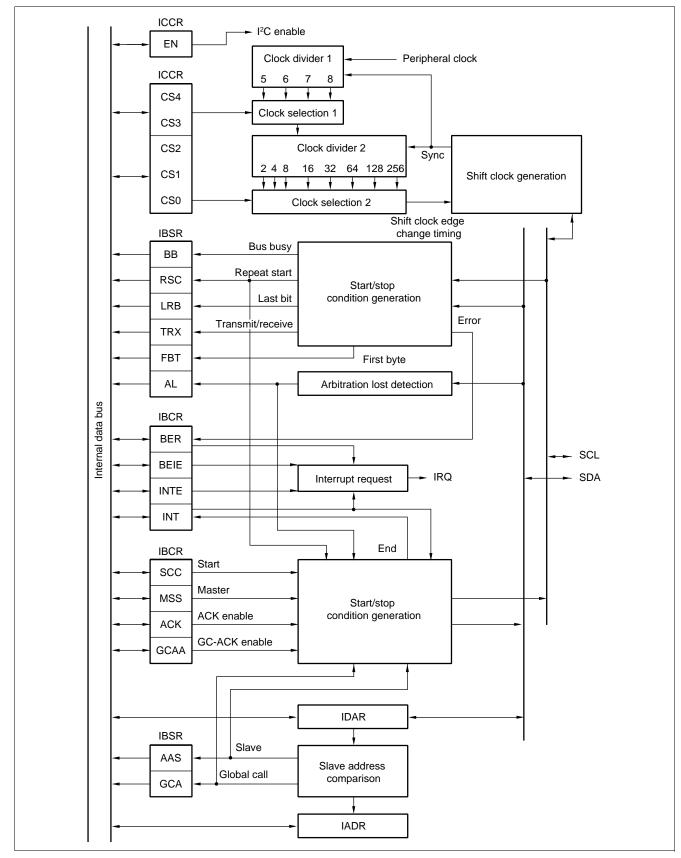

The watchdog timer consists of a 2-bit watchdog counter that uses the carry signal from the 18-bit timebase timer or the 15-bit watch timer as a clock source, a control register, and a watchdog reset controller.

The timebase timer consists of an 18-bit timer and a circuit that controls interval interrupts. Note that the timebase timer uses the main clock, regardless of the setting of the MCS bit and SCS bit in CKSCR.

The watch timer consists of a 15-bit timer and a circuit that controls interval interrupts. Note that the watch timer uses the sub clock, regardless of the setting of the MCS bit SCS bit in CKSCR.

(1) Register Configuration

 Watchdog timer control register (WDTC) 						1.4.0			1.12.1		
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value		
Address : 0000A8H	PONR	· –	WRST	ERST	SRST	WTE	WT1	WT0	XXXXX111 _B		
	R	_	R	R	R	W	W	W			
• Timebase timer control register (TBTC)											
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value		
Address : 0000A9н	Reserved	_	_	TBIE 1	TBOF	TBR	TBC1	TBC0	100000в		
	—	-	—	R/W	R/W	W	R/W	R/W			
Watch timer control register (WTC)											
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value		
Address : 0000AAH	WDCS	S SCE	WTIE	WTOF	WTR	WTC2	WTC1	WTC0	1Х00000в		
	R/W	R	R/W	R/W	R	R/W	R/W	R/W			
R/W : Readable and R : Read only W : Write only — : Unused X : Indeterminate	writable										

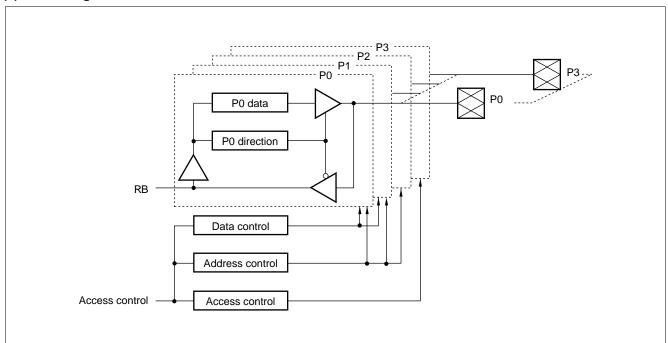

12. I²C Interface

The I²C interface is a serial I/O port that supports the Inter-IC bus and operates as a master/slave device on the I²C bus. This module has the following features:

- Master/slave transmission/reception
- Arbitration function
- Clock synchronization function
- Slave address/general call address detection function
- Transfer direction detection function
- Start condition repeat generation and detection function
- Bus error detection function

(1) Register Configuration

 I²C bus status register (IBSR) 	L :	4 -7 1-14	с ь:н	- -		L H 0	L H 0	L .14	L:1 0	
A 11 000000		t 7 bit			oit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address : 000080н		B RS R F			.RB R	TRX R	AAS R	GCA R	FBT R	00000000в
		х г	K K		к	ĸ	ĸ	ĸ	ĸ	
 I²C bus control register (IBCR) 										
	bit 15	bit 14	bit 13	bit 12	bit 11	l bit 1	0 bit	9 bit 8	3	Initial value
Address : 000081H	BER	BEIE	SCC	MSS	ACK	GCA	A INT	E INT		0000000в
	R/W	R/W	R/W	R/W	R/W	R/W	/ R/V	V R/V	/	
I ² C bus clock control register (ICCR)										
	bi	t 7 bit	6 bit	5 b	oit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address : 000082н	-]	- -	- EN	v C	S4	CS3	CS2	CS1	CS0	OXXXXXB
			- R/\	W F	R/W	R/W	R/W	R/W	R/W	
• I ² C bus address register (IADR)										
	bit 15	bit 14	bit 13	bit 12	bit 11	l bit 1	0 bit 9	9 bit 8	3	Initial value
Address : 000083н	_	A6	A5	A4	A3	A2	A1	A0		-XXXXXXXB
	_	R/W	R/W	R/W	R/W	R/W	/ R/V	V R/W	/	
• I ² C bus data register (IDAR)	bi	t7 bit	6 bit	5 b	oit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address : 000084н		7 D			D4	D3	D2	D1	D0	XXXXXXXXB
	L R.	/W R/	W R/\	W F	R/W	R/W	R/W	R/W	R/W	J
R/W: Readable and R : Read only	writable									
— : Unused										
X : Indeterminate										



13. External Bus Pin Control Circuit

The external bus pin control circuit controls the external bus pins required to extend the CPU's address/data bus outside the device.

(1) Register Configuration

Auto-ready function selection register (ARSR)										
	bit 15	bit 14	bit 13	bit 1	2 bit 1	1 bit 10	bit 9	bit	8	Initial value
Address : 0000A5H	ICR1	ICR0	HMR1	HMR	.0 —	—	LMR1	LMF	80	001100в
	W	W	W	W	_	—	W	W		
External address output control register (HACR)										
		bit 7 l	oit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address : 0000A6н		E23 I	22	E21	E20	E19 I	E18	E17	E16	0000000в
		W	W	W	W	W	W	W	W	
Bus control signal selection register (ECSR)										
	bit 15	bit 14	bit 13	bit 1	2 bit 1	1 bit 10	bit 9	bit	8	Initial value
Address : 0000A7H	CKE	RYE	HDE	ICBS	S HMB	S WRE	LMBS	8 –		0000*00-в
	W	W	W	W	W	W	W			
W : Write only — : Unused * : "1" or "0"										

14. Low-power Consumption Mode (CPU Intermittent Operation Function, Oscillation Stabilization Delay Time, Clock Multiplier Function)

The following are the operating modes: PLL clock mode, PLL sleep mode, PLL watch mode, pseudo-watch mode, main clock mode, main sleep mode, main watch mode, main stop mode, sub clock mode, sub sleep mode, sub watch mode, and sub stop mode. Aside from the PLL clock mode, all of the other operating modes are low-power consumption modes.

In main clock mode and main sleep mode, the main clock (main OSC oscillation clock) and the sub clock (sub OSC oscillation clock) operate. In these modes, the main clock divided by 2 is used as the operation clock, the sub clock (sub OSC oscillation clock) is used as the timer clock, and the PLL clock (VCO oscillation clock) is stopped.

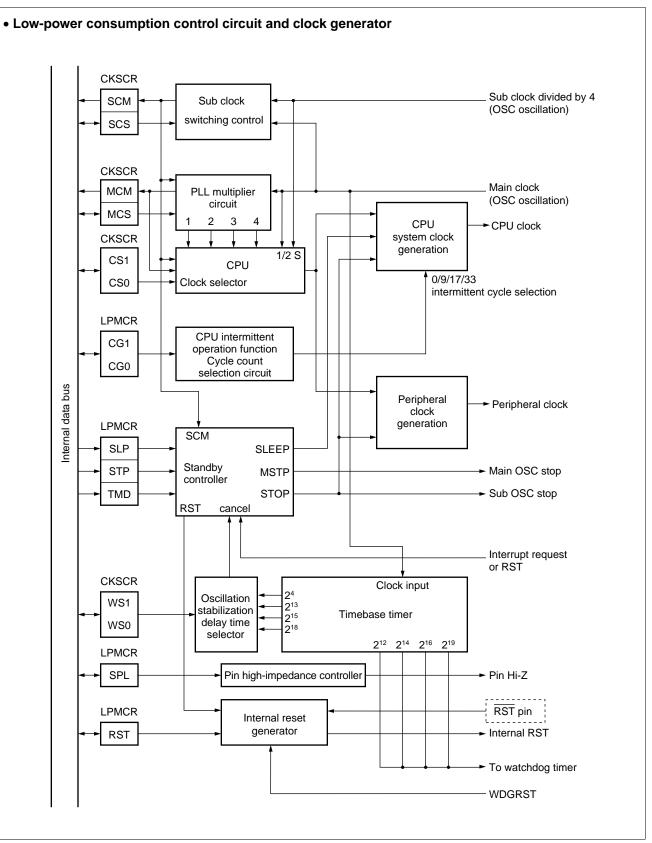
In sub clock mode and sub sleep mode, only the sub clock operates. In these modes, the sub clock is used as the operation clock, and the main clock and PLL clock are stopped.

In PLL sleep mode and main sleep mode, only the CPU's operation clock is stopped; all clocks other than the CPU clock operate.

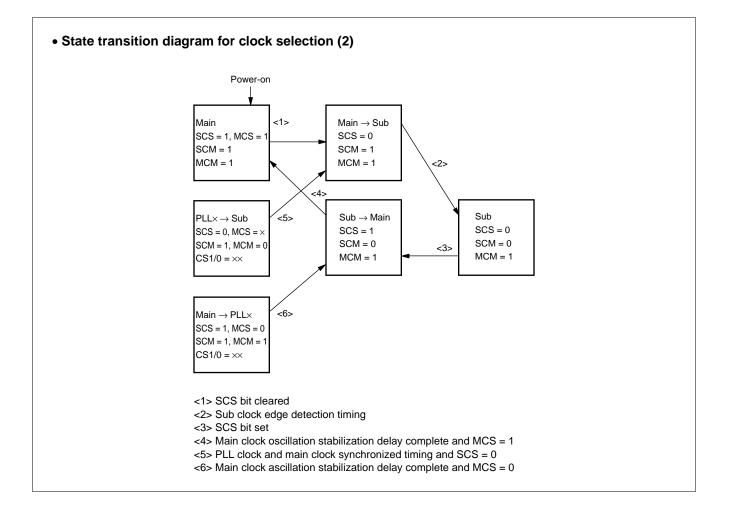
In pseudo-watch mode, only the watch timer and timebase timer operate.

In PLL watch mode, main watch mode, and sub watch mode, only the watch timer operates. In this mode, only the sub clock is used for operation, while the main clock and the PLL clock are stopped (the difference between the PLL watch mode, the main watch mode and the sub watch mode is that it resumes operation after an interrupt in the PLL clock mode, the main clock mode, and the sub clock mode respectively, and there is no reference concerning about clock mode operation).

The main stop mode, sub stop mode, and hardware standby mode stop oscillation, making it possible to retain data while consuming the least amount of power. (The difference between the main stop mode and the sub stop mode is that it resumes operation in the main clock mode and the sub clock mode respectively, and there is no reference concerning about stop mode operation).

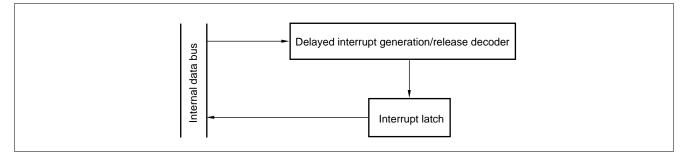

The CPU intermittent operation function intermittently runs the clock supplied to the CPU when accessing registers, on-chip memory, on-chip resources, and the external bus. Processing is possible with lower power consumption by reducing the execution speed of the CPU while supplying a high-speed clock and using on-chip resources.

The PLL clock multiplier can be selected as either 2, 4, 6, or 8 by setting the CS1 and CS0 bits. These clocks are divided by 2 to be used as a machine clock.


The WS1 and WS0 bits can be used to set the main clock oscillation stabilization delay time for when stop mode is woken up.

(1) Register Configuration

Low-power consumption mode control regis	ster (L	PMCF	र)									
			bit 7	bit 6	bi	t 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address : 00004	\0н		STP	SLP	SF	PL	RST	TMD	CG1	CG0	Re- served	00011000в
			W	W	R/	/W	W	W	R/W	R/W	(-)	
Clock selection register (CKSCR)												
		bit 1	5 bit 1	4 bit	13	bit 12	2 bit 1	1 bit	10 bit	9 bit	8	Initial value
Address : 0000/	А1н	SCN		M WS	S1	WS0	SCS	s MC	s cs	1 CS	50	11111100в
		R	R	R/	W	R/W	R/V	V R/\	N R/	N R/	W	
R/W:Readable R:Read only W:Write only Ñ:Unused		vritable	e									

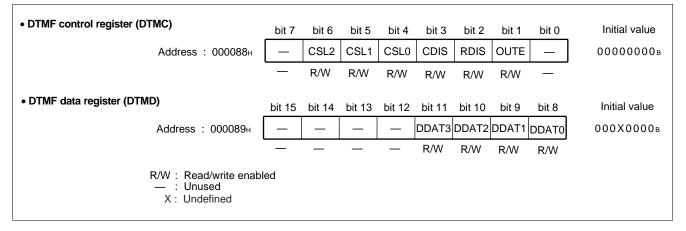

15. Delayed Interrupt Generation Module

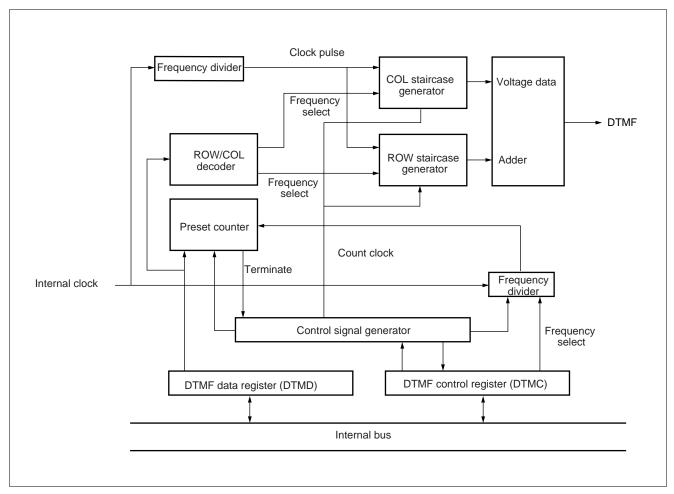
The delayed interrupt generation module is used to generate the task switching interrupt. Interrupt requests to the F²MC-16L CPU can be generated and cleared by software using this module.

(1) Register Details

Delayed interrupt generation /release register (DIRR)											
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value		
Address : 00009FH	_	_	—	_		_		R0	Ов		
								R/W			
R/W:Readable and w — :Unused	writable										

The DIRR register controls generation and clearing of delayed interrupt requests. Writing "1" to the register generates a delayed interrupt request. Writing "0" to the register clears the delayed interrupt request. The register is set to the interrupt cleared state by a reset. Either "0" or "1" can be written to the reserved bits. However, considering possible future extensions, it is recommended that the set bit and clear bit instructions are used for register access.




16. DTMF Generator

The DTMF (dual tone multifrequency) generator is a module that can generate a series of audio tones as heard from a push-button telephone or a radio transceiver with a keypad. It has the following features: Capable of generating DTMF tones continuously (or even a single tone)

Capable of generating all CCITT tones: 0 to 9, *, #, A to D

(1) Register list

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

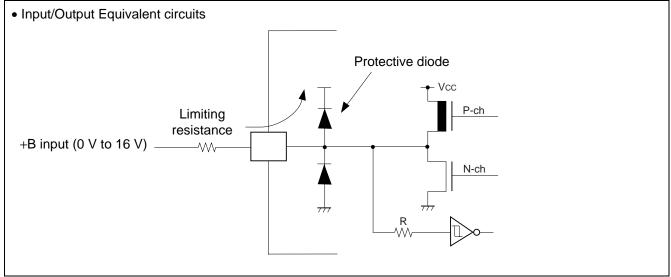
(Vss = AVss = 0.0 V)

Devemeior	Symbol	Rat	ting	Unit	Remarks		
Parameter	Symbol	Min	Мах	Unit	Remarks		
	Vcc1	Vss – 0.3	Vss + 4.0	V			
	Vcc2	Vss – 0.3	Vss + 7.0	V	without MB90V650A		
Power supply voltage	AVcc	Vss – 0.3	Vss + 4.0	V	without MB90V650A *1		
	AVRH AVRL	Vss – 0.3	Vss + 4.0	V	without MB90V650A		
	DVRH	Vss – 0.3	Vss + 4.0	V	without MB90V650A		
	Vi	Vss – 0.3	Vss + 4.0	V	without MB90V650A *2		
Input voltage	Vic	Vss - 0.3	Vss + 7.0	V	P47, P70/SDA, P71/SLC, P72 (N-ch open-drain pins)		
Output voltage	Vo	Vss - 0.3	Vss + 4.0	V	without MB90V650A *2		
Maximum clamp current		-2.0	+2.0	mA	*6		
Total maximum clamp current		_	+20	mA	*6		
"L" level maximum output current	Iol	—	10	mA	without MB90V650A *3		
"L" level average output current	Iolav	_	3	mA	without MB90V650A *4		
"L" level total maximum output current	ΣΙοι	_	60	mA	without MB90V650A		
"L" level total average output current	ΣΙοιαν	_	30	mA	without MB90V650A *5		
"H" level maximum output current	Іон	_	-10	mA	without MB90V650A *3		
"H" level average output current	Іонач	_	-3	mA	without MB90V650A *4		
"H" level total maximum output current	ΣІон	_	-60	mA	without MB90V650A		
"H" level total average output current	ΣΙοήαν	_	-30	mA	*5		
Power consumption	PD	_	200	mW			
Operating temperature	TA	-40	+85	°C			
Storage temperature	Tstg	-55	+150	°C			

*1: AVcc, AVRH, AVRL and DVRH shall never exceed Vcc (Vcc1 and Vcc2 are contained). AVRH, AVRL shall never exceed AVcc. Also, AVRL shall never exceed AVRH.

*2: VI and Vo must not exceed Vcc (Vcc1 and Vcc2 are contained) + 0.3 V.

*3: Maximum output current specifies the peak value or one corresponding pin.


*4 : The average output current is the rating for the current from an individual pin averaged over 100 ms.

*5 : The average total output current is the rating for the current from all pins averaged over 100 ms.

(Continued)

(Continued)

- *6 : Applicable to pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P74, P80 to P86, P90 to P97, PA0 to PA2
 - Use within recommended operating conditions.
 - Use at DC voltage (current).
 - The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
 - Care must be taken not to leave the +B input pin open.
 - Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
 - Sample recommended circuits :

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = AVss = 0.0 V)

Baramatar	Symbol	Va	lue	Unit	Remarks
Parameter	Symbol	Min	Max	Onit	Reliaiks
	Vcc1	2.2	3.6	V	For normal operation (MB90652A/653A/654A)
		2.4	3.6	V	For normal operation (MB90F654A)
	Vcc2	2.2	5.5	V	For normal operation (MB90652A/653A/654A)
		2.4	5.5	V	For normal operation (MB90F654A)
Power supply voltage	Vcc1	1.8	3.6	V	To maintain statuses in stop mode (MB90652A/653A/654A)
	VCCT	1.8	3.6	V	To maintain statuses in stop mode (MB90F654A)
	Vcc2	1.8	5.5	V	To maintain statuses in stop mode (MB90652A/653A/654A)
	VULZ	1.8	5.5	V	To maintain statuses in stop mode (MB90F654A)
	Vін	0.7 Vcc	Vcc + 0.3	V	Pins other than VIHS and VIHM
	VIH2	0.7 Vcc	Vcc + 0.3	V	P70/SDA, P71/SLC (only I ² C pin)
"H" level input voltage	Vihs	0.8 Vcc	Vcc + 0.3	V	Hysteresis input pins
	Vінм	Vcc - 0.3	Vcc + 0.3	V	MD pin input
	Viht	2.4	Vcc + 0.3	V	TTL input pins
	VIL	Vss – 0.3	0.3 Vcc	V	PIns other than VILS and VILM
	VIL2	Vss – 0.3	0.3 Vcc	V	P70/SDA, P71/SLC (only I ² C pin)
"L" level input voltage	Vils	Vss – 0.3	0.2 Vcc	V	Hysteresis input pins
	Vilm	Vss – 0.3	Vss + 0.3	V	MD pin input
	Vilt	Vss – 0.3	0.8	V	TTL input pins
Operating temperature	TA	-40	+85	°C	

Note : I²C must be used at above 2.7 V.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

(MB90652A/653A/654A: $V_{CC} = 2.2 \text{ V}$ to 3.6 V, $V_{SS} = 0.0 \text{ V}$, $T_A = -40^{\circ}\text{C}$ to +85°C) (MB92F654A: $V_{CC} = 2.4 \text{ V}$ to 3.6 V, $V_{SS} = 0.0 \text{ V}$, $T_A = -40^{\circ}\text{C}$ to +85°C)

_					lue			$J V, T_A = -40^{\circ}C t0 +85^{\circ}C)$
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
"H" level	Maria	Pins except	Vcc2 = 4.5 V, Іон = -4.0 mA	Vcc2-0.5	_	_	V	When the 5-V power supply is used
output voltage*2	Vон	P47, P70 to P72	Vcc = 2.7 V, Іон = –1.6 mA	Vcc1-0.3	_		V	When the 3-V power supply is used *1
"L" level output	Vol	All output	Vcc2 = 4.5 V, IoL = 4.0 mA	_	_	0.4	V	When the 5-V power supply is used
voltage*2	VOL	pins	Vcc = 2.7 V, IoL = 2.0 mA			0.4	V	When the 3-V power supply is used
Input leakage current	Iı∟	Except P50 to P57, P90, P91	Vcc = 3.3 V, Vss < Vı < Vcc	-10	_	10	μA	
Pull-up resistor	RPULL	_	When Vcc = 3.0 V, T _A = +25°C	20	65	200	kΩ	without MB90V650A
Open-drain output leakage current	lleak	P40 to P47, P70 to P72	_	_	0.1	10	μA	
	Icc				10	20	mA	MB90652A/653A/654A: During normal operation
	Icc		When Vcc = 3.0 V Internal 8 MHz operation	_	17	24	mA	MB90652A/653A/654A: In A/D operation
	Icc			_	19	26	mA	MB90652A/653A/654A: In D/A operation
	Iccs				2.5	5	mA	MB90652A/653A/654A: During sleep
	Icc			_	16	31	mA	MB90652A/653A/654A: During normal operation
Power supply current	Icc				21	39	mA	MB90F654A: During normal operation
	Icc				37	44	mA	MB90F654A: Flash write/erase
	Icc		When $V_{cc} = 3.0 V$ Internal 12 MHz operation		27	37	mA	MB90652A/653A/654A: In A/D operation
	Icc				32	42	mA	MB90F654A: In A/D operation
	Icc				30	38	mA	MB90652A/653A/654A: In D/A operation
	Icc			—	30	38	mA	MB90F654A: In D/A operation
								(Continued)

Downloaded from Elcodis.com electronic components distributor

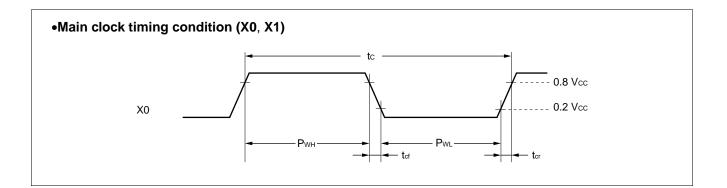
(Continued)

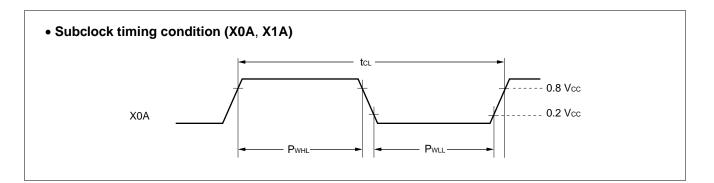
 $(MB90652A/653A/654A: V_{CC} = 2.2 V \text{ to } 3.6 V, V_{SS} = 0.0 V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}) \\ (MB90F654A: V_{CC} = 2.4 V \text{ to } 3.6 V, V_{SS} = 0.0 V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}) \\$

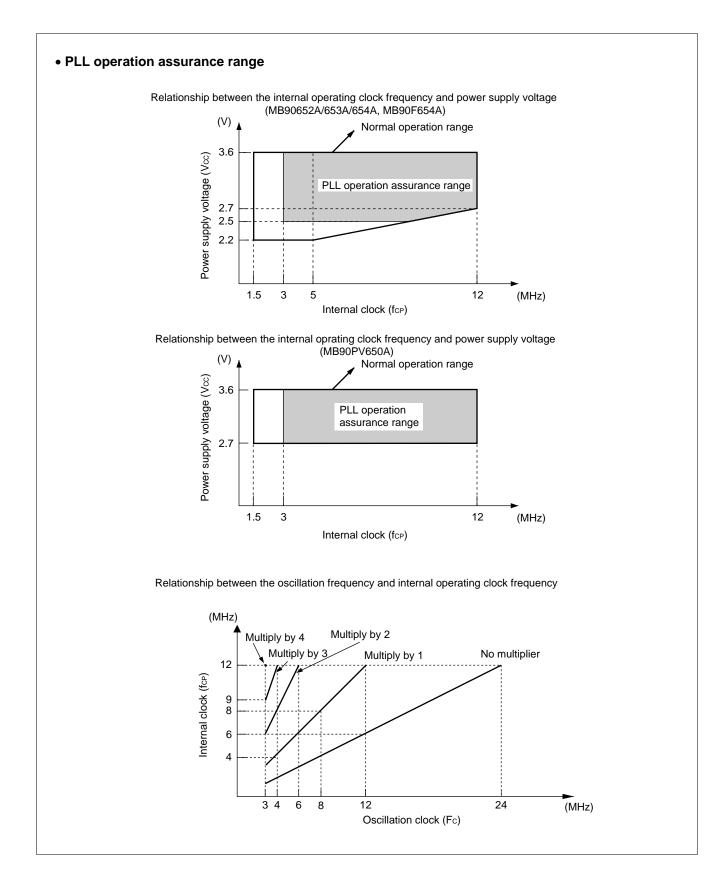
Parameter	Symbol	Pin name	Condition		alue	,	Unit	Remarks
Farameter	Symbol	FIII IIdille	Condition	Min	Тур	Max	Unit	Reillarks
	Iccs		When Vcc = 3.0 V Internal 12 MHz	_	3.5	9	mA	MB90652A/653A/654A: During sleep
	Iccs		operation	_	4.8	10	mA	MB90F654A: During sleep
	Іссн		T _A = +25°C	_	0.1	20	μA	MB90652A/653A/654A: During stop
	Power supply current		When Vcc = 3.0 V	_	0.2	40	μA	MB90F654A: During stop
Power supply current			$V_{cc} = 3.0 \text{ V},$ $T_A = +25^{\circ}\text{C}$ External 32 kHz operation (Internal 8 MHz operation)	_	16	140	μΑ	without MB90V650A: In sub operation
	Ісст		Vcc = 3.0 V, T _A = +25°C	_	10	30	μA	MB90652A/653A/654A: In watch mode
	Ісст		External 32 kHz operation	_	15	30	μA	MB90F654A: In watch mode
Input capacitance	Cin	Except AVcc, AVss, Vcc, Vss	_	_	5	15	pF	

* 1 : P40 to P46 are N-ch open-drain pins to be controlled and are usually used as CMOS devices.

* 2 : When the device is used with dual power supplies, the P20 to P27, P30 to P37, P40 to P47, and P70 to P72 are the 5 V pins and the rest are the 3 V pins.


4. AC Characteristics


(1) Clock Timing

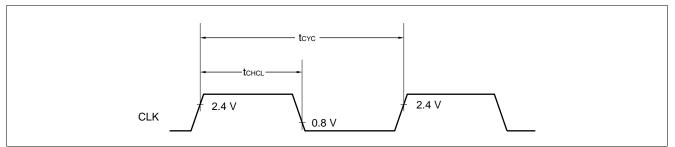

				(Vcc	= 2.7 V to	3.6 V, Vs	s = 0.0	V, $T_A = -40^{\circ}C$ to +85°C
Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
Farameter	Symbol	name	Condition	Min	Тур	Max	Unit	Rellidiks
Clock frequency	Fсн	X0, X1	_	3		24	MHz	
Clock frequency	Fc∟	X0A, X1A			32.768		kHz	
Clock avala time	tc	X0, X1		41.67	—	333	ns	
Clock cycle time	tc∟	X0A, X1A			30.5		μs	
Input clock pulse	Р _{WH} PwL	X0	_	5	—	_	ns	*
width	Pwlh Pwll	X0A	—		15.2	_	μs	*
Input clock rise time and fall time	t _{cr} t _{cf}	X0	—		—	5	ns	External clock
Internal	fср	—		1.5		12	MHz	
operating clock frequency	fcpl	_		_	8.192	—	kHz	
Internal	t _{CP}	—	—	83.3		666	ns	
operating clock cycle time	t CPL	_			122.1		μs	

Because the PLL frequency fluctuates around the set frequency with a certain cycle [approximately $CLK \times (1 CYC to 50 CYC)$], the worst value is not maintained for long. (The pulse, if featured with the long period, would produce practically no error.)

* : The duty ratio should be in the range 30% to 70%.

• Output signal waveform • Input signal waveform Hysteresis input pins Output pins 0.8 Vcc -----..... 2.4 V -----. 0.2 Vcc -----0.2 V -----Other than hysteresis or MD input pins -----. 0.3 Vcc -----.

The AC characteristics are for the following measurement reference voltages.

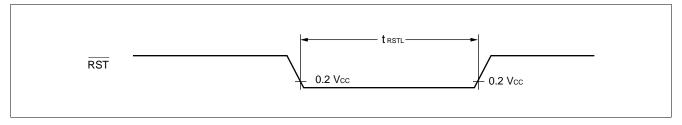

(2) Clock Output Timing

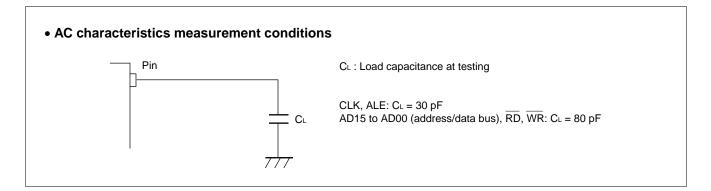
$(V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin Condition		Va	lue	Unit	Remarks
Farameter	Symbol	name	Condition	Min	Max	Unit	Remarks
Cycle time	tcyc	CLK	—	tcp*	—	ns	
				tcp* / 2 - 20	tcp* / 2 + 20	ns	
$CLK \uparrow \to CLK \downarrow$	t chc∟	CLK	Vcc = 3.0 V ±10%	tcp* / 2 – 64	tcp* / 2 + 64	ns	In the external frequency of 5 MHz

* : For tcp see "(1) Clock Timing."

Note : Vcc = Vcc1 = Vcc2

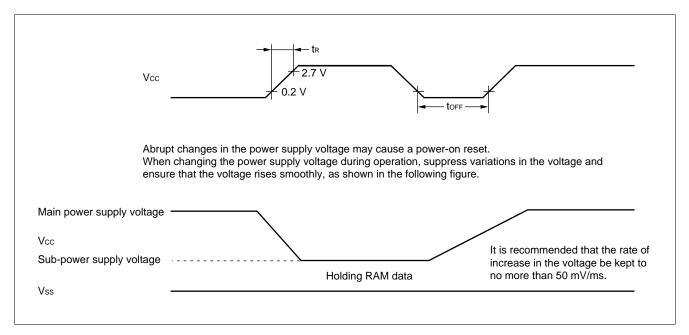



(3) Reset Input Specifications

 $(V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition		lue	Unit	Remarks
Farameter	Symbol	name	Condition	Min	Max	Onic	IVEIIIdi KS
Reset input time	t rstl	RST		16 t _{CP} *	_	ns	

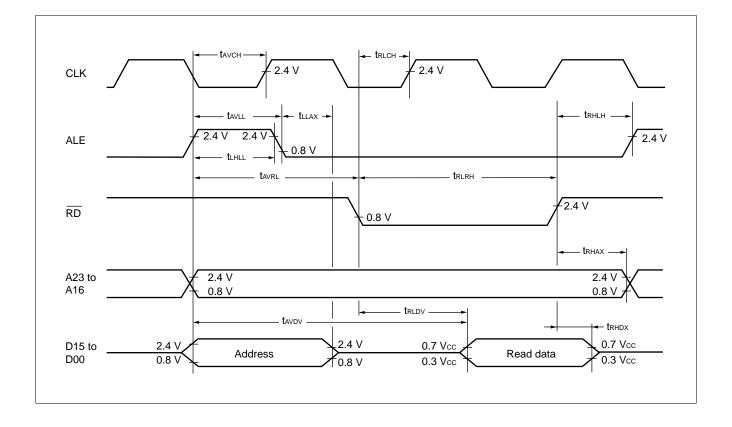
* : For tcp see "(1) Clock Timing."


(4) Power on Supply Specifications (Power-on Reset)

	(•	v to 3.6 V, V	/ss = 0.0 V, 1	Γ _Α = -40	°C to +85°C)	
Devementer	Symbol	Din nomo	Condition	Va	Value		Domorko	
Parameter	Symbol	Pin name	Condition	Min	Max	Unit	Remarks	
Power supply rising time	tR	Vcc	—		30	ms	*	
Power supply cut-off time	toff	Vcc		1	_	ms	Due to repeat operation	

* : When the power rising, Vcc must be less than 0.2 V.

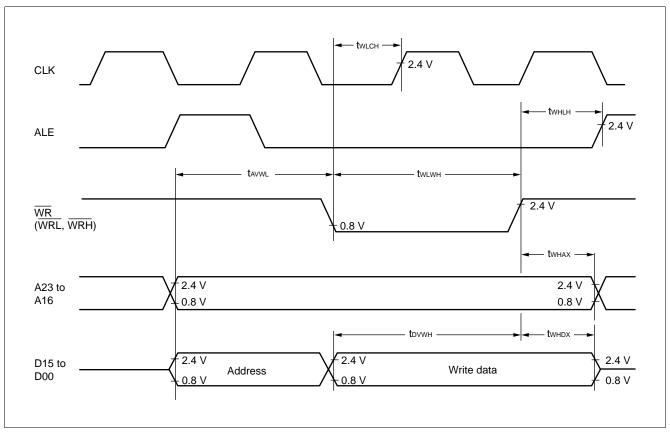
Notes : • The above standards are the values needed in order to activate a power-on reset.


- Activate a power-on reset by turning on the power supply again this in device.
- Vcc = Vcc1 = Vcc2

(5) Bus Read Timing

(5) Bus Read Timing			(Vcc=	= 2.7 V to 3.6	V, Vss = 0.0 V,	T A = -	-40°C to +85°C)
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Faiametei	Symbol		condition	Min	Мах	Onic	Remarks
ALE pulse width	t lhll	ALE	—	t _{CP} * /2 – 20	_	ns	MASK/FLASH
Valid address \rightarrow ALE \downarrow time	tavll	Multiplexed address	_	tcp* / 2 – 25	_	ns	MASK/FLASH
ALE $\downarrow \rightarrow$ address valid time	tllax	Multiplexed address	_	tcp* / 2 – 15	_	ns	
Valid address $\rightarrow \overline{RD} \downarrow$ time	tavrl	Multiplexed address	_	tcթ* – 15	_	ns	
Valid address \rightarrow valid data input	tavdv	Multiplexed address	_	-	5 t _{CP} * / 2 – 60	ns	MASK/FLASH
RD pulse width	t rlrh	RD	—	$3 t_{CP}* / 2 - 20$	_	ns	
$\overline{RD} \downarrow \rightarrow valid data input$	t RLDV	D15 to D00	—	_	5 t _{CP} * / 2 - 60	ns	MASK/FLASH
$\overline{RD} \uparrow \rightarrow data hold time$	t RHDX	D15 to D00		0	—	ns	
$\overline{RD} \uparrow \rightarrow ALE \uparrow time$	t RHLH	RD, ALE	—	tcp* / 2 – 15	—	ns	
$\overline{RD} \ \uparrow \rightarrow address \ valid \ time$	t RHAX	Address, RD	_	t _{CP} * / 2 – 10	_	ns	
Valid address \rightarrow CLK \uparrow time	tavcн	Address, CLK	_	tcp* / 2 –20	_	ns	
$\overline{RD} \downarrow \to CLK \uparrow time$	t RLCH	RD, CLK		$t_{CP}* / 2 - 20$		ns	

* : For tcp see "(1) Clock Timing."

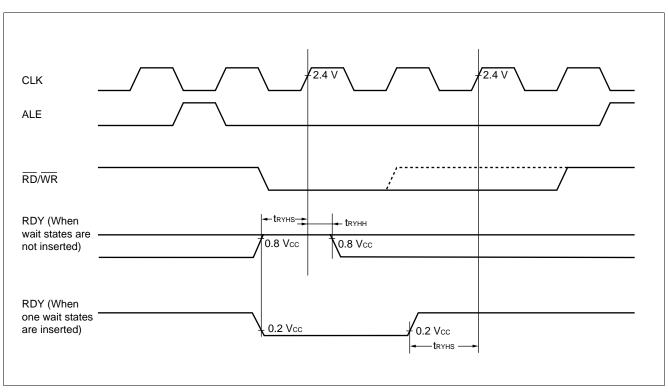


(6) Bus Write Timing

			(VCC =	$2.7 \times 10 \ 3.0 \ V,$	vss = 0.0	$\mathbf{v}, \mathbf{I}\mathbf{A} = \mathbf{v}$	-40° C to $+85^{\circ}$ C)
Parameter	Symbol	Pin name	Condition	Value	9	Unit	Remarks
Falameter	Min		Min	Max	Onit	Nemarks	
Valid address $\rightarrow \overline{\text{WR}} \downarrow \text{time}$	tavwl	A23 to A00	—	tcթ* – 15	_	ns	
WR pulse width	t wlwh	WR	—	$3 t_{CP}* / 2 - 20$		ns	
Valid data output $\rightarrow \overline{WR} \uparrow$ time	t dvwh	D15 to D00	—	3 tcp* / 2 – 20	—	ns	
$\overline{WR} \uparrow \rightarrow data hold time$	t whdx	D15 to D00	—	20	—	ns	MASK/FLASH
$\overline{WR} \uparrow \rightarrow address valid time$	t WHAX	A23 to A00	—	tcp* / 2 – 10		ns	
$\overline{WR} \uparrow \rightarrow ALE \uparrow time$	twhlh	WR, ALE	—	tcp* / 2 – 15		ns	
$\overline{WR} \downarrow \rightarrow CLK \uparrow time$	t wlch	WR, ALE		tcp* / 2 – 20		ns	

$(V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

* : For tcp see "(1) Clock Timing."


(7) Ready Input Timing

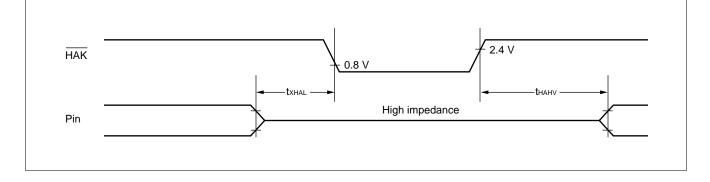
 $(V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Farameter	Symbol		Condition	Min	Max	Unit	Relliarks
RDY setup time	t RYHS	RDY		45	_	ns	MASK/FLASH
RDY hold time	tryнн	RDY	—	0	—	ns	

Notes: • Use the auto-ready function if the RDY setup time is too short

• Vcc = Vcc1 = Vcc2.

(8) Hold Timing


			(Vcc = 2.7 V	to 3.6 V, V	ss = 0.0 V,	$I_A = -4$	0° C to +85°C)	
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
Farameter	Symbol Thrhame		Condition	Min	Max	Onic	itemai ka	
Pin floating $\rightarrow \overline{HAK} \downarrow$ time	t xhal	HAK	_	30	tc₽*	ns		
$\overline{\mathrm{HAK}} \uparrow \rightarrow \mathrm{pin}$ valid time	t hahv	HAK		t _{CP} *	2 t cp*	ns		

N 1 271/to 261/1/ 10°C to 105°C)

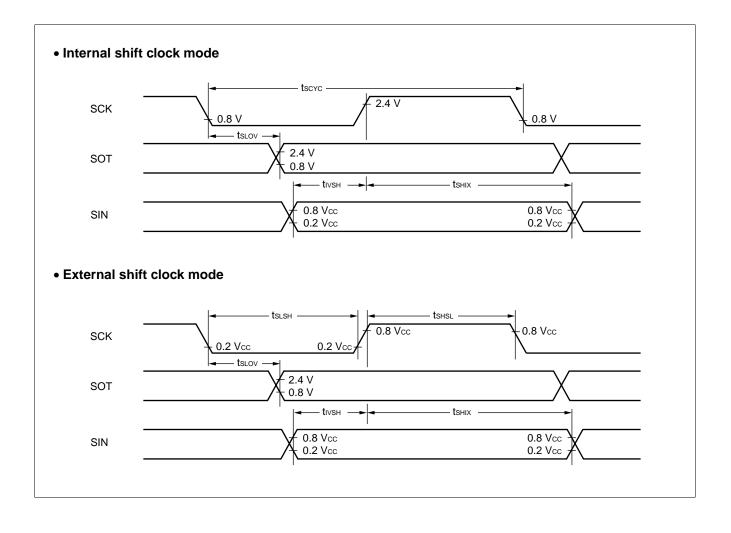
* : For tcp see "(1) Clock Timing."

Notes: • After reading HRQ, more than one cycle is required before changing HAK.

• Vcc = Vcc1 = Vcc2

(9) UART Timing

			(100 - 2.	/ / 10 0.0	, v, voo –	0.0 V,	$I_A = -40^{\circ}C (0 + 65^{\circ}C)$	
Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks	
Falameter	Symbol	name	Condition	Min	Max	Unit	itemarks	
Serial clock cycle time	tscyc			8 tcp*	_	ns		
$SCK \downarrow \to SOT$ delay time	tslov	_	$C_{L} = 80 \text{ pF} + 1 \text{ TTL}$ for the internal shift	-80	+80	ns	MASK/FLASH	
$Valid\;SIN\toSCK\;\uparrow$	tıvsн	_	clock mode output	100		ns	MASK/FLASH	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнıx	_	pin	tcp*	_	ns		
Serial clock "H" pulse width	ts∺s∟	_		4 t _{CP} *	_	ns		
Serial clock "L" pulse width	tslsh	_	C∟ = 80 pF + 1 TTL for the external	4 t _{CP} *	_	ns		
$SCK \downarrow \to SOT \text{ delay time}$	tslov		shift clock mode	_	150	ns	MASK/FLASH	
Valid SIN \rightarrow SCK \uparrow	tıvsн	—	output pin	60	_	ns	MASK/FLASH	
$\begin{array}{l} \text{SCK} \uparrow \rightarrow \text{valid SIN hold} \\ \text{time} \end{array}$	tsнıx	_		60		ns	MASK/FLASH	


 $(V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

* : For t_{CP} see "(1) Clock Timing."

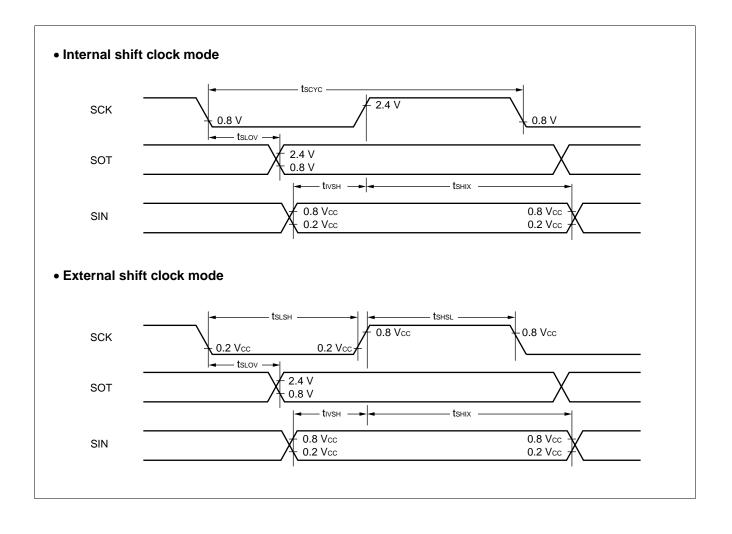
Notes: • These are the AC characteristics for CLK synchronous mode.

 $\bullet\,C_{\scriptscriptstyle L}$ is the load capacitance connected to the pin at testing.

• Vcc = Vcc1 = Vcc2

(10) I/O Extended Serial Timing

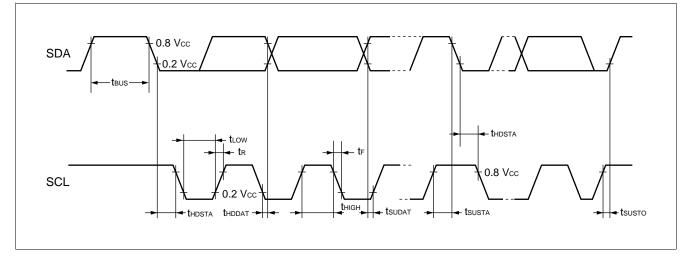
			(166 – 2.		,	0.0 V,	$T_A = -40 \text{ C} (0 + 65 \text{ C})$
Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks
Farameter	Symbol	name	Condition	Min	Max	Unit	incinal K3
Serial clock cycle time	tscyc			8 tcp*		ns	
$SCK \downarrow \to SOT \text{ delay time}$	tslov	_	$C_{L} = 80 \text{ pF} + 1 \text{ TTL}$ for the internal shift	-80	+80	ns	MASK/FLASH
Valid SIN \rightarrow SCK \uparrow	tıvsн	—	clock mode output	100	—	ns	MASK/FLASH
$\begin{array}{l} SCK \uparrow \to valid \; SIN \; hold \\ time \end{array}$	tsнıx		pin	tcp*		ns	
Serial clock "H" pulse width	ts∺s∟	_		4 tcp*	_	ns	
Serial clock "L" pulse width	tslsh		C∟ = 80 pF + 1 TTL for the external	4 tcp*		ns	
$SCK \downarrow \to SOT$ delay time	tslov	_	shift clock mode	_	150	ns	MASK/FLASH
Valid SIN \rightarrow SCK \uparrow	tıvsн	—	output pin	60	—	ns	MASK/FLASH
$\begin{array}{l} \text{SCK} \uparrow \rightarrow \text{valid SIN hold} \\ \text{time} \end{array}$	tsнıx	_		60		ns	MASK/FLASH


$(V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C})$

* : For tcp see "(1) Clock Timing."

Notes: • These are the AC characteristics for CLK synchronous mode.

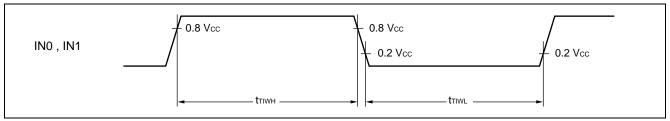
 $\bullet\,C_{\scriptscriptstyle L}$ is the load capacitance connected to the pin at testing.


• Vcc = Vcc1 = Vcc2

(11) I²C Timing

Demonster	Cumhal		Condition	Va	lue	11	Domorko
Parameter	Symbol	Pin name	Condition	Min	Max	Unit	Remarks
SCL clock frequency	fsc∟	_		0	100	kHz	
Bus free time between stop and start conditions	tBUS	_	_	4.7	_	μs	
Hold time (re-send) start	t hdsta	_		4.0		μs	The first clock pulse is generated after this period.
SCL clock L state hold time	t LOW	_		4.7		μs	
SCL clock H state hold time	tніgн	—	_	4.0	_	μs	
Re-send start condition setup time	t susta	—	_	4.7	_	μs	
Data hold time	t hddat	—	—	0		μs	
Data setup time	t sudat	—		40		ns	
SDA and SCL signal rising time	tR	—	_	_	1000	ns	
SDA and SCL signal falling time	t⊧	_	_	_	300	ns	
Stop condition setup time	t susto	—	—	4.0	—	μs	

$(V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

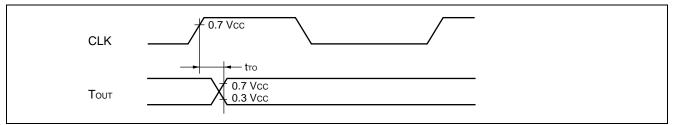


(12) Timer Input Timing

(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, T _A = −40°C to +85°C								
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks	
	Symbol	i in name	Condition	Min	Мах	Onit	Itemarks	
Input pulse width	t⊤ıwн, t⊤ıw∟	IN0, IN1		4 tcp*	—	ns		

* : For tcp see "(1) Clock Timing."

Note : Vcc = Vcc1 = Vcc2



(13) Timer Output Timing

$(V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Falameter	Parameter Symbol				Max	Onic	Itellia K3
$CLK^{\uparrow} \to T_{OUT}$ change time	tто	PPG00 to PPG11 OUT0 to OUT3	80 pF load	30	_	ns	

Note : Vcc = Vcc1 = Vcc2

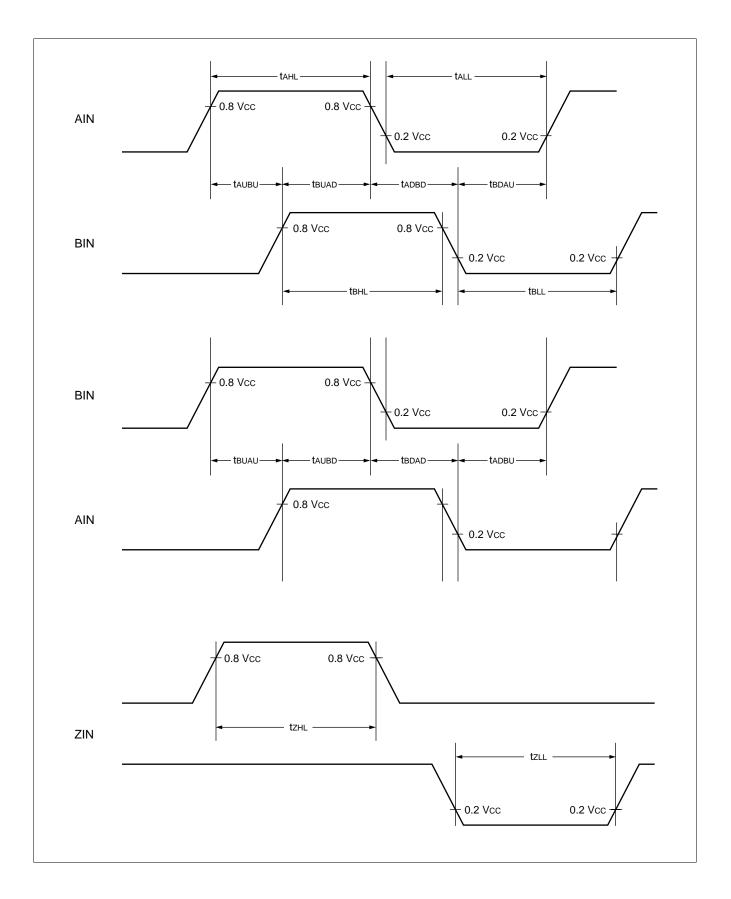
(14) Trigger Input Timing

,		4- 0.01/	V 00V	/ T 400C	A
(Vcc = 2.7 V	to 3.6 V,	Vss = 0.0 V	/, T _A = −40°C	ノTO +85°し)

Parameter	Symbol	Pin name	Condition	Va	ue	Unit	Remarks	
Farameter	Symbol	Fininanie	Condition	Min	Max	Unit	iteilidiks	
Input pulse width	t trgh	ADTG,		5 t cp*	_	ns	During normal operation	
	t trgl	IRQ0 to IRQ7		1	—	ms	During stop	

* : For tcp see "(1) Clock Timing."

Note :
$$Vcc = Vcc1 = Vcc2$$



(15) Up/down Counter Timing

Devementer	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Parameter	Symbol	Fininalite	Condition	Min	Max	Unit	Relliarks
AIN input "H" pulse width	tahl			8 tcp*	_	ns	
AIN input "L" pulse width	tall			8 tcp*		ns	
BIN input "H" pulse width	t BHL			8 tcp*		ns	
BIN input "L" pulse width	t BLL			8 tcp*		ns	
$AIN^{\uparrow} \rightarrow BIN^{\uparrow}$ time	t aubu			4 tcp*		ns	
$BIN^{\uparrow} \rightarrow AIN^{\downarrow}$ time	t buad	AIN0, AIN1	80 pF load	4 tcp*		ns	
$AIN\downarrow \rightarrow BIN\uparrow$ time	t adbd	BIN0, BIN1		4 tcp*		ns	
$BIN{\downarrow} \rightarrow AIN{\uparrow}$ time	t BDAU			4 tcp*		ns	
$BIN^{\uparrow} \rightarrow AIN^{\uparrow}$ time	t buau			4 tcp*		ns	
$AIN^{\uparrow} \rightarrow BIN^{\downarrow}$ time	t aubd			4 tcp*		ns	
$BIN{\downarrow} \rightarrow AIN{\uparrow}$ time	t BDAD			4 tcp*		ns	
$AIN\downarrow \rightarrow BIN\uparrow$ time	t adbu			4 tcp*		ns	
ZIN input "H" pulse width	t zhl		-	4 tcp*	_	ns	
ZIN input "L" pulse width	tzll	ZIN0, ZIN1		4 t _{CP} *		ns	

(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, $T_A = -40^{\circ}C$ to +85°C)

* : For tcp see "(1) Clock Timing."

5. A/D Converter Electrical Characteristics

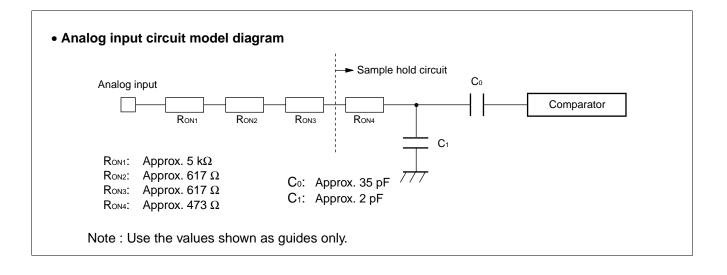
(MB90)	F654A: Vcc	= 2.4 V to 3.6 V	(MB90F654A: $V_{CC} = 2.4$ V to 3.6 V, $V_{SS} = AV_{SS} = 0.0$ V, 2.7 V $\leq AVRH - AVRL$, $T_A = -40^{\circ}C$ to +85°C)								
Deremeter	Symbol	Pin name		Value		Unit	Remarks				
Parameter	Symbol	Fin name	Min	Тур	Max	Unit	Remarks				
Resolution				10	10	bit					
Total error	—		_		±3.0	LSB					
Linearity error	—	—	_	_	±2.0	LSB					
Differential linearity error	_	_		_	±1.9	LSB	MASK/FLASH				
Zero transition voltage	Vот	AN0 to AN7	AVRL – 1.5 LSB	AVRL + 0.5 LSB	AVRL + 2.5 LSB	mV					
Full scale transition voltage	Vfst	AN0 to AN7	AVRH – 4.5 LSB	AVRH – 1.5 LSB	AVRH + 0.5 LSB	mV					
Conversion time	_		8.167* ¹	_		μs	MASK/FLASH				
Analog port input current	Iain	AN0 to AN7	_	0.1	10	μΑ					
Analog input voltage	VAIN	AN0 to AN7	AVRL	—	AVRH	V					
		AVRH	AVRL + 2.7		AVcc	V					
Reference voltage	_	AVRL	0	—	AVRH – 2.7	V					
Power supply	la	AVcc		3	—	mA					
current	Іан	AVcc	—		5* ²	μΑ					
Reference voltage	Ir	AVRH		200		μA					
supply current	Irн	AVRH	_		5* ²	μA					
Variation between channels	_	AN0 to AN7	_	_	4	LSB					

(MB90652A/653A/654A: Vcc = 2.2 V to 3.6 V, Vss = AVss =0.0V, 2.7 V \leq AVRH – AVRL, T_A = -40°C to +85°C) (MB90F654A: Vcc = 2.4 V to 3.6 V, Vss = AVss = 0.0 V, 2.7 V \leq AVRH – AVRL, T_A = -40°C to +85°C)

*1: For a 12 MHz machine clock

*2: The current when the A/D converter is not operating or the CPU is in stop mode (for Vcc = AVcc = AVRH = 3.0 V).

Notes: • The error increases proportionally as |AVRH - AVRL| decreases.


• The output impedance of the external circuits connected to the analog inputs should be in the following range.

The output impedance of the external circuit should be less than approximately 7 k Ω .

When using an external capacitor, it is recommended to have several thousand times the capacitance of the internal capacitor as a guide, if one takes into consideration the effect of the divided capacitance between the external capacitor and the internal capacitor.

• If the output impedance of the external circuit is too high, the sampling time might be insufficient (sampling time = $3.75 \,\mu$ s at a machine clock of 16 MHz).

• Vcc = Vcc1 = Vcc2

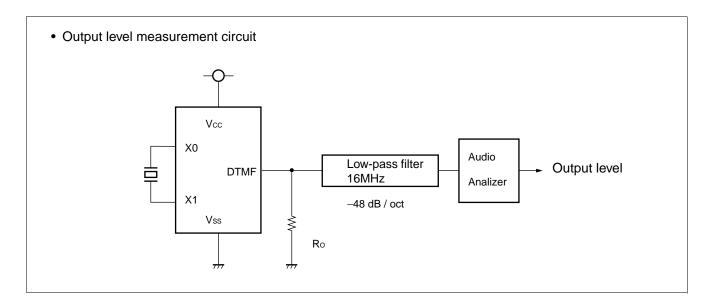
6. D/A Converter Electrical Characteristics

 $(MB90652A/653A: V_{CC} = 2.2 \text{ V to } 3.6 \text{ V}, V_{SS} = DV_{SS} = 0.0 \text{ V}, 2.2 \text{ V} \leq DVRH - DV_{SS}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C) \\ (MB90F654A: V_{CC} = 2.4 \text{ V to } 3.6 \text{ V}, V_{SS} = DV_{SS} = 0.0 \text{ V}, 2.4 \text{ V} \leq DVRH - DV_{SS}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C) \\ (MB90F654A: V_{CC} = 2.4 \text{ V to } 3.6 \text{ V}, V_{SS} = DV_{SS} = 0.0 \text{ V}, 2.4 \text{ V} \leq DVRH - DV_{SS}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C) \\ (MB90F654A: V_{CC} = 2.4 \text{ V to } 3.6 \text{ V}, V_{SS} = DV_{SS} = 0.0 \text{ V}, 2.4 \text{ V} \leq DVRH - DV_{SS}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C) \\ (MB90F654A: V_{CC} = 2.4 \text{ V to } 3.6 \text{ V}, V_{SS} = DV_{SS} = 0.0 \text{ V}, 2.4 \text{ V} \leq DVRH - DV_{SS}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C) \\ (MB90F654A: V_{CC} = 2.4 \text{ V to } 3.6 \text{ V}, V_{SS} = DV_{SS} = 0.0 \text{ V}, 2.4 \text{ V} \leq DVRH - DV_{SS}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C) \\ (MB90F654A: V_{CC} = 2.4 \text{ V to } 3.6 \text{ V}, V_{SS} = DV_{SS} = 0.0 \text{ V}, 2.4 \text{ V} \leq DVRH - DV_{SS}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C) \\ (MB90F654A: V_{CC} = 2.4 \text{ V to } 3.6 \text{ V}, V_{SS} = DV_{SS} = 0.0 \text{ V}, 2.4 \text{ V} \leq DVRH - DV_{SS}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C) \\ (MB90F654A: V_{CC} = 2.4 \text{ V to } 3.6 \text{ V}, V_{SS} = DV_{SS} = 0.0 \text{ V}, 2.4 \text{ V} \leq DVRH - DV_{SS}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C) \\ (MB90F654A: V_{CC} = 2.4 \text{ V to } 3.6 \text{ V}, V_{SS} = DV_{SS} = 0.0 \text{ V}, 2.4 \text{ V} \leq DVRH - DV_{SS}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C) \\ (MB90F654A: V_{CC} = 2.4 \text{ V to } 3.6 \text{ V}, V_{SS} = 0.0 \text{ V}, 2.4 \text{ V} \leq DVRH - DV_{SS}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C) \\ (MB90F654A: V_{CC} = 2.4 \text{ V to } 3.6 \text{ V}, V_{SS} = 0.0 \text{ V}, 2.4 \text{ V} \leq DVRH - DV_{SS}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C) \\ (MB90F654A: V_{CC} = 2.4 \text{ V to } 3.6 \text{ V}, V_{SS} = 0.0 \text{ V}, 2.4 \text{ V} \leq DVRH - DV_{SS}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C) \\ (MB90F654A: V_{CC} = 0.4 \text{ V}, V_{CC} = 0$

Deverseder	Symbol	Pin		Value		L Init	Remarks
Parameter	Symbol	name	Min	Тур	Max	Unit	Remarks
Resolution	—	_		8	8	bit	
Differential linearity error		_	—		±0.9	LSB	
Absolute accuracy		_	—		1	%	
Linearity error	—	_	_	_	±1.5	LSB	
Conversion time	—	_	_	10.0	20.0	μs	*1
Analog			2.2	_	Vcc	V	MB90652A/653A/654A*2
reference power supply voltage	_	DVRH	2.4	—	Vcc	V	MB90F654A *2
Reference	DVR		_	100		μA	*3
voltage supply current	Idvrs	DVRH	_		5	μA	*4
Analog output impedance		_	_	28		kΩ	

*1: Conversion time is the value at the load capacitance = 20 pF.

*2: DVRH – DVss (AVss)

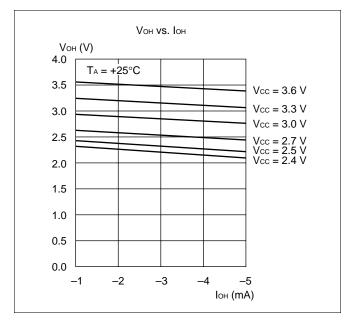

*3: Current value at conversion

*4: Current value when stopped

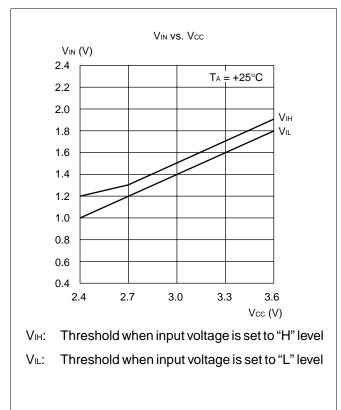
7. DTMF Electrical characteristics

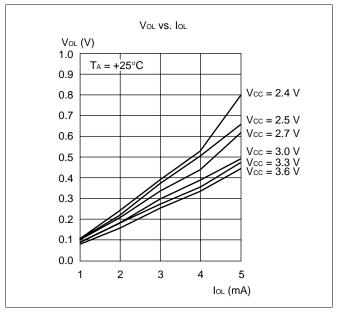
 $(MB90652A/653A: V_{CC} = 2.2 \text{ V to } 3.6 \text{ V}, \text{ V}_{SS} = \text{DV}_{SS} = 0.0 \text{ V}, 2.2 \text{ V} \leq \text{DVRH} - \text{DV}_{SS}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C}) \\ (MB90F654A: V_{CC} = 2.4 \text{ V to } 3.6 \text{ V}, \text{ V}_{SS} = \text{DV}_{SS} = 0.0 \text{ V}, 2.4 \text{ V} \leq \text{DVRH} - \text{DV}_{SS}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C}) \\$

Parameter	Symbol	Condition		Value		Unit	Remarks
Falameter	Symbol	Condition	Min	Тур	Max	Unit	Rellidiks
Output load condition	Ro		30 k	_	_	Ω	To be specified with DTMF pin pull-down resistor
DTMF output offset voltage (At signal output)	VMOF	$V_{CC} = 3 V$ $T_A = +25^{\circ}C$ Machine clock f = 12 MHz	_	0.4	_	V	
DTMF output amplitude (COL single tone)	VMFC		450	530	600	mV _{P-P}	When DTMF terminal is opened
DTMF output amplitude (ROW single tone)	Vmfor		330	440	500	mV _{P-P}	Ro = 200 kΩ
COL/ROW level difference	Rмғ		1.6	2.0	2.4	dB	

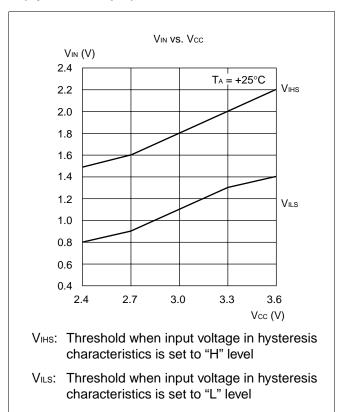


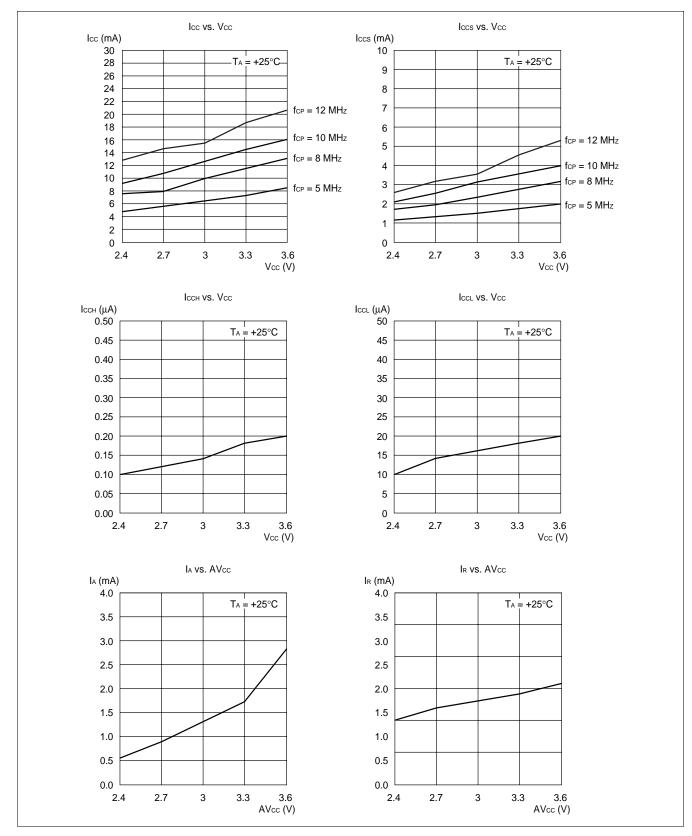
Parameter	Conditions		Value		Unit	Remarks	
	Conditions	Min	Тур	Max	Unit	remarks	
Sector erase time		_	1	15	S	Excludes 00⊦ programming prior erasure	
Chip erase time	T _A = +25 °C V _{CC} = 3.0 V		7		s	Excludes 00⊦ programming prior erasure	
Word (16-bit width) programming time			16	3600	μs	Excludes system- level overhead	
Program/Erase cycle	—	10,000	_		cycle		
Data holding time	—	100,000			h		


8. Flash Memory Programming/Erase Characteristics

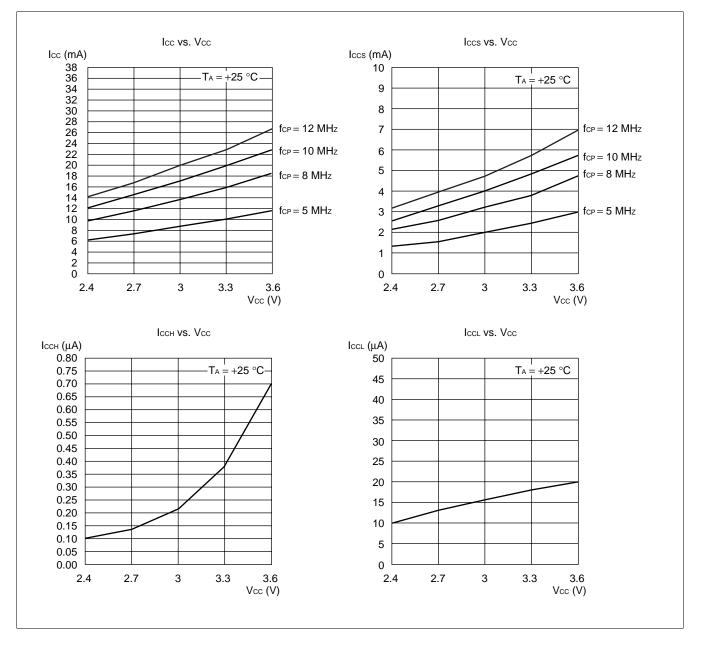

■ EXAMPLE CHARACTERISTICS

(1) "H" Level Output Voltage


(3) "H" Level Input Voltage/"L" Level Input Voltage (COMS Input)

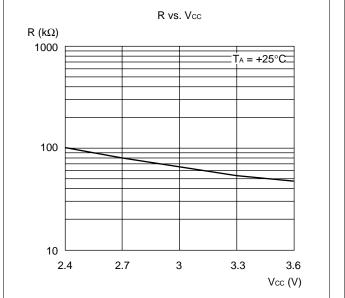

(2) "L" Level Output Voltage

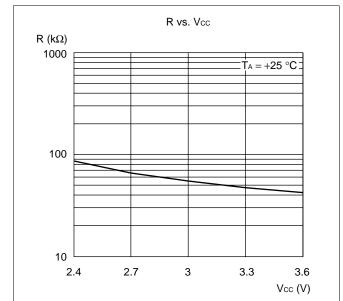
(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)



(5) Power Supply Current (fcp = Internal Operating Clock Frequency)

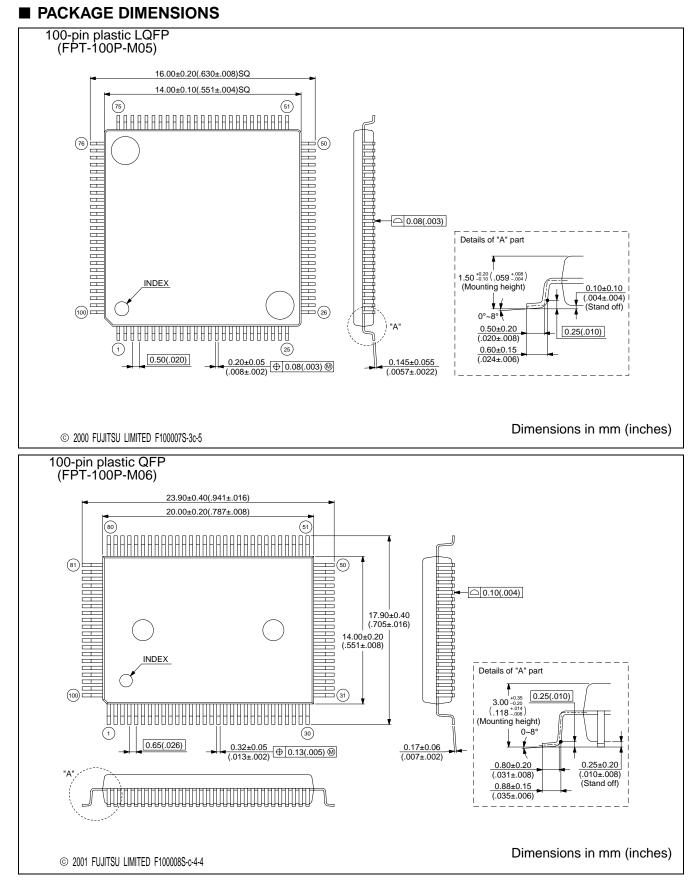
• Mask ROM products




• FLASH products

(6) Pull-up Resistance

• Mask ROM products



• FLASH products

Downloaded from **Elcodis.com** electronic components distributor

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90652APFV MB90653APFV MB90654APFV MB90F654APFV	100-pin plastic LQFP (FPT-100P-M05)	
MB90652APF MB90653APF MB90654APF MB90F654APF	100-pin plastic QFP (FPT-100P-M06)	

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0209 © FUJITSU LIMITED Printed in Japan