8-bit Proprietary Microcontrollers

CMOS

F²MC-8FX MB95R203A

MB95R203A

DESCRIPTION

The MB95R203A is general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions.

Note : F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

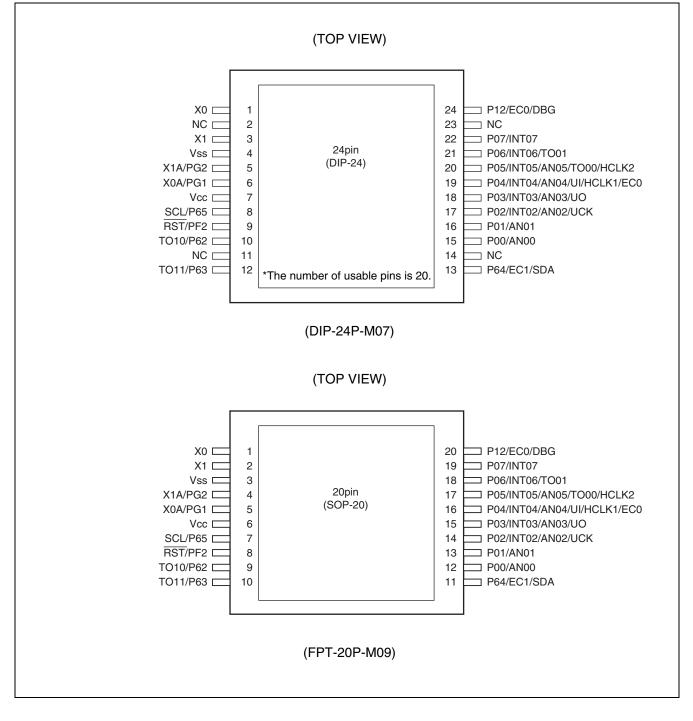
FEATURES

• F²MC-8FX CPU core

- Instruction set optimized for controllers
- Multiplication and division instructions
- 16-bit arithmetic operations
- Bit test branch instruction
- Bit manipulation instructions etc.
- Clock
 - Selectable Main clock source Main OSC clock (Up to 10 MHz, Maximum Machine clock frequency is 5 MHz) External clock (Up to 20 MHz, Maximum Machine clock frequency is 10 MHz) Internal main CR clock (Typ 1/8 MHz, Maximum Machine clock frequency is 8 MHz)
 - Selectable Sub clock source Sub OSC clock (32 kHz) Sub internal CR clock (Typ : 100 kHz, Min : 50 kHz, Max : 200 kHz)

MB95R203A

- Timer
 - 8/16-bit compound timer
 - Time-base timer
 - Watch prescaler
- UART/SIO
 - Offers clock asynchronous (UART) or clock synchronous (SIO) serial data transfer
 - Full duplex double buffer
- I²C
 - Built-in wake-up function
- External interrupt
 - Interrupt by the edge detection (Select rising edge/falling edge/both edges)
 - Can be used to recover from low-power consumption modes (also called standby mode)
- 8/10-bit A/D converter
 - 8-bit or 10-bit resolutions can be selected
- Low-power consumption (standby) mode
 - Stop mode
 - Sleep mode
 - Watch mode
 - Time-base timer mode
- I/O port : 16
 - General-purpose I/O ports :
 - CMOS I/O : 12, N-ch open drain : 4
- On-chip debug
 - 1 wire serial control
 - Support serial writing. (Asynchronous mode)
- Hardware/Software watch dog timer
- Built-in Hardware watchdog timer
- Low voltage detection circuit (LVD)
 - Low voltage detection reset circuit
 - Low voltage detection interrupt circuit
 - Circuit to monitor FRAM power supply
- Clock supervisor counter (CSV)
 - Built-in Clock supervise function
- Programmable input voltage levels of port
 - CMOS input level / hysteresis input level
- FRAM
 - Non-volatile memory
 - 8 Kbytes of FRAM integrated on-chip
- FRAM memory security function
 - Protects the content of FRAM memory


■ PRODUCT OVERVIEW

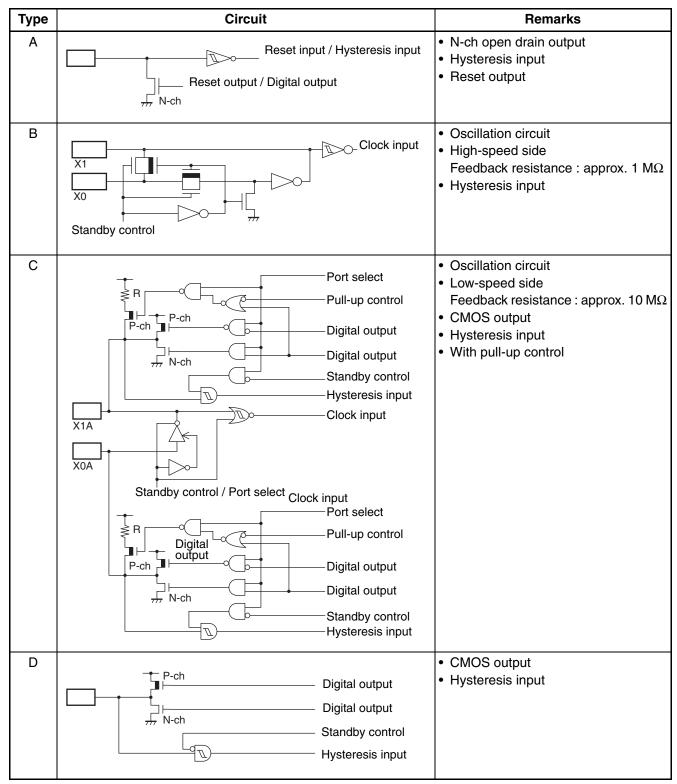
Part number	MB95R203A						
Parameter	MB95R203A						
ROM (FRAM) capacity	8 Kbytes						
RAM capacity	496 bytes						
Reset output	Yes						
Low voltage detection reset	Yes						
CPU function	Number of basic instructions: 136 instructionsInstruction bit length: 8 bitsInstruction length: 1 to 3 bytesData bit length: 1, 8, and 16 bitsMinimum instruction execution time: 100 ns (at machine clock 10 MHz)Interrupt processing time: 0.9 µs (at machine clock 10 MHz)						
Port	General-purpose I/O ports : 16 CMOS I/O : 12, N-ch open drain : 4						
Time-base timer	Interrupt cycle : 0.256 ms to 8.3 s (at external 4 MHz)						
Hardware/software Watchdog timer	Reset generation cycle Main clock at 10 MHz : 105 ms (Min) Subclock CR can be used as the Watch dog source clock.						
Wild registers	It can be used to replace three bytes of data.						
UART/SIO	Able to transfer data using UART/SIO Variable data length (5/6/7/8-bit), built-in baud rate generator Transfer rate (2400 bps to 125000 bps at 10 MHz), full-duplex transfers with built-in double buffers NRZ type transfer format, error detection function LSB-first or MSB-first can be selected Capable of clock synchronous (SIO) or clock asynchronous (UART) serial data transfer						
l²C bus	Transmit and receive master/slave Bus function, arbitration function, transfer direction detection function Start condition repeated generation and detection functions Built-in timeout detection function						
9/10 bit A/D convertor	6 ch						
8/10-bit A/D converter	8-bit or 10-bit resolution can be selected						
	2 ch						
8/16-bit compound timer	Can be configured as a 2 ch \times 8-bit timer or 1 ch \times 16-bit timer Built-in timer function, PWC function, PWM function and capture function Count clock : available from internal clocks (7 types) or external clocks With square wave output						
	6 ch						
External interrupt	Interrupt by edge detection (Select rising edge/falling edge/both edges) Can be used to recover from standby modes						
Low voltage interrupt	Selectable from 4 kinds of low voltage detection levels Usable as a release function from standby mode						

MB95R203A

Part number	MB95R203A				
Parameter	WID93R203A				
On-chip debug	1 wire serial control Support serial writing. (Asynchronous mode)				
Watch prescaler	Eight different time intervals can be selected.				
FRAM	Non-volatile memory Number of read/write cycles : 10 ¹⁵ times Data retention characteristics : 10 years (+ 55 °C) Read security function Function to monitor FRAM power supply				
Standby Mode	Sleep mode, Stop mode, Watch mode, time-base timer mode				
Package	DIP-24, SOP-20				

■ PIN ASSIGNMENT

■ PIN DESCRIPTION


Pin	no.		I/O		
DIP24	SOP20	Pin name	Circuit type*	Function	
1	1	X0	В	Main clock input oscillation pin	
3	2	X1	В	Main clock input/output oscillation pin	
4	3	Vss		Power supply pin (GND)	
5	4	PG2/X1A	С	General-purpose I/O port This pin is also used as Sub clock input/output oscillation pin.	
6	5	PG1/X0A	С	General-purpose I/O port This pin is also used as Sub clock input oscillation pin.	
7	6	Vcc		Power supply pin	
8	7	P65/SCL	Ι	General-purpose I/O port This pin is also used as I ² C clock I/O.	
9	8	PF2/RST	А	General-purpose I/O port This pin is also used as reset pin	
10	9	P62/TO10	D	General-purpose I/O port High current port This pin is also used as 8/16-bit compound timer ch.1 output.	
12	10	P63/TO11	D	General-purpose I/O port High current port This pin is also used as 8/16-bit compound timer ch.1 output.	
13	11	P64/SDA/EC1	I	General-purpose I/O port This pin is also used as I²C data I/O. This pin is also used as 8/16-bit compound timer ch.1 clock input.	
15	12	P00/AN00	Е	General-purpose I/O port This pin is also used as A/D converter analog input.	
16	13	P01/AN01	Е	General-purpose I/O port This pin is also used as A/D converter analog input.	
17	14	P02/INT02/AN02/ UCK	E	General-purpose I/O port This pin is also used as external interrupt input. This pin is also used as A/D converter analog input. This pin is also used as UART/SIO clock I/O.	
18	15	P03/INT03/AN03/ UO	Е	General-purpose I/O port This pin is also used as external interrupt input. This pin is also used as A/D converter analog input. This pin is also used as UART/SIO data output.	
19	16	P04/INT04/AN04/ UI/HCLK1/EC0	F	General-purpose I/O port This pin is also used as external interrupt input. This pin is also used as A/D converter analog input. This pin is also used as UART/SIO data input. This pin is also used as 8/16-bit compound timer ch.0 clock input.	


(Continued)

Pin	no.		I/O				
DIP24	SOP20	Pin name	Circuit type*	Function			
20	17	P05/INT05/AN05/ TO00/HCLK2	E	General-purpose I/O port High current port This pin is also used as external interrupt input. This pin is also used as A/D converter analog input. The pins are also used as 8/16-bit compound timer ch.0 output. This pin is also used as the external clock input.			
21	18	P06/INT06/TO01	G	General-purpose I/O port High current port This pin is also used as external interrupt input. This pin is also used as 8/16-bit compound timer ch.0 output.			
22	19	P07/INT07	G	General-purpose I/O port This pin is also used as external interrupt input.			
24	20	P12/EC0/DBG	Н	General-purpose I/O port This pin is also used as DBG input pin. This pin is also used as 8/16-bit compound timer ch.0 clock in- put.			
2, 11, 14, 23		NC	_	Internal connect pin. Be sure this pin is left open.			

* : For the I/O circuit type, refer to "■ I/O CIRCUIT TYPE".

■ I/O CIRCUIT TYPE

■ NOTES ON DEVICE HANDLING

• Preventing Latch-up

Care must be taken to ensure that maximum voltage ratings are not exceeded when they are used. Latch-up may occur on CMOS ICs if voltage higher than V_{cc} or lower than V_{ss} is applied to input and output pins other than medium- and high-withstand voltage pins or if higher than the rating voltage is applied between V_{cc} pin and V_{ss} pin.

When latch-up occurs, power supply current increases rapidly and might thermally damage elements.

• Stable Supply Voltage

Supply voltage should be stabilized.

A sudden change in power-supply voltage may cause a malfunction even within the guaranteed operating range of the Vcc power-supply voltage.

For stabilization, in principle, keep the variation in Vcc ripple (p-p value) in a commercial frequency range (50 Hz / 60 Hz) not to exceed 10% of the standard Vcc value and suppress the voltage variation so that the transient variation rate does not exceed 0.1 V/ms during a momentary change such as when the power supply is switched.

• Precautions for Use of External Clock

Even when an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from sub clock mode or stop mode.

• Do not use a sample used in program development as mass-produced product.

■ PIN CONNECTION

• Treatment of Unused Input Pin

Leaving unused input pins unconnected can cause abnormal operation or latch-up, leaving to permanent damage. Unused input pins should always be pulled up or down through resistance of at least 2 k Ω . Any unused input/output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins. If there is unused output pin, make it to open.

• Power Supply Pins

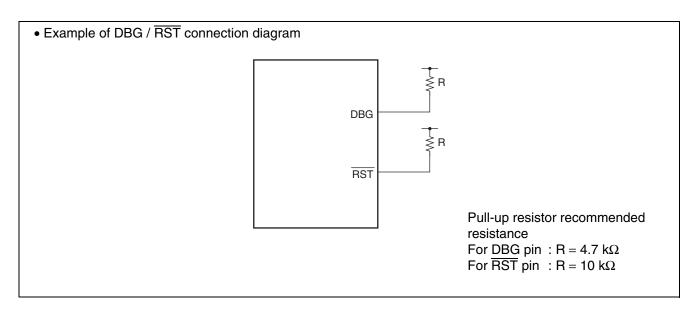
In products with multiple V_{cc} or V_{ss} pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with the V_{cc} and V_{ss} pins of this device at the low impedance. It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 μ F between V_{cc} and V_{ss} near this device.

• DBG Pin

Connect the DBG pin directly to external Pull-up.

To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the DBG pin to Vcc or Vss pins.

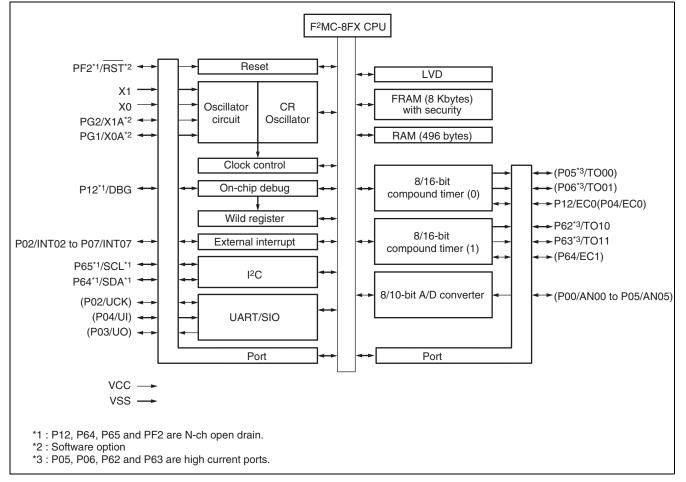

The DBG pin should not stay at "L" level after power-on until the reset output is released.

RST Pin

Connect the \overline{RST} pin directly to Pull-up.

To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the $\overline{\text{RST}}$ pin to V_{cc} or V_{ss} pins.

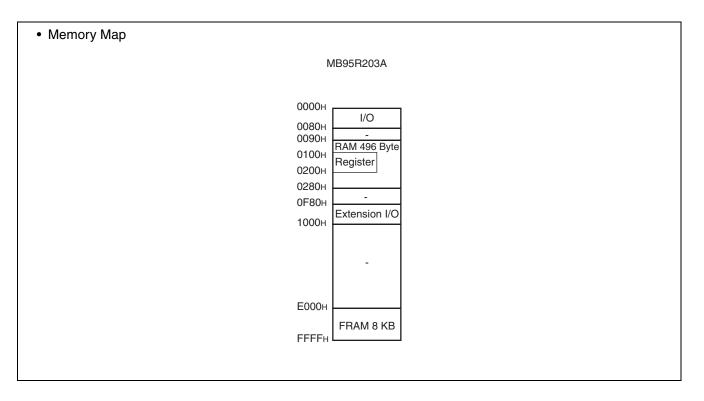
The $\overline{\text{RST}}$ /PF2 pin functions as the reset input/output pin after power-on. In addition, the reset output can be enabled by the RSTOE bit of the SYSC register, and the reset input function or the general purpose I/O function can be selected by the RSTEN bit of the SYSC register.


NOTES ON DEBUG

- Although the [Upload Flash Memory] button on SOFTUNE Workbench is enabled, clicking it does not start the actual processing.
- When you click on the [Erase Flash Memory] button on SOFTUNE Workbench, data is overwritten into the FRAM area, as shown below.

Address	Data to be overwritten
F 554н	55H
FAAAH	АОн
FFBCH	Indeterminate
FFBDH	Indeterminate
Entire FRAM except the above	FFH

• Be very careful not to apply voltages to the pins PF2/RST in excess of the absolute maximum ratings. Especially when handling devices in the environment compatible to the package, such as MB95200H/210H and so on, the voltage may be erroneously applied to the pins PF2/RST in excess of the maximum rating and it may cause thermal breakdown of the device.


■ BLOCK DIAGRAM

■ CPU CORE

1. Memory space

Memory space of the MB95R203A is 64 Kbytes and consists of I/O area, data area, and program area. The memory space includes special-purpose areas such as the general-purpose registers and vector table. Memory map of the MB95R203A shown below.

■ I/O MAP

Address	Register abbreviation	Register name	R/W	Initial value
0000н	PDR0	Port 0 data register	R/W	0000000в
0001 н	DDR0	Port 0 direction register	R/W	0000000в
0002н	PDR1	Port 1 data register	R/W	0000000в
0003н	DDR1	Port 1 direction register	R/W	0000000в
0004н	_	(disabled)		
0005н	WATR	Oscillation stabilization wait time setting register	R/W	11111111в
0006н	_	(disabled)		
0007н	SYCC	System clock control register	R/W	XXXXXX11 _B
0008н	STBC	Standby control register	R/W	00000XXX _B
0009н	RSRR	Reset source register	R	XXXXXXXXB
000Aн	TBTC	Time-base timer control register	R/W	0000000в
000Bн	WPCR	Watch timer control register	R/W	0000000в
000Сн	WDTC	Watchdog timer control register	R/W	0000000в
000Dн	SYCC2	System clock control register 2	R/W	XX100011 _B
000E⊦ to 0015⊦		(disabled)		_
0016н	PDR6	Port 6 data register	R/W	0000000в
0017 н	DDR6	Port 6 direction register	R/W	0000000в
0018н to 0027н		(disabled)		
0028н	PDRF	Port F data register	R/W	0000000в
0029н	DDRF	Port F direction register	R/W	0000000в
002А н	PDRG	Port G data register	R/W	0000000в
002В н	DDRG	Port G direction register	R/W	0000000в
002Сн	PUL0	Port 0 pull-up register	R/W	0000000в
002Dн to 0034н		(disabled)		
0035н	PULG	Port G pull-up register	R/W	0000000в
0036н	T01CR1	8/16-bit compound timer 01 control status register 1 ch.0	R/W	0000000в
0037н	T00CR1	8/16-bit compound timer 00 control status register 1 ch.0	R/W	0000000в
0038н	T11CR1	8/16-bit compound timer 11 control status register 1 ch.1	R/W	0000000в
0039н	T10CR1	8/16-bit compound timer 10 control status register 1 ch.1	R/W	0000000в

MB95R203A

Address	Register abbreviation	Register name	R/W	Initial value		
003Ан to 0046н	_	(disabled)	_			
0047н	LVDCR	Low voltage detection interrupt control register	R/W	0000000в		
0048н		(disabled)				
0049н	EIC10	External interrupt circuit control register ch.2/ch.3	R/W	0000000в		
004Ан	EIC20	External interrupt circuit control register ch.4/ch.5	R/W	0000000в		
004Bн	EIC30	External interrupt circuit control register ch.6/ch.7	R/W	0000000в		
004Сн to 0055н	—	(disabled)	_			
0056н	SMC10	UART/SIO serial mode control register 1	R/W	0000000в		
0057н	SMC20	UART/SIO serial mode control register 2	R/W	0010000в		
0058 н	SSR0	UART/SIO serial status and data register	R/W	0000001в		
0059н	TDR0	UART/SIO serial output data register	R/W	0000000в		
005А н	TDR0	UART/SIO serial input data register	R/W	0000000в		
005Вн to 005Fн	_	(disabled)	_			
0060н	IBCR00	I ² C bus control register 0	R/W	0000000в		
0061 н	IBCR10	I ² C bus control register 1		0000000в		
0062н	IBSR0	I ² C bus status register		0000000в		
0063н	IDDR0	I ² C data register	R/W	0000000в		
0064н	IAAR0	I ² C address register	R/W	0000000в		
0065н	ICCR0	I ² C clock control register	R/W	0000000в		
0066н	FSCR	FRAM status/control register	R/W	0000000в		
0067н	FRAC	FRAM register access control register	R/W	0000000в		
0068 н	FABH	FRAM write permit start address register (H)	R/W	11111111в		
0069н	FABL	FRAM write permit start address register (L)	R/W	11111111в		
006Ан	FASH	FRAM write permit area size register (H)	R/W	0000000в		
006Bн	FASL	FRAM write permit area size register (L)	R/W	0000000в		
006Cн	ADC1	8/10-bit A/D converter control register 1	R/W	0000000в		
006Dн	ADC2	8/10-bit A/D converter control register 2	R/W	0000000в		
006Eн	ADDH	8/10-bit A/D converter data register (upper byte)	R/W	0000000в		
006Fн	ADDL	8/10-bit A/D converter data register (lower byte)	R/W	0000000в		
0070н	FVAH	FRAM violation address register (H) R XXX				
0071 н	FVAL	FRAM violation address register (L)	R	XXXXXXXXB		

Address	Register abbreviation	Register name	R/W	Initial value
0072н to 0075н		(disabled)		
0076н	WREN	Wild register address compare enable register	R/W	0000000в
0077н	WROR	Wild register data test setting register	R/W	0000000в
0078 н		Register bank pointer (RP) , Mirror of direct bank pointer (DP)		
0079н	ILR0	Interrupt level setting register 0	R/W	11111111в
007А н	ILR1	Interrupt level setting register 1	R/W	11111111в
007Вн	ILR2	Interrupt level setting register 2	R/W	11111111в
007Сн	ILR3	Interrupt level setting register 3	R/W	11111111в
007Dн	ILR4	Interrupt level setting register 4	R/W	11111111в
007Ен	ILR5	Interrupt level setting register 5	R/W	11111111
007Fн		(disabled)		
0F80н	WRARH0	Wild register address setting register (upper byte) ch.0	R/W	0000000в
0F81н	WRARL0	Wild register address setting register (lower byte) ch.0	R/W	0000000в
0F82н	WRDR0	Wild register data setting register ch.0	R/W	0000000в
0F83н	WRARH1	Wild register address setting register (upper byte) ch.1	R/W	0000000в
0F84⊦	WRARL1	Wild register address setting register (lower byte) ch.1	R/W	0000000в
0F85⊦	WRDR1	Wild register data setting register ch.1	R/W	0000000в
0F86н	WRARH2	Wild register address setting register (upper byte) ch.2	R/W	0000000в
0F87н	WRARL2	Wild register address setting register (lower byte) ch.2	R/W	0000000в
0F88⊦	WRDR2	Wild register data setting register ch.2	R/W	0000000в
0F89н to 0F91н		(disabled)		
0F92н	T01CR0	8/16-bit compound timer 01 control status register 0 ch.0	R/W	0000000в
0F93н	T00CR0	8/16-bit compound timer 00 control status register 0 ch.0	R/W	0000000в
0F94н	T01DR	8/16-bit compound timer 01 data register ch.0	R/W	0000000в
0F95н	T00DR	8/16-bit compound timer 00 data register ch.0	R/W	0000000в
0F96⊦	TMCR0	8/16-bit compound timer 00/01 timer mode control register ch.0	R/W	0000000в
0F97н	T11CR0	8/16-bit compound timer 11 control status register 0 ch.1	R/W	0000000в
0F98⊦	T10CR0	8/16-bit compound timer 10 control status register 0 ch.1	R/W	0000000в

MB95R203A

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0F99н	T11DR	8/16-bit compound timer 11 data register ch.1	R/W	0000000в
0F9Aн	T10DR	8/16-bit compound timer 10 data register ch.1	R/W	0000000в
0F9B⊦	TMCR1	8/16-bit compound timer 10/11 timer mode control register ch.1	R/W	0000000в
0F9Cн to 0FBDн		(disabled)	_	_
0FBEH	PSSR0	UART/SIO prescaler select register	R/W	0000000в
0FBFн	BRSR0	UART/SIO baud rate setting register	R/W	0000000в
0FC0н to 0FC2н		(disabled)	_	_
0FC3н	AIDRL	A/D input disable register lower	R/W	0000000в
0FC4н to 0FE3н		(disabled)		_
0FE4н	CRTH	CR-trimming register upper	R/W	1XXXXXXXB
0FE5н	CRTL	CR-trimming register lower	R/W	000XXXXXB
0FE6H	LVDCR2	Low voltage detection control register	R/W	0000010в
0FE7н		(disabled)	—	—
0FE8н	SYSC	System control register	R/W	11000-11в
0FE9⊦	CMCR	Clock monitor control register	R/W	000000в
0FEAH	CMDR	Clock monitor data register	R/W	0000000в
0FEBH	WDTH	Watchdog ID register upper	R/W	XXXXXXXAB
0FECH	WDTL	Watchdog ID register lower		XXXXXXXAB
0FEDH		(disabled)	—	—
0FEEH	ILSR	Input level select register	R/W	00-0в
0FEFн to 0FFFн		(disabled)		_

• R/W access symbols

R/W : Readable / Writable

R : Read only

W : Write only

- Initial value symbols
 - 0 : The initial value of this bit is "0".
 - 1 : The initial value of this bit is "1".
 - $X \quad : \mbox{The initial value of this bit is undefined.}$

Note : Do not write to the " (Disabled) ". Reading the " (Disabled) " returns an undefined value.

■ INTERRUPT SOURCE TABLE

Interrupt source	Interrupt request	Vector table address		Bit name of interrupt level	Priority order of interrupt sources
	number	Upper	Lower	setting register	of the same level (occurring simultaneously)
External interrupt ch.4	IRQ00	FFFA H	FFFB H	L00 [1 : 0]	lliab
External interrupt ch.5	IRQ01	FFF8H	FFF9⊦	L01 [1 : 0]	High
External interrupt ch.2	IRQ02	FFF6⊦	FFF7⊦	L02 [1 : 0]	A
External interrupt ch.6		ГГГОН	ГГГ/Н	L02 [1 . 0]	
External interrupt ch.3					
External interrupt ch.7	IRQ03	FFF4н	FFF5⊦	L03 [1 : 0]	
UART/SIO (transmit)			ГГГО		
UART/SIO (receive)	IRQ04	FFF2H	FFF3⊦	L04 [1 : 0]	
8/16-bit compound timer ch.0 (Lower)	IRQ05	FFF0⊦	FFF1⊦	L05 [1 : 0]	
8/16-bit compound timer ch.0 (Upper)	IRQ06	FFEEH	FFEF⊦	L06 [1 : 0]	
	IRQ07	FFEC H	FFED H	L07 [1 : 0]	
	RQ08	FFEA H	FFEB H	L08 [1 : 0]	
FRAM (UDEF, PROT)	IRQ09	FFE8H	FFE9H	L09 [1 : 0]	
_	IRQ10	FFE6H	FFE7н	L10 [1 : 0]	
	IRQ11	FFE4 _H	FFE5H	L11 [1 : 0]	
	IRQ12	FFE2H	FFE3H	L12 [1 : 0]	
	IRQ13	FFE0H	FFE1н	L13 [1 : 0]	
8/16-bit compound timer ch.1 (Upper)	IRQ14	FFDEH	FFDF⊦	L14 [1 : 0]	
_	IRQ15	FFDC H	FFDD _H	L15 [1 : 0]	
I ² C complete/error			FFDBH		
I ² C stop/AL/wakeup	IRQ16	FFDA _H	FFDBH	L16 [1 : 0]	
Low voltage detection interrupt	IRQ17	FFD8н	FFD9⊦	L17 [1 : 0]	
8/10-bit A/D converter	IRQ18	FFD6н	FFD7⊦	L18 [1 : 0]	
Time-base timer	IRQ19	FFD4H	FFD5H	L19 [1 : 0]	
Watch prescaler	IRQ20	FFD2H	FFD3H	L20 [1 : 0]	
—	IRQ21	FFD0H	FFD1⊦	L21 [1 : 0]	
8/16-bit compound timer ch.1 (Lower)	IRQ22	FFCEH	FFCFH	L22 [1 : 0]	↓
FRAM (AREA)	IRQ23	FFCC H	FFCD H	L23 [1 : 0]	Low

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Deremeter	Symbol	Rat	ting	Unit	Remarks	
Parameter	Symbol	Min	Max	Unit	Remarks	
Power supply voltage ^{*1}	Vcc	Vss - 0.3	Vss + 4.0	V		
Input voltage*1	Vı	Vss - 0.3	Vss + 4.0	V	*2	
Output voltage*1	Vo	Vss - 0.3	Vss + 4.0	V	*2	
"L" level maximum output current	IOL1		15	mA	Other than P05, P06, P62 and P63	
	IOL2		15	ШA	P05, P06, P62 and P63	
"L" level average current	Iolav1		4	mA	Other than P05, P06, P62 and P63 Average output current = operating current × operating ratio (1pin)	
L level average current	Iolav2		12	ША	P05, P06, P62 and P63 Average output current = operating current × operating ratio (1pin)	
"L" level total maximum output current	ΣΙοι	_	100	mA		
"L" level total average output current	ΣΙοιαν		50	mA	Total average output current = operating current × operating ratio (Total of pins)	
"H" lovel movimum output ourrent	Іон1		-15	mA	Other than P05, P06, P62 and P63	
"H" level maximum output current	Іон2		-15	ШA	P05, P06, P62 and P63	
"H" level average current	Іонаv1		-4	mA	Other than P05, P06, P62 and P63 Average output current = operating current × operating ratio (1 pin)	
Thever average current	Іонау2		-8	ШA	P05, P06, P62 and P63 Average output current = operating current × operating ratio (1pin)	
"H" level total maximum output current	ΣІон	_	-100	mA		
"H" level total average output current	ΣΙοήαν		-50	mA	Total average output current = operating current \times operating ratio (Total of pins)	
Power consumption	Pd		320	mW		
Operating temperature	TA	-40	+ 85	°C		
Storage temperature	Tstg	-40	+ 85	°C		

- *1 : The parameter is based on $V_{SS} = 0.0 V$.
- *2 : V_I and Vo should not exceed V_{CC} + 0.3 V. V_I must not exceed the rating voltage.
- WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

 $(V_{SS} = 0.0 V)$

Parameter	Symbol	Rat	ing	Unit	Remarks
Farameter	Symbol	Min	Max	Unit	
		1.8*	3.6		In normal operating
Power supply voltage	Vcc	2.7	3.6	V	In A/D converter operating
		2.7	3.6		On-chip debug mode
Operating tomperature	TA	-40	+85	°C	Other than on-chip debug mode
Operating temperature	IA	+5	+35	°C	On-chip debug mode

* : The normal operation is performed from 1.8 V to the low voltage detection of the FRAM power supply monitor, or from the release voltage of the FRAM power supply monitor to 1.8 V. Reset is generated during the period that the low voltage detection reset has been detected. As for the low voltage detection, see "(8) Low Voltage Detection" in "4. AC Characteristics".

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

(Vcc = 3.3 V, Vss = 0.0 V, T_A = -40 °C to +85 °C)

Deveneter	Cumbal	Din nome	Condition		Value		11	Demerike
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
	VIH1	P04	*1	0.7 Vcc		Vcc + 0.3	V	When CMOS input level (Hysteresis input) is selected
"H" level	VIH2	P64, P65	*1	0.7 Vcc		Vcc + 0.3	V	When CMOS input level (Hysteresis input) is selected
input voltage	VIHS1	P00 to P07, P12, P62, P63, PG1, PG2	*1	0.8 Vcc		Vcc + 0.3	v	Hysteresis input
	VIHS2	P64, P65	*1	0.8 Vcc	—	Vcc + 0.3	V	Hysteresis input
	VIHM	PF2		0.8 Vcc		Vcc + 0.3	V	Hysteresis input
	Vı∟	P04, P64, P65	*1	Vss – 0.3		0.3 Vcc	V	When CMOS input level (Hysteresis input) is selected
"L" level input voltage	Vils	P00 to P07, P12, P62 to P65, PG1, PG2	*1	Vss – 0.3		0.2 Vcc	v	Hysteresis input
	VILM	PF2		Vss - 0.3		0.2 Vcc	V	Hysteresis input
Open-drain output applica- tion voltage	VD	P12, P64, P65, PF2	_	Vss – 0.3		Vcc + 0.3	V	
"H" level output voltage	Vон1	Output pins other than P05, P06, P62 to P65, PF2, P12	Іон = -4.0 mA	2.4		_	V	
	V он2	P05, P06, P62, P63	Iон = -8.0 mA	2.4	_	_	V	
"L" level output voltage	Vol1	Output pins other than P05, P06, P62, P63	lo∟ = 4.0 mA			0.4	v	
	Vol2	P05, P06, P62, P63	lo∟ = 12.0 mA			0.4	V	(Continued)

. .		D .	a		Value			
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
Input leak current (Hi-Z output leak current)	۱u	Other than ports P64, P65	0.0 V < Vı < Vcc	-5	_	+ 5	μA	When pull-up resistance is disabled
Open-drain output leak current	Iliod	P64, P65	0.0 V < VI < Vss + 5.5 V		_	+ 5	μA	
Pull-up resistance	Rpull	P00 to P07, PG1, PG2	V1 = 0.0 V	16.5	33	66	kΩ	When pull-up resistance is enabled
Input capacitance	CIN	Other than Vcc, Vss	f = 1 MHz		5	15	pF	
	lcc		Fсн = 20 MHz, Fмр = 10 MHz		2.1 (TBD)	(TBD)	mA	
	icc		Main clock mode (divided by 2)		(TBD)	(TBD)	mA	At A/D conversion
	lccs*3		$F_{CH} = 20 \text{ MHz},$ $F_{MP} = 10 \text{ MHz}$ Main sleep mode (divided by 2) $T_{A} = +25 \text{ °C}$		1	(TBD)	mA	
	IccL	Vcc (External clock operation)	$F_{CL} = 32 \text{ kHz},$ $F_{MPL} = 16 \text{ kHz}$ Sub clock mode (divided by 2) $T_{A} = +25 \text{ °C}$		52 (TBD)	(TBD)	μA	
Power supply current*2	lcc∟s ^{*3}		$F_{CL} = 32 \text{ kHz},$ $F_{MPL} = 16 \text{ kHz}$ Sub sleep mode (divided by 2) $T_{A} = +25 \text{ °C}$		8 (TBD)	(TBD)	μA	
	Ісст ^{*3}		$F_{CL} = 32 \text{ kHz},$ Watch mode Main stop mode $T_A = +25 \text{ °C}$		8 (TBD)	(TBD)	μA	
	Іссмск	Vec	$F_{CRH} = 1 \text{ MHz},$ $F_{MP} = 1 \text{ MHz}$ Main CR clock mode		0.4		mA	
	ICCSCR	- Vcc	Sub CR clock mode (divided by 2) $T_A = +25 \text{ °C}$		67	(TBD)	μΑ	

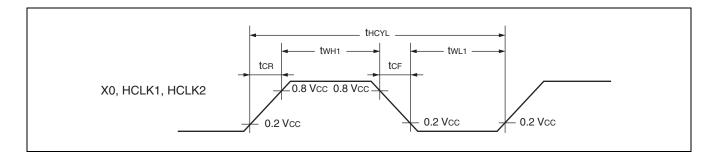
(Vcc = 3.3 V, Vss = 0.0 V, T_A = -40 °C to +85 °C)

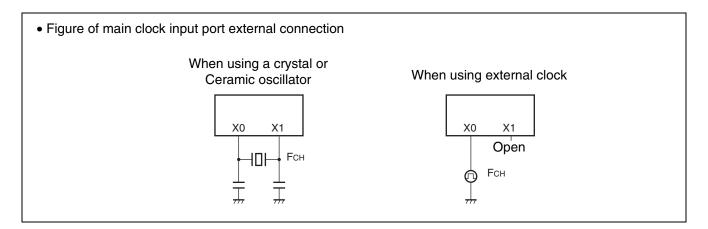
(Continued)

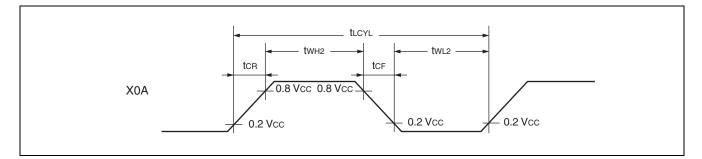
-				(Vcc	= 3.3 V, \	/ss = 0.0	V, Ta =	-40 °C to +85 °C)
Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
raiameter	Symbol	r in name	Condition	Min	Тур	Мах	onn	Hemarks
	Iccтs* ³	Vcc (External clock	F _{CH} = 10 MHz, Time-base timer mode T _A = +25 °C	_	0.2	(TBD)	mA	
	Iссн* ³	operation)	Sub stop mode $T_A = +25 \ ^{\circ}C$		8 (TBD)	(TBD)	μA	
		Consumption current using a low voltage interrupt circuit only	_	5	10	μΑ		
Power supply current ²	Ilvd2	Vcc	Current consumption using a low voltage detection reset circuit and an FRAM power supply monitor circuit only		25	50	μΑ	
_	Ісвн		Current consumption of internal main CR oscillator		70	100	μΑ	
	Icrl		At oscillating 100 kHz current consumption of internal sub CR oscillator		9	20	μΑ	

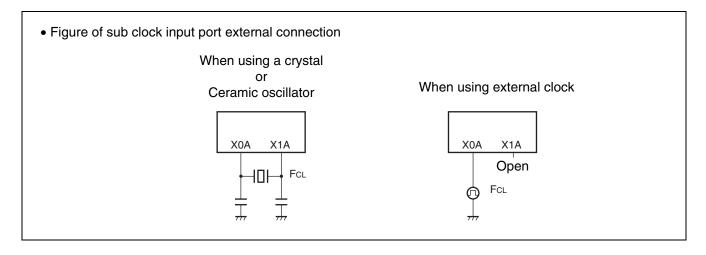
 $(Vcc = 3.3 V, Vss = 0.0 V, T_A = -40 \ ^{\circ}C \ to +85 \ ^{\circ}C)$

*1 : P04, P64, P65 can switch the input level to either the "CMOS input level" or "hysteresis input level". The switching of the input level can be set by the input level selection register (ILSR).


- *2: The power-supply current is determined by the external clock. when Internal CR are selected, the powersupply current will be a value of adding current consumption of internal CR oscillator (ICRH, ICRL) to the specified value. In on-chip debug mode, the CR oscillator (ICRH) and the low-voltage detection circuit are always enabled, and current consumption therefore increases accordingly.
 - Refer to "(1) Clock Timing" in "4. AC Characteristics" for FCH and FCL.
 - Refer to "(2) Source Clock/Machine Clock" in "4. AC Characteristics" for FMP and FMPL.
- *3 : When a low voltage detection circuit stop bit (LVDCR2: LVDSTP set) is not set to "1", the power supply current will be the sum of the current consumption value for a low voltage detection circuit (ILVD2) and the specified value.


4. AC Characteristics

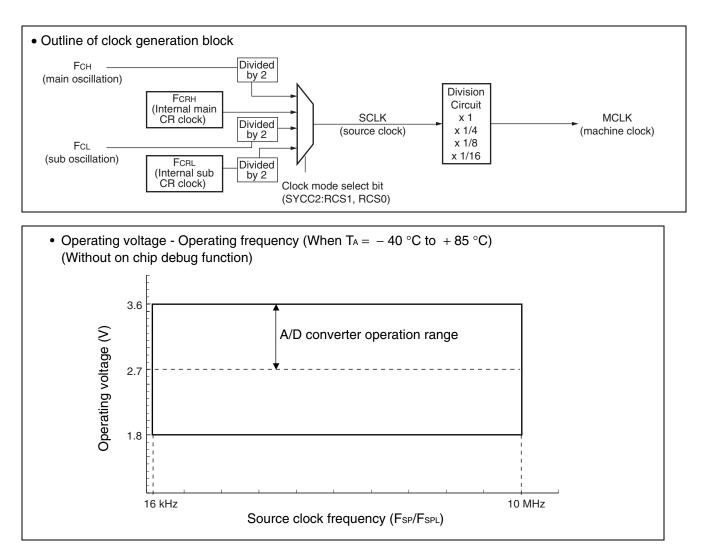

(1) Clock Timing

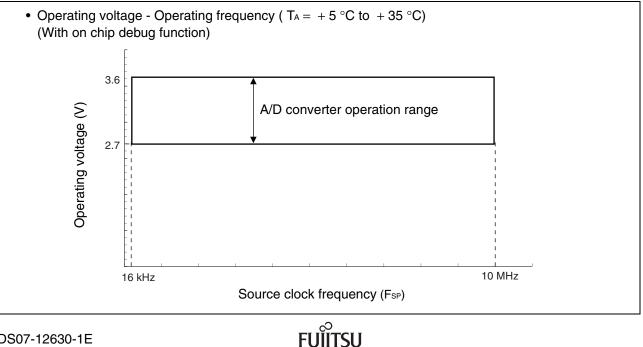

(Vcc = 3.3 V, Vss = 0.0 V, T_A = -40 °C to +85 °C)

Poromotor	Sym-	Pin name	Condi-		Value		Unit	Remarks
Parameter	bol	Pinname	tion	Min	Тур	Max	Unit	Remarks
		X0, X1		1		10	MHz	When the main oscillation circuit is used
	Fсн	X0, X1, HCLK1, HCLK2		1		20	MHz	When the main external clock is used
				0.96	1	1.04		When the main internal
Clock frequency	FCRH	—		7.2 (TBD)		8.8 (TBD)	MHz	$\begin{array}{l} CR \ clock \ is \ used \\ (+5^\circ C \leq T_A \leq +35^\circ C) \end{array}$
	Fc∟	X0A, X1A			32.768		MHz	When the sub oscillation circuit is used
	TOL				32.768		kHz	When the sub external clock is used
	FCRL			50	100	200	kHz	When the sub internal CR clock is used
		X0, X1		100		1000	ns	When the main oscillation circuit is used
Clock cycle time	thcy∟	X0, X1, HCLK1, HCLK2		50		1000	ns	When the main external clock is used
	t LCYL	X0A, X1A			30.5		μs	When using sub clock
	twH1	X0,						
Input clock pulse width	tw∟ı	HCLK1, HCLK2		20			ns	When the external clock is used, the duty ratio should range between
width	twH2	X0A			15.2		μs	40% and 60%
	tw∟2				10.2		μο	
Input clock rise	t CR	X0, X0A,				-		When the external clock
time and fall time	tc⊧	HCLK1, HCLK2				5	ns	is used
Internal CR	tсвнжк					10	μs	When the main-internal CR clock is used
oscillation start time	t CRLWK					50	μs	When the sub-internal CR clock is used

(2) Source Clock/Machine Clock

 $(Vcc = 3.3 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

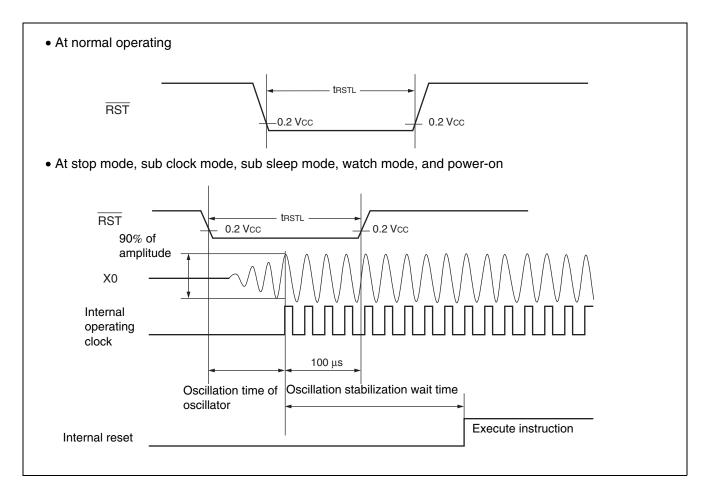

Devementer	Cumbal	Pin		Value		Unit	Domoriko
Parameter	Symbol	name	Min	Тур	Max	Unit	Remarks
			100	_	2000	ns	When using main external clock Min : $F_{CH} = 20$ MHz, divided by 2 Max : $F_{CH} = 1$ MHz, divided by 2
Source clock cycle time ^{*1} (Clock before	tsclk		125		1000	ns	When using main CR oscillation clock Min : FCRH = 8 MHz Max : FCRH = 1 MHz
division)			_	61		μs	When using sub oscillation clock $F_{CL} = 32.768 \text{ kHz}$, divided by 2
				20		μs	When using sub oscillation clock $F_{CRL} = 100 \text{ kHz}$, divided by 2
	Fsp		0.5		10	MHz	When using main oscillation clock
Source clock	1 5P		1		8	MHz	When using main CR oscillation clock
frequency	FSPL			16.384		kHz	When using sub oscillation clock
	I SPL		_	50		kHz	When using sub CR clock
			100	_	32000	ns	When using main oscillation clock Min : $F_{SP} = 10$ MHz, no division Max : $F_{SP} = 0.5$ MHz, divided by 16
Machine clock cycle time ^{*2} (Minimum	tмс⊧к		100		16000	ns	When using main CR clock Min : F _{SP} = 10 MHz, no division Max : F _{SP} = 1 MHz, divided by 16
instruction execution time)	IMCLK	_	61		976.5	μs	When using sub oscillation clock Min : $F_{SPL} = 16.384$ kHz, no division Max : $F_{SPL} = 16.384$ kHz, divided by 16
			20		320	μs	When using sub CR clock Min : F _{SPL} = 50 kHz, no division Max : F _{SPL} = 50 kHz, divided by 16
	Fмр		0.031		10	MHz	When using main oscillation clock
Machine clock	ГМР		0.0625		8	MHz	When using main CR clock
frequency	FMPL		1.024		16.384	kHz	When using sub oscillation clock
			3.125		50	kHz	When using sub CR clock


*1: Clock before setting division due to machine clock division ratio selection bit (SYCC : DIV1 and DIV0). This source clock is divided by the machine clock division ratio selection bit (SYCC : DIV1 and DIV0), and it becomes the machine clock. Further, the source clock can be selected as follows.

- Main clock divided by 2
- Main CR clock
- Sub clock divided by 2
- Sub CR clock divided by 2

*2 : Operation clock of the microcontroller. Machine clock can be selected as follows.

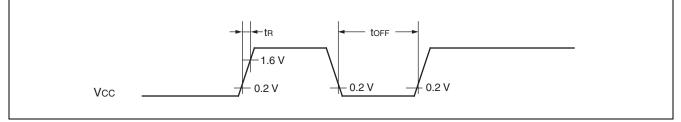
- Source clock (no division)
- Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16



(3) External Reset

. ,			(Vcc =	= 3.3 V, V	ss = 0.0 V, T _A = $-40 \ ^{\circ}C$ to $+85 \ ^{\circ}C$)		
Parameter	Symbol	Value		Unit	Remarks		
Parameter	Symbol	Min	Max	Unit	neillarks		
		2 t MCLK ^{*1}		ns	At normal operating		
RST "L" level pulse width	t rstl	Oscillation time of oscillator ² + 100	_	μs	At stop mode, sub clock mode, sub sleep mode, and watch mode		
		100		μs	At time-base timer mode		

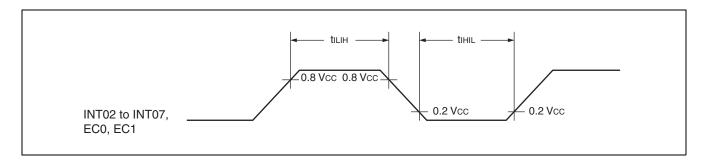
*1 : Refer to " (2) Source Clock/Machine Clock" for tMCLK.


*2 : Oscillation time of oscillator is the time that the amplitude reaches 90%. In the crystal oscillator, the oscillation time is between several ms and tens of ms. In ceramic oscillators, the oscillation time is between hundreds of μ s and several ms. In the external clock, the oscillation time is 0 ms.

(4) Power-on Reset

 $(Vss = 0.0 V, T_A = -40 \circ C to +85 \circ C)$

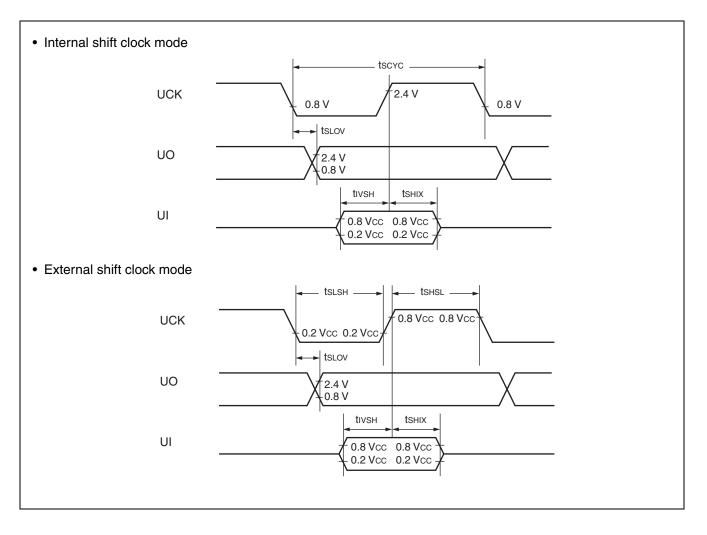
Parameter	Symbol	Conditions	Val	lue	Unit	Remarks	
Faiancici	Symbol	Conditions	Min	Max	Unit	nemarks	
Power supply rising time	tR		0.1	50	ms		
Power supply cutoff time	toff	_	1	_	ms	Waiting time until power-on	


Note: A sudden change the power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, set the slope of rising within 30 mV/ms.

(5) Peripheral Input Timing

 $(Vcc = 3.3 V, Vss = 0.0 V, T_A = -40 °C to +85 °C)$

Parameter	Symbol	Pin name	Va	Unit		
Falameter	Symbol	Finname	Min	Max	Omt	
Peripheral input "H" pulse	tılıн	INT02 to INT07,	2 t мськ*		ns	
Peripheral input "L" pulse	tініL	EC0, EC1	2 t MCLK*		ns	

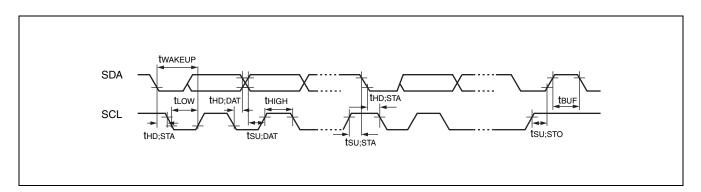

*: Refer to " (2) Source Clock/Machine Clock" for tmclk.

(6) UART/SIO, Serial I/O Timing

	0		(Vcc = 3.3 V, Vss =	0.0 V, Ta	= −40 °C	to +85 °C)
Parameter	Symbol	Pin name	Conditions	Va	Unit	
Falameter	Symbol	Fiillianie	Conditions	Min	Max	Onit
Serial clock cycle time	tscyc	UCK		4 tmclk*	—	ns
$UCK \downarrow \to UO$ time	tslov	UCK, UO	Internal clock operation output pin :	-190	+190	ns
Valid UI \rightarrow UCK \uparrow	tıvsн	UCK,UI	$C_{L} = 80 \text{ pF} + 1 \text{ TTL}.$	2 t мськ*		ns
UCK $\uparrow \rightarrow$ valid UI hold time	tsнix	UCK, UI		2 t мськ*		ns
Serial clock "H" pulse width	tshsl	UCK		4 tmclk*	_	ns
Serial clock "L" pulse width	tslsh	UCK	External clock	4 tmclk*		ns
$UCK \downarrow \to UO$ time	tslov	UCK, UO	operation output pin :	0	190	ns
Valid UI \rightarrow UCK \uparrow	tıvsн	UCK, UI	C∟ = 80 pF + 1 TTL.	2 t мськ*		ns
UCK $\uparrow \rightarrow$ valid UI hold time	tsнıx	UCK, UI		2 t мськ*		ns

*: Refer to " (2) Source Clock/Machine Clock" for details on tMCLK.

(7) I²C Timing


					Va	lue		
Parameter	Symbol	Pin name	Conditions		dard- ode	Fast-	Unit	
				Min	Max	Min	Max	
SCL clock frequency	tscyc	SCL		0	100	0	400	kHz
(Repeat) Start condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	thd;sta	SCL SDA		4.0		0.6		μs
SCL clock "L" width	t∟ow	SCL		4.7		1.3		μs
SCL clock "H" width	tніgн	SCL		4.0		0.6		μs
(Repeat) Start condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsu;sta	SCL SDA	R = 1.7 kΩ,	4.7		0.6	_	μs
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	t hd;dat	SCL SDA	$C = 50 \text{ pF}^{*1}$	0	3.45 ^{*2}	0	0.9 ^{*2}	μs
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsu;dat	SCL SDA		0.25		0.1		μs
Stop condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsu;sto	SCL SDA		4.0		0.6		μs
Bus free time between stop condition and start condition	tbuf	SCL SDA		4.7		1.3		μs

(Vcc = 3.3 V, Vss = 0.0 V, T_A = -40 $^\circ C$ to +85 $^\circ C$)

*1 : R, C : Pull-up resistance and load capacitance of the SCL and SDA lines.

*2 : The maximum value of the;DAT is applicable only if the device does not extend the "L" width (tLow) of the SCL signal.

*3 : A fast-mode l²C-bus device can be used in a standard-mode l²C-bus system, but the requirement $t_{SU;DAT} \ge 250$ ns must then be met.

		Pin	Condi-	```	ue ^{*2}		$A = -40^{\circ}C 10 +85^{\circ}C$
Parameter	Symbol	name	tions	Min	Max	Unit	Remarks
SCL clock "L" width	tLow	SCL		(2 + nm / 2) tмськ — 20		ns	Master mode
SCL clock "H" width	tніgн	SCL		(nm / 2) t _{мськ} – 20	(nm / 2) t _{мськ} + 20	ns	Master mode
Start condition hold time	thd;sta	SCL SDA		(–1 + nm / 2) t _{мсцк} – 20	(−1 + nm / 2) t _{мс∟к} + 20	ns	Master mode maximum value is applied when m, n = 1, 8. Otherwise, the min- imum value is ap- plid.
Stop condition setup time	tsu;sto	SCL SDA		(1 + nm / 2) tмськ — 20	(1 + nm / 2) tмськ + 20	ns	Master mode
Start condition setup time	tsu;sta	SCL SDA		(1 + nm / 2) tмськ — 20	(1 + nm / 2) tмськ + 20	ns	Master mode
Bus free time between stop condition and start condition	tBUF	SCL SDA		(2 nm + 4) t _{мс∟к} — 20		ns	
Data hold time	thd;dat	SCL SDA		3 tмськ – 20		ns	Master mode
Data setup time	tsu;dat	SCL SDA	R = 1.7 kΩ, C = 50 pF ⁻¹	(-2 + nm / 2) t _{мсцк} – 20	(–1 + nm / 2) tмс∟к + 20	ns	Master mode When assuming that "L" of SCL is not extended, the minimum value is applied to first bit of continuous data. Otherwise, the maximum value is applied.
Setup time between cleaning interrupt and SCL rising	tsu;ואד	SCL		(nm / 2) tмськ – 20	(1 + nm / 2) tмськ + 20	ns	Minimum value is applied to interrupt at 9th SCL↓. Maximum value is applied to interrupt at 8th SCL↓.
SCL clock "L" width	tLow	SCL		4 tмськ – 20		ns	At reception
SCL clock "H" width	tніgн	SCL		4 tмськ – 20		ns	At reception
Start condition detection	thd;sta	SCL SDA		4 tмськ – 20		ns	Undetected when 1 tmclk is used at re- ception

(Vcc = 3.3 V, Vss = 0.0 V, T_A = -40 °C to +85 °C)

MB95R203A

(Continued)

(commuca)				(Vcc = 3.	3 V, Vss =	= 0.0 V	', T _A = $-40 \ ^{\circ}C$ to $+85 \ ^{\circ}C$)
Parameter	Symbol	Pin	Condi-	Value [∗] 2		Unit	Remarks
Farameter	Symbol	name	tions	Min	Max	Unit	nemarks
Stop condition detection	t su;sто	SCL SDA		4 tмськ – 20	_	ns	Undetected when 1 tm- clk is used at reception
Restart condition detection condition	tsu;sta	SCL SDA		2 tмськ – 20	_	ns	Undetected when 1 tm- clk is used at reception
Bus free time	tBUF	SCL SDA		2 tмськ – 20		ns	During reception
Data hold time	t hd;dat	SCL SDA		2 tмськ – 20		ns	In slave transmission mode
Data setup time	t su;dat	SCL SDA	R = 1.7 kΩ, C = 50 pF ^{*1}	tLow – 3 tмсlк – 20		ns	In slave transmission mode
Data hold time	t hd;dat	SCL SDA		0		ns	During reception
Data setup time	t su;dat	SCL SDA		tмськ — 20	_	ns	During reception
SDA $\downarrow \rightarrow$ SCL \uparrow (when using wakeup function)	twakeup	SCL SDA		Oscillation sta- bilization wait time + 2 tmclk – 20		ns	

*1: R, C: Pull-up resistance and load capacitance of the SCL and SDA lines.

*2 : • Refer to " (2) Source Clock/Machine Clock" for details on tMCLK.

- m is the CS4 and CS3 bits (bit4 and bit3) of the I²C clock control register (ICCR0) .
- n is the CS2 to CS0 bits (bit2 to bit0) of the I2C clock control register (ICCR0) .
- The actual I²C timing is determined by the machine (t_{MCLK}) and the values of m and n configured in bits CS4 to CS0 of the I²C clock control register (ICCR0).

• Standard-mode :

m and n can be set in the range : $0.9 \text{ MHz} < t_{\text{MCLK}}$ (machine clock) < 10 MHz. The machine clock to be used is determined by the settings of m and n as follows.

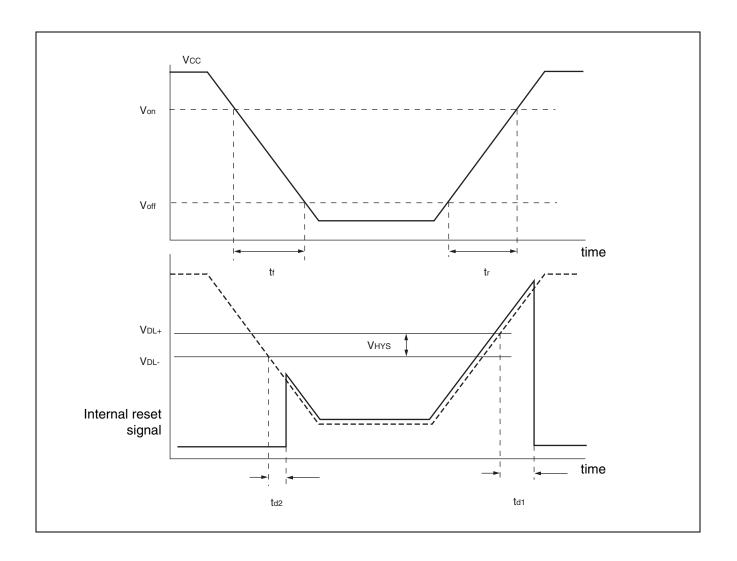
- (m, n) = (1, 38), (5, 8), (6, 8), (7, 8), (8, 8), (0, 4), (0, 9)(m, n) = (1, 38), (5, 8), (6, 8), (7, 8), (8, 8), (0, 9)
- (m, n) = (1, 98) (0, 0), (

• Fast-mode :

m and n can be set in the range : 3.3 MHz < t_{MCLK} (machine clock) < 10 MHz.

The machine clock to be used is determined by the settings of m and n as follows. (m, n) = (1, 8)

(m, n) = (1, 8)	: 3.3 MHz < tмськ ≤ 4 MHz
(m, n) = (1, 22), (5, 4)	: 3.3 MHz < tмс∟к ≤ 8 MHz
(m, n) = (6, 4)	: 3.3 MHz < tmclk \leq 10 MHz


(8) Low Voltage Detection

(Vss = 0.0 V,	$T_A = -40$	°C to +85	°C)
---------------	-------------	-----------	-----

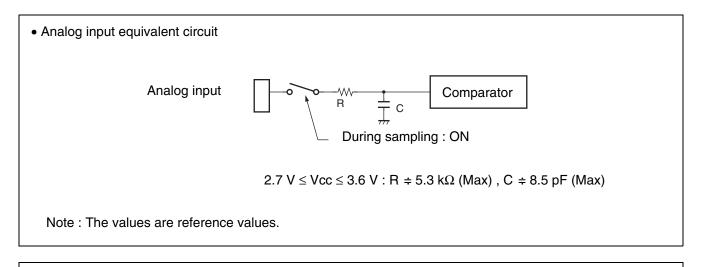
Parameter		Cumhal	Value		11:-:*	Domorko	
		Symbol -	Min	Тур	Max	Unit	Remarks
	Release voltage	V _{DL+}	1.75	1.85	1.95	V	At power-supply rise
Low voltage detection reset	Detection voltage	V _{DL-}	1.65	1.75	1.85	V	At power-supply fall
	Hysteresis width	VHYS	70	100		mV	
	Release voltage	V _{DL+}	1.8	1.9	2.0	V	At power-supply rise
FRAM power supply monitor	Detection voltage	V _{DL-}	1.7	1.8	1.9	V	At power-supply fall
	Hysteresis width	V _{HYS}	70	100	_	mV	
			2.2	2.3	2.4	V	At LS1 = 0, LS0 = 0, power-sup- ply rise*
	Release voltage	Vol	2.4	2.5	2.6	V	At LS1 = 0, LS0 = 1, power-sup- ply rise*
	nelease voltage	V _{DL+}	2.6	2.7	2.8	V	At LS1 = 1, LS0 = 0, power-sup- ply rise*
Low voltage			2.8	2.9	3.0	V	At LS1 = 1, LS0 = 1, power-sup- ply rise*
detection interrupt	Detection voltage	V _{DL-}	2.1	2.2	2.3	V	At LS1 = 0, LS0 = 0, power-sup- ply fall*
			2.3	2.4	2.5	V	At LS1 = 0, LS0 = 1, power-sup- ply fall*
			2.5	2.6	2.7	V	At LS1 = 1, LS0 = 0, power-sup- ply fall*
			2.7	2.8	2.9	V	At LS1 = 1, LS0 = 1, power-sup- ply fall*
	Hysteresis width	VHYS	70	100		mV	
Power-supply star	t voltage	Voff			1.2	V	
Power-supply end	voltage	Von	2.0			V	
Power-supply voltage change time (at power supply rise)		tr	0.3	_	_	μs	Slope of power supply that reset release signal generates
				200		μs	Slope of power supply that reset release signal generates within rating (V1 _{DL+} , V2 _{DL+})
Power-supply voltage change time (at power supply fall)		tr	0.3			μs	Slope of power supply that reset detection signal generates
				200		μs	Slope of power supply that reset detection signal generates within rating (V1 _{DL-} , V2 _{DL-})
Reset release delay time		td₁			300	μs	
Reset detection de	elay time	t _{d2}			20	μs	

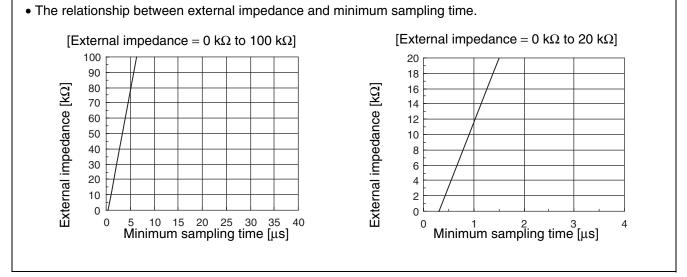
*: LS1 and LS0 mean the LS1 bit and the LS0 bit (bit1 and bit0) for the low voltage detection interrupt control register (LVDCR) respectively.

MB95R203A

5. A/D Converter

(1) A/D Converter Electrical Characteristics


(Vcc = 2.7 V to 3.6 V)	$Vss = 0.0 V, T_A = -40$	°C to +85 °C)
(100 - 2.7 + 10 - 0.0 + 1)	100 - 0.0 , $1A - 10$	0.00,000


			•			
Parameter	Symbol	Value				Domorko
Faiaillelei	Symbol	Min	Тур	Max	Unit	Remarks
Resolution				10	bit	
Total error		- 3.0		+ 3.0	LSB	
Linearity error		- 2.5		+ 2.5	LSB	
Differential linear error		- 1.9		+ 1.9	LSB	
Zero transition voltage	Vот	Vss – 1.5 LSB	Vss + 0.5 LSB	Vss + 2.5 LSB	V	
Full-scale transition voltage	VFST	Vcc – 3.5 LSB	Vcc – 1.5 LSB	Vcc + 0.5 LSB	V	
Compare time		0.6		140	μs	
Sampling time	_	0.4		œ	μs	$2.7 \text{ V} \le \text{ Vcc} \le 3.6 \text{ V}$ At external impedance < $1.8 \text{ k}\Omega$
Analog input current	AIN	- 4		+ 4	μA	
Analog input voltage	VAIN	Vss		Vcc	V	

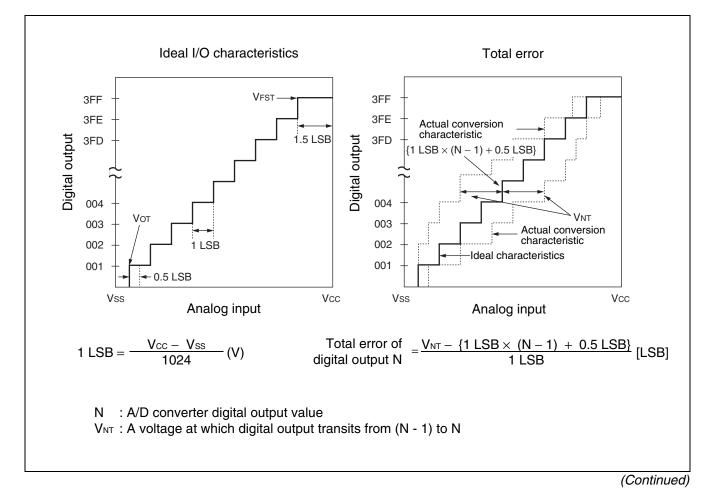
(2) Notes on Using A/D Converter

About the external impedance of analog input and its sampling time

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Also, if the sampling time cannot be sufficient, connect a capacitor of about 0.1 μ F to the analog input pin.

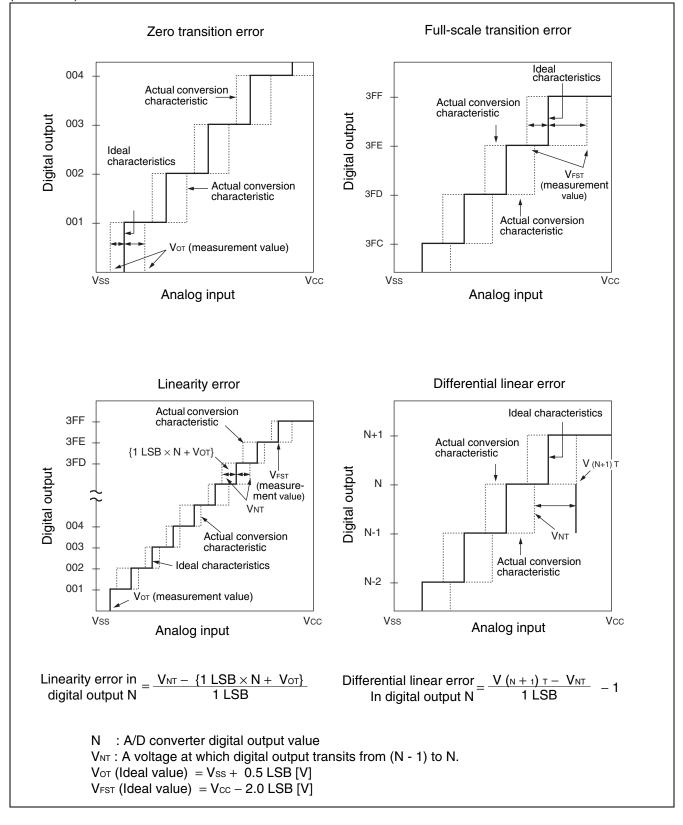
About errors

|Vcc - Vss| becomes smaller, values of relative errors grow larger.


(3) Definition of A/D Converter Terms

 Resolution The level of analog variation that can be distinguished by the A/D converter. When the number of bits is 10, analog voltage can be divided into 2¹⁰ = 1024.

- Linearity error (unit : LSB)
 The deviation between the value along a straight line connecting the zero transition point
 ("00 0000 0000" ←→ "00 0000 0001") of a device and the full-scale transition point
 ("11 1111 1111" ←→ "11 1111 1110") compared with the actual conversion values obtained.
- Differential linear error (Unit : LSB)
 Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

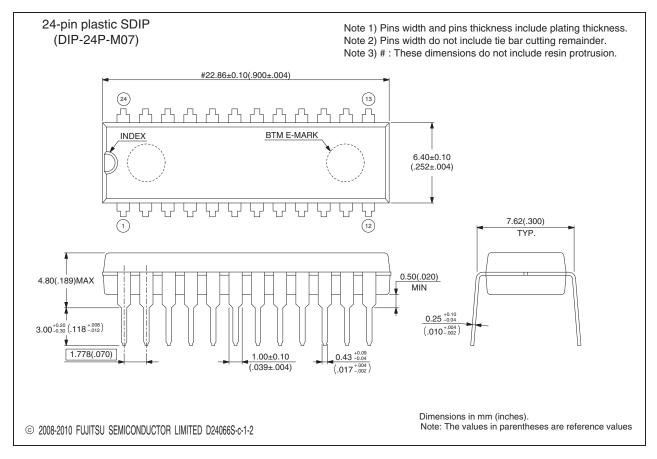

• Total error (unit : LSB)

Difference between actual and theoretical values, caused by a zero transition error, full-scale transition error, linearity error, quantum error, and noise.

MB95R203A

(Continued)

6. FRAM Characteristics

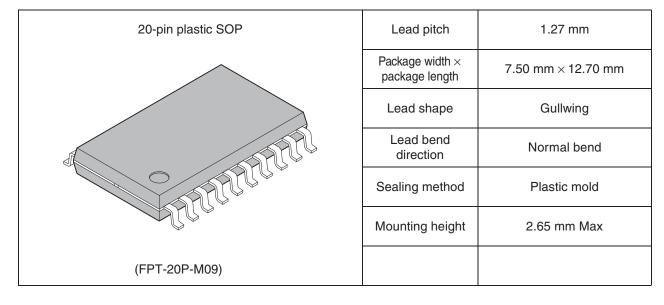

Parameter	Value			Unit	Remarks
	Min	Тур	Мах	Unit	nemarks
Number of read/write cycle	10 ¹⁵			cycle	

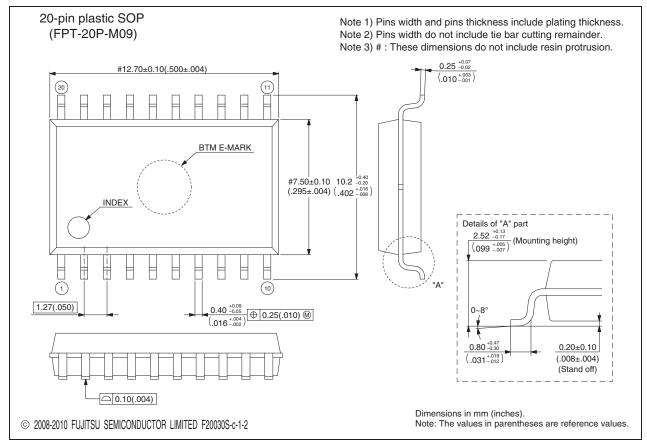
■ ORDERING INFORMATION

Part number	Package	Remarks
MB95R203AP-G-SH-JNE2	24-pin plastic DIP (DIP-24P-M07)	
MB95R203APF-G-JNE2	20-pin plastic SOP (FPT-20P-M09)	

■ PACKAGE DIMENSIONS

24-pin plastic SDIP	Lead pitch	1.778 mm
	Package width \times package length	6.40 mm × 22.86 mm
	Sealing method	Plastic mold
THE REAL PROPERTY OF THE PROPE	Mounting height	4.80 mm Max
(DIP-24P-M07)		




Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

(Continued)

MB95R203A

(Continued)

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan Tel: +81-45-415-5858 http://jp.fujitsu.com/fsl/en/

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU SEMICONDUCTOR ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel : +65-6281-0770 Fax : +65-6281-0220 http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel : +86-21-6146-3688 Fax : +86-21-6335-1605 http://cn.fujitsu.com/fmc/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel : +852-2377-0226 Fax : +852-2376-3269 http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.