8-bit Microcontroller

CMOS

F²MC-8FX MB95200H/210H Series

MB95F204H/F204K/F203H/F203K/F202H/F202K MB95F214H/F214K/F213H/F213K/F212H/F212K

■ DESCRIPTION

MB95200H/210H is a series of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers of this series contain a variety of peripheral resources.
Note: $\mathrm{F}^{2} \mathrm{MC}$ is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

- F^{2} MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions
- 16-bit arithmetic operations
- Bit test branch instructions
- Bit manipulation instructions, etc.
- Clock
- Selectable main clock source

Main OSC clock (up to 16.25 MHz, maximum machine clock frequency: 8.125 MHz) External clock (up to 32.5 MHz , maximum machine clock frequency: 16.25 MHz) Main internal CR clock ($1 / 8 / 10 / 12.5 \mathrm{MHz} \pm 2 \%$, maximum machine clock frequency: 12.5 MHz)

- Selectable subclock source

Sub-OSC clock (32.768 kHz)
External clock (32.768 kHz)
Sub-internal CR clock (typ: 100 kHz , min: 50 kHz , max: 200 kHz)
(Continued)

The information for microcontroller supports is shown in the following homepage.
Be sure to refer to the "Check Sheet" for the latest cautions on development.
"Check Sheet" is seen at the following support page
"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.
http://edevice.fujitsu.com/micom/en-support/

MB95200H/210H Series

(Continued)

- Timer
- 8/16-bit composite timer
- Timebase timer
- Watch prescaler
- LIN-UART (MB95F204H/F204K/F203H/F203K/F202H/F202K)
- Full duplex double buffer
- Capable of clock-synchronized serial data transfer and clock-asynchronized serial data transfer
- External interrupt
- Interrupt by edge detection (rising edge, falling edge, and both edges can be selected)
- Can be used to wake up the device from different low-power consumption (standby) modes
- 8/10-bit A/D converter
- 8-bit or 10-bit resolution can be selected.
- Low power consumption (standby) mode
- Stop mode
- Sleep mode
- Watch mode
- Timebase timer mode
- I/O port (max: 17) (MB95F204K/F203K/F202K)
- General-purpose I/O ports (max):

CMOS I/O: 15, N-ch open drain: 2

- I/O port (max: 16) (MB95F204H/F203H/F202H)
- General-purpose I/O ports (max):

CMOS I/O: 15, N-ch open drain: 1

- I/O port (max: 5) (MB95F214K/F213K/F212K)
- General-purpose I/O ports (max):

CMOS I/O: 3, N-ch open drain: 2

- I/O port (max: 4) (MB95F214H/F213H/F212H)
- General-purpose I/O ports (max):

CMOS I/O: 3, N-ch open drain: 1

- On-chip debug
- 1-wire serial control
- Serial writing supported (asynchronous mode)
- Hardware/software watchdog timer
- Built-in hardware watchdog timer
- Low-voltage detection reset circuit
- Built-in low-voltage detector
- Clock supervisor counter
- Built-in clock supervisor counter function
- Programmable port input voltage level
- CMOS input level / hysteresis input level
- Flash memory security function
- Protects the contents of flash memory

MB95200H/210H Series

- PRODUCT LINE-UP

Part number Parameter	$\begin{aligned} & \text { MB95 } \\ & \text { F204H } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F203H } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F202H } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F204K } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F203K } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F202K } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F214H } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F213H } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F212H } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F214K } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F213K } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F212K } \end{aligned}$
Type	Flash memory product											
Clock supervisor counter	It supervises the main clock oscillation.											
ROM capacity	16 KB	8 KB	4 KB	16 KB	8 KB	4 KB	16 KB	8 KB	4 KB	16 KB	8 KB	4 KB
RAM capacity	496 B	496 B	240 B	496 B	496 B	240 B	496 B	496 B	240 B	496 B	496 B	240 B
Low-voltage detection reset	No			Yes			No			Yes		
Reset input	Dedicated			Software select			Dedicated			Software select		
CPU functions	Number of basic instructions $: 136$ Instruction bit length $: 8$ bits Instruction length $: 1$ to 3 bytes Data bit length $: 1,8$, and 16 bits Minimum instruction execution time $: 61.5 \mathrm{~ns}$ (with machine clock $=16.25 \mathrm{MHz}$) Interrupt processing time $: 0.6 \mu \mathrm{~s}$ (with machine clock $=16.25 \mathrm{MHz}$)											
Generalpurpose I/O	I/O ports (max): 16 CMOS: 15, N-ch: 1			I/O ports (max): 17 CMOS: 15, N-ch: 2			I/O ports (max): 4 CMOS: 3, N-ch: 1			I/O ports (max): 5 CMOS: 3, N-ch: 2		
Timebase timer	Interrupt cycle : $0.256 \mathrm{~ms}-8.3 \mathrm{~s}$ (when external clock $=4 \mathrm{MHz}$)											
Hardware/ software watchdog timer	Reset generation cycle Main oscillation clock at 10 MHz : 105 ms (min) The sub-internal CR clock can be used as the source clock of the hardware watchdog.											
Wild register	It can be used to replace three bytes of data.											
LIN-UART	A wide range of communication speed can be selected by a dedicated reload timer. It has a full duplex double buffer. Clock-synchronized serial data transfer and clock-asynchronized serial data transfer is enabled. The LIN function can be used as a LIN master or a LIN slave.						No LIN-UART					
8/10-bit A/D	6 ch.						2 ch.					
converter	8-bit or 10-bit resolution can be selected.											
8/16-bit composite timer	2 ch.						1 ch.					
	The timer can be configured as an "8-bit timer x 2 channels" or a "16-bit timer x 1 channel". It has built-in timer function, PWC function, PWM function and input capture function. Count clock: it can be selected from internal clocks (seven types) and external clocks. It can output square wave.											
External interrupt	6 ch.						2 ch .					
	Interrupt by edge detection (rising edge, falling edge, or both edges can be selected.) It can be used to wake up the device from standby modes.											
On-chip debug	1-wire serial control It supports serial writing. (asynchronous mode)											

MB95200H/210H Series

(Continued)

Part number	$\begin{aligned} & \text { MB95 } \\ & \text { F2004 } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F203H } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F202H } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F204K } \end{aligned}$	MB95 F203K	$\begin{aligned} & \text { MB95 } \\ & \text { F202K } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F214H } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F213H } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F212H } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { MB95 } \\ \text { F214K } \end{array}$	$\begin{aligned} & \text { MB95 } \\ & \text { F213K } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F212K } \end{aligned}$
Watch prescaler	Eight different time intervals can be selected.											
Flash memory	It supports automatic programming, Embedded Algorithm, write/erase/erase-suspend/resume commands. It has a flag indicating the completion of the operation of Embedded Algorithm. Number of write/erase cycles (min): 100000 Data retention time: 20 years For write/erase, external $\operatorname{Vpp}(+10 \mathrm{~V})$ input is required. Flash Security Feature for protecting the contents of the flash											
Standby mode	Sleep mode, stop mode, watch mode, timebase timer mode											
Package (Width, Length, Height, Pitch)	$\begin{aligned} & \text { SDIP-24 } \\ & \text { SOP-20 } \end{aligned}$						$\begin{aligned} & \text { DIP-8 } \\ & \text { SOP-8 } \end{aligned}$					

MB95200H/210H Series

PACKAGES AND CORRESPONDING PRODUCTS

Part number Package	$\begin{aligned} & \text { MB95 } \\ & \text { F204H } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { MB95 } \\ \text { F203H } \end{array}$	$\begin{array}{\|l} \text { MB95 } \\ \text { F202H } \end{array}$	$\begin{aligned} & \text { MB95 } \\ & \text { F204K } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F203K } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F202K } \end{aligned}$	$\begin{array}{\|l} \text { MB95 } \\ \text { F214H } \end{array}$	$\begin{aligned} & \text { MB95 } \\ & \text { F213H } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F212H } \end{aligned}$	$\begin{aligned} & \text { MB95 } \\ & \text { F214K } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { MB95 } \\ \text { F213K } \end{array}$	$\begin{array}{\|l} \text { MB95 } \\ \text { F212K } \end{array}$
24-pin plastic SDIP	0	0	0	0	O	0	X	X	X	X	X	X
20-pin plastic SOP	0	O	0	0	O	0	X	X	X	X	X	X
8-pin plastic DIP	X	X	X	X	X	X	0	0	0	0	0	0
8-pin plastic SOP	X	X	X	X	X	X	0	0	0	0	0	0

O : Available
X : Unavailable

MB95200H/210H Series

DIFFERENCES AMONG PRODUCTS AND NOTES ON PRODUCT SELECTION

- Current consumption

When using the on-chip debug function, take account of the current consumption of flash erase/program.
For details of current consumption, see "■ ELECTRICAL CHARACTERISTICS".

- Package

For details of information on each package, see "■ PACKAGES AND CORRESPONDING PRODUCTS" and " PACKAGE DIMENSION".

- Operating voltage

The operating voltage varies, depending on whether the on-chip debug function is used or not.
For details of the operating voltage, see " \square ELECTRICAL CHARACTERISTICS".

- On-chip debug function

The on-chip debug function requires that $\mathrm{V} c \mathrm{c}$, $\mathrm{V} s \mathrm{~s}$ and 1 serial-wire be connected to an evaluation tool. In addition, if the flash memory data has to be updated, the RSTX/PF2 pin must also be connected to the same evaluation tool.

■ PIN ASSIGNMENT

PIN DESCRIPTION (MB95200H Series)

Pin no.	Pin name	I/O circuit type*	Function
1	PF0/X0	B	General-purpose I/O port This pin is also used as the main clock input oscillation pin.
2	PF1/X1	B	General-purpose I/O port This pin is also used as the main clock input/output oscillation pin.
3	PG2/X1A	CG1/X0A	C

(Continued)
(Continued)

Pin no.	Pin name	I/O circuit type	Function
17	P05/INT05/ANO5/ TOOO/HCLK2	E	General-purpose I/O port High-current port This pin is also used as the external interrupt input. This pin is also used as the A/D converter analog input. This pin is also used as the 8/16-bit composite timer ch. 0 output. This pin is also used as the external clock input.
18	P06/INT06/TO01	G	General-purpose I/O port High-current port This pin is also used as the external interrupt input. This pin is also used as the 8/16-bit composite timer ch. 0 output.
19	P07/INT07	G	General-purpose I/O port This pin is also used as the external interrupt input.
20	P12/EC0/DBG	H	General-purpose I/O port This pin is also used as the DBG input pin. This pin is also used as the 8/16-bit composite timer ch. 0 clock input.

* : For the I/O circuit types, see " I/O CIRCUIT TYPE".

PIN DESCRIPTION (MB95210H Series)

Pin ${ }^{\text {no. }}$	Pin name	I/O circuit type*	Function
1	Vss	-	Power supply pin (GND)
2	Vcc	-	Power supply pin
3	Cpin	-	Capacitor connection pin
4	RSTX/PF2	A	General-purpose I/O port This pin is also used as a reset pin. This pin is a dedicated reset pin in MB95F214H/F213H/F212H.
5	P04/INT04/AN04/ HCLK1/EC0	E	General-purpose I/O port This pin is also used as the external interrupt input. This pin is also used as the A/D converter analog input. This pin is also used as the external clock input. This pin is also used as the 8/16-bit composite timer ch. 0 clock input.
6	P05/AN05/TO00/ HCLK2	E	General-purpose I/O port High-current port This pin is also used as the A/D converter analog input. This pin is also used as the $8 / 16$-bit composite timer ch. 0 output. This pin is also used as the external clock input.
7	P06/INT06/TO01	G	General-purpose I/O port High-current port This pin is also used as the external interrupt input. This pin is also used as the 8/16-bit composite timer ch. 0 output.
8	P12/EC0/DBG	H	General-purpose I/O port This pin is also used as the DBG input pin. This pin is also used as the 8/16-bit composite timer ch. 0 clock input.

* : For the I/O circuit types, see "■ I/O CIRCUIT TYPE".

MB95200H/210H Series

I/O CIRCUIT TYPE

(Continued)

MB95200H/210H Series

(Continued)

Type	Circuit	Remarks
D		- CMOS output - Hysteresis input
E		- CMOS output - Hysteresis input - Pull-up control available
F		- CMOS output - Hysteresis input - CMOS input - Pull-up control available
G		- Hysteresis input - CMOS output - Pull-up control available
H		- N-ch open drain output - Hysteresis input

NOTES ON DEVICE HANDLING

- Preventing latch-ups

When using the device, ensure that the voltage applied does not exceed the maximum voltage rating.
In a CMOS IC, if a voltage higher than V_{cc} or a voltage lower than Vss is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in "1. Absolute Maximum Ratings" of $\begin{aligned} & \text { ELECTRICAL CHARACTERISTICS" }\end{aligned}$ is applied to the Vcc pin or the Vss pin, a latch-up may occur.
When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed.

- Stabilizing supply voltage

Supply voltage must be stabilized.
A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the Vcc power supply voltage.
As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in Vcc ripple (p-p value) at the commercial frequency ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) does not exceed 10% of the standard Vcc value, and the transient fluctuation rate does not exceed $0.1 \mathrm{~V} / \mathrm{ms}$ at a momentary fluctuation such as switching the power supply.

- Notes on using the external clock

When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode.

- PIN CONNECTION

- Treatment of unused pins

If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latch-ups. Always pull up or pull down an unused input pin through a resistor of at least $2 \mathrm{k} \Omega$. Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected.

- Power supply pins

To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the Vcc pin and the Vss pin to the power supply and ground outside the device. In addition, connect the current supply source to the Vcc pin and the V ss pin with low impedance.
It is also advisable to connect a ceramic bypass capacitor of approximately $0.1 \mu \mathrm{~F}$ between the Vcc pin and the Vss pin at a location close to this device.

- DBG pin

Connect the DBG pin directly to an external pull-up resistor.
To prevent the device from unintentionally entering the debug mode due to noise, minimize the distance between the DBG pin and the V_{cc} or $\mathrm{V}_{\text {ss }}$ pin when designing the layout of the printed circuit board.
The DBG pin should not stay at "L" level after power-on until the reset output is released.

- RSTX pin

Connect the RSTX pin directly to an external pull-up resistor.
To prevent the device from unintentionally entering the reset mode due to noise, minimize the distance between the RSTX pin and the Vcc or Vss pin when designing the layout of the printed circuit board.
The RSTX/PF2 pin functions as the reset input/output pin after power-on. In addition, the reset output can be enabled by the RSTOE bit of the SYSC register, and the reset input function or the general purpose I/O function can be selected by the RSTEN bit of the SYSC register.

MB95200H/210H Series

- C pin

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the Vcc pin must have a capacitance larger than Cs. For the connection to a smoothing capacitor Cs, see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and Cs and the distance between Cs and the $\mathrm{V}_{\text {ss }}$ pin when designing the layout of a printed circuit board.

> - DBG / RSTX / C pin connection diagram

MB95200H/210H Series

PROGRAMMING FLASH MEMORY MICROCONTROLLERS USING SERIAL PROGRAMMER

- Serial programmers and adapters supported

The following table shows serial programmers and adapters supported.

Package	Applicable adapter model	Serial programmer
SDIP 24	TBD	TBD
SOP 20	TBD	TBD
DIP 8	TBD	TBD
SOP 8	TBD	TBD

- Programming method

TBD

MB95200H/210H Series

BLOCK DIAGRAM (MB95200H Series)

BLOCK DIAGRAM (MB95210H Series)

MB95200H/210H Series

CPU CORE

1. Memory Space

The memory space of the MB95200H/210H Series is 64 KB in size, and consists of an I/O area, a data area, and a program area. The memory space includes areas intended for specific purposes such as general-purpose registers and a vector table. The memory maps of the MB95200H/210H Series are shown below.

I/O MAP (MB95200H Series)

Address	Register abbreviation	Register name	R/W	Initial value
0000н	PDR0	Port 0 data register	R/W	00000000в
0001н	DDR0	Port 0 direction register	R/W	00000000в
0002н	PDR1	Port 1 data register	R/W	00000000в
0003н	DDR1	Port 1 direction register	R/W	00000000в
0004н	-	(Disabled)	-	-
0005н	WATR	Oscillation stabilization wait time setting register	R/W	111111118
0006н	-	(Disabled)	-	-
0007н	SYCC	System clock control register	R/W	XXXXXX11в
0008н	STBC	Standby control register	R/W	
0009н	RSRR	Reset source register	R	ХХХХХХХХв
000Ан	TBTC	Timebase timer control register	R/W	00000000в
000Вн	WPCR	Watch prescaler control register	R/W	00000000в
000С ${ }_{\text {н }}$	WDTC	Watchdog timer control register	R/W	00000000в
000D ${ }_{\text {н }}$	SYCC2	System clock control register 2	R/W	XX100011в
$\begin{aligned} & \text { 000Ен } \\ & \text { to } \\ & 0015 \mathrm{H} \end{aligned}$	-	(Disabled)	-	-
0016н	PDR6	Port 6 data register	R/W	00000000в
0017 ${ }^{\text {¢ }}$	DDR6	Port 6 direction register	R/W	00000000в
$\begin{aligned} & \text { 0018H } \\ & \text { to } \\ & 0027 \mathrm{H} \end{aligned}$	-	(Disabled)	-	-
0028н	PDRF	Port F data register	R/W	00000000в
0029н	DDRF	Port F direction register	R/W	00000000в
002Ан	PDRG	Port G data register	R/W	00000000в
002Bн	DDRG	Port G direction register	R/W	00000000в
002CH	PUL0	Port 0 pull-up register	R/W	00000000в
$\begin{aligned} & \text { 002Dн } \\ & \text { to } \\ & 0034 \text { н } \end{aligned}$	-	(Disabled)	-	-
0035 ${ }_{\text {н }}$	PULG	Port G pull-up register	R/W	00000000в
0036н	T01CR1	8/16-bit composite timer 01 control status register 1 ch. 0	R/W	00000000в
0037 ${ }^{\text {H }}$	T00CR1	8/16-bit composite timer 00 control status register 1 ch. 0	R/W	00000000в
0038 ${ }^{\text {¢ }}$	T11CR1	8/16-bit composite timer 11 control status register 1 ch. 1	R/W	00000000в
0039н	T10CR1	8/16-bit composite timer 10 control status register 1 ch. 1	R/W	00000000в
$\begin{aligned} & \text { 003Ан } \\ & \text { to } \\ & 0048 \text { н } \end{aligned}$	-	(Disabled)	-	-
0049н	EIC10	External interrupt circuit control register ch. 2/ch. 3	R/W	00000000в

(Continued)
(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
004Ан	EIC20	External interrupt circuit control register ch. 4/ch. 5	R/W	00000000в
004Вн	EIC30	External interrupt circuit control register ch. 6/ch. 7	R/W	00000000в
$\begin{gathered} 004 \mathrm{CH}_{\mathrm{H}} \\ \text { to } \\ 004 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	-	(Disabled)	-	-
0050н	SCR	LIN-UART serial control register	R/W	00000000в
0051н	SMR	LIN-UART serial mode register	R/W	00000000в
0052н	SSR	LIN-UART serial status register	R/W	00001000в
0053н	RDR/TDR	LIN-UART reception/transmission data register	R/W	00000000в
0054н	ESCR	LIN-UART extended status control register	R/W	00000100в
0055н	ECCR	LIN-UART extended communication control register	R/W	000000XX ${ }_{\text {¢ }}$
$\begin{gathered} 0056 н \\ \text { to } \\ 006 \mathrm{~B} \boldsymbol{H} \end{gathered}$	-	(Disabled)	-	-
006С ${ }_{\text {н }}$	ADC1	8/10-bit A/D converter control register 1	R/W	00000000в
006D	ADC2	8/10-bit A/D converter control register 2	R/W	00000000в
006Ен	ADDH	8/10-bit A/D converter data register (Upper)	R/W	00000000в
006Fн	ADDL	8/10-bit A/D converter data register (Lower)	R/W	00000000в
$\begin{aligned} & \text { 0070н } \\ & \text { to } \\ & 0071 \mathrm{H} \end{aligned}$	-	(Disabled)	-	-
0072н	FSR	Flash memory status register	R/W	000X0000в
$\begin{gathered} 0073 \mathrm{H} \\ \text { to } \\ 0075 \mathrm{H} \end{gathered}$	-	(Disabled)	-	-
0076н	WREN	Wild register address compare enable register	R/W	00000000в
0077	WROR	Wild register data test setting register	R/W	00000000в
0078н	-	Mirror of register bank pointer (RP) and direct bank pointer (DP)	-	-
0079н	ILR0	Interrupt level setting register 0	R/W	11111111в
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111в
007Вн	ILR2	Interrupt level setting register 2	R/W	11111111в
007С ${ }_{\text {¢ }}$	ILR3	Interrupt level setting register 3	R/W	11111111в
007D	ILR4	Interrupt level setting register 4	R/W	11111111в
007Ен	ILR5	Interrupt level setting register 5	R/W	1111111в
007F	-	(Disabled)	-	-
0F80н	WRARH0	Wild register address setting register (Upper) ch. 0	R/W	00000000в
0F81н	WRARLO	Wild register address setting register (Lower) ch. 0	R/W	00000000в

(Continued)

MB95200H/210H Series

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0F82н	WRDR0	Wild register data setting register ch. 0	R/W	00000000в
0F83н	WRARH1	Wild register address setting register (Upper) ch. 1	R/W	00000000в
0F84н	WRARL1	Wild register address setting register (Lower) ch. 1	R/W	00000000в
0F85	WRDR1	Wild register data setting register ch. 1	R/W	00000000в
0F86н	WRARH2	Wild register address setting register (Upper) ch. 2	R/W	00000000в
0F87\%	WRARL2	Wild register address setting register (Lower) ch. 2	R/W	00000000в
0F88н	WRDR2	Wild register data setting register ch. 2	R/W	00000000в
$\begin{gathered} \text { OF89н } \\ \text { to } \\ \text { OF91н } \end{gathered}$	-	(Disabled)	-	-
0F92н	T01CR0	8/16-bit composite timer 01 control status register 0 ch. 0	R/W	00000000в
0F93н	TOOCR0	8/16-bit composite timer 00 control status register 0 ch. 0	R/W	00000000в
OF94	T01DR	8/16-bit composite timer 01 data register ch. 0	R/W	00000000в
0F95н	T00DR	8/16-bit composite timer 00 data register ch. 0	R/W	00000000в
0F96н	TMCR0	8/16-bit composite timer 00/01 timer mode control register ch. 0	R/W	00000000в
0F97\%	T11CR0	8/16-bit composite timer 11 control status register 0 ch. 1	R/W	00000000в
0F98н	T10CR0	8/16-bit composite timer 10 control status register 0 ch. 1	R/W	00000000в
0F99н	T11DR	8/16-bit composite timer 11 data register ch. 1	R/W	00000000в
0F9Ан	T10DR	8/16-bit composite timer 10 data register ch. 1	R/W	00000000в
ОF9Вн	TMCR1	8/16-bit composite timer 10/11 timer mode control register ch. 1	R/W	00000000в
$\begin{aligned} & \text { OF9CH } \\ & \text { to } \\ & \text { OFBB } \end{aligned}$	-	(Disabled)	-	-
OFBCH	BGR1	LIN-UART baud rate generator register 1	R/W	00000000в
OFBD	BGR0	LIN-UART baud rate generator register 0	R/W	00000000в
$\begin{aligned} & \text { OFBEH } \\ & \text { to } \\ & \text { OFC2н } \end{aligned}$	-	(Disabled)	-	-
0FC3н	AIDRL	A/D input disable register (Lower)	R/W	00000000в
$\begin{aligned} & \text { OFC4н } \\ & \text { to } \\ & \text { OFE3н } \end{aligned}$	-	(Disabled)	-	-
OFE4	CRTH	Main CR clock trimming register (Upper)	R/W	1XXXXXXX
0FE5	CRTL	Main CR clock trimming register (Lower)	R/W	000XXXXX

(Continued)
(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
$\begin{aligned} & \text { OFE6н } \\ & \text { to } \\ & \text { OFE7н } \end{aligned}$	-	(Disabled)	-	-
0FE8н	SYSC	System configuration register	R/W	11000011в
0FE9н	CMCR	Clock monitoring control register	R/W	ХХ000000в
0FEAн	CMDR	Clock monitoring data register	R/W	00000000в
OFEBн	WDTH	Watchdog ID register (Upper)	R/W	XXXXXXXX
OFEC ${ }_{\text {¢ }}$	WDTL	Watchdog ID register (Lower)	R/W	XXXXXXXX
OFED ${ }_{\text {¢ }}$	-	(Disabled)	-	-
OFEE,	ILSR	Input level select register	R/W	00000000в
$\begin{gathered} \hline \text { OFEFH }^{\text {to }} \\ \text { to } \\ \text { OFFFн } \end{gathered}$	-	(Disabled)	-	-

- R/W access symbols

R/W : Readable / Writable
R : Read only
W : Write only

- Initial value symbols
$0 \quad$: The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
$X \quad$: The initial value of this bit is undefined.

Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an undefined value is returned.

I/O MAP (MB95210H Series)

Address	Register abbreviation	Register name	R/W	Initial value
0000н	PDR0	Port 0 data register	R/W	00000000в
0001н	DDR0	Port 0 direction register	R/W	00000000в
0002н	PDR1	Port 1 data register	R/W	00000000в
0003н	DDR1	Port 1 direction register	R/W	00000000в
0004н	-	(Disabled)	-	-
0005н	WATR	Oscillation stabilization wait time setting register	R/W	11111111в
0006н	-	(Disabled)	-	-
0007н	SYCC	System clock control register	R/W	XXXXXX11в
0008н	STBC	Standby control register	R/W	00000XXX
0009н	RSRR	Reset source register	R	ХХХХХХХХ
000Ан	TBTC	Timebase timer control register	R/W	00000000в
000Вн	WPCR	Watch prescaler control register	R/W	00000000в
$000 \mathrm{CH}_{\text {H }}$	WDTC	Watchdog timer control register	R/W	00000000в
000D	SYCC2	System clock control register 2	R/W	XX100011в
000Ен to 0015 H	-	(Disabled)	-	-
0016н	-	(Disabled)	-	-
0017 ${ }_{\text {H }}$	-	(Disabled)	-	-
$\begin{gathered} \text { 0018H } \\ \text { to } \\ 0027 \mathrm{H} \end{gathered}$	-	(Disabled)	-	-
0028н	PDRF	Port F data register	R/W	00000000в
0029н	DDRF	Port F direction register	R/W	00000000в
002Aн	-	(Disabled)	-	-
002Вн	-	(Disabled)	-	-
002CH	PULO	Port 0 pull-up register	R/W	00000000в
$\begin{aligned} & \text { 002Dн } \\ & \text { to } \\ & 0034 \text { н } \end{aligned}$	-	(Disabled)	-	-
0035	-	(Disabled)	-	-
0036н	T01CR1	8/16-bit composite timer 01 control status register 1 ch .0	R/W	00000000в
0037	T00CR1	8/16-bit composite timer 00 control status register 1 ch .0	R/W	00000000в
0038н	-	(Disabled)	-	-
0039н	-	(Disabled)	-	-
$\begin{gathered} 003 А н \\ \text { to } \\ 0048 \mathrm{H} \end{gathered}$	-	(Disabled)	-	-
0049н	-	(Disabled)	-	-

(Continued)

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
004Ан	EIC20	External interrupt circuit control register ch. 4	R/W	00000000в
004Bн	EIC30	External interrupt circuit control register ch. 6	R/W	00000000в
$\begin{gathered} 004 \mathrm{CH}_{\mathrm{H}} \\ \text { to } \\ 004 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	-	(Disabled)	-	-
0050н	-	(Disabled)	-	-
0051н	-	(Disabled)	-	-
0052н	-	(Disabled)	-	-
0053н	-	(Disabled)	-	-
0054н	-	(Disabled)	-	-
0055	-	(Disabled)	-	-
$\begin{aligned} & \text { 0056н } \\ & \text { to } \\ & 006 \mathrm{~B} \end{aligned}$	-	(Disabled)	-	-
006C ${ }_{\text {H }}$	ADC1	8/10-bit A/D converter control register 1	R/W	00000000в
006D	ADC2	8/10-bit A/D converter control register 2	R/W	00000000в
006Ен	ADDH	8/10-bit A/D converter data register (Upper)	R/W	00000000в
006F\%	ADDL	8/10-bit A/D converter data register (Lower)	R/W	00000000в
$\begin{aligned} & \text { 0070н } \\ & \text { to } \\ & 0071 \text { н } \end{aligned}$	-	(Disabled)	-	-
0072н	FSR	Flash memory status register	R/W	000X0000в
$\begin{gathered} 0073 \mathrm{H} \\ \text { to } \\ 0075 \mathrm{H} \end{gathered}$	-	(Disabled)	-	-
0076н	WREN	Wild register address compare enable register	R/W	00000000в
0077	WROR	Wild register data test setting register	R/W	00000000в
0078н	-	Mirror of register bank pointer (RP) and direct bank pointer (DP)	-	-
0079н	ILR0	Interrupt level setting register 0	R/W	11111111B
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111B
007Вн	-	(Disabled)	-	-
$007 \mathrm{CH}_{\mathrm{H}}$	-	(Disabled)	-	-
007D	ILR4	Interrupt level setting register 4	R/W	111111118
007Ен	ILR5	Interrupt level setting register 5	R/W	111111118
007F ${ }^{\text {H }}$	-	(Disabled)	-	-
0F80н	WRARH0	Wild register address setting register (Upper) ch. 0	R/W	00000000в
0F81н	WRARLO	Wild register address setting register (Lower) ch. 0	R/W	00000000в
0F82н	WRDR0	Wild register data setting register ch. 0	R/W	00000000в

(Continued)
(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0F83н	WRARH1	Wild register address setting register (Upper) ch. 1	R/W	00000000в
0F84н	WRARL1	Wild register address setting register (Lower) ch. 1	R/W	00000000в
0F85	WRDR1	Wild register data setting register ch. 1	R/W	00000000в
0F86н	WRARH2	Wild register address setting register (Upper) ch. 2	R/W	00000000в
0F87	WRARL2	Wild register address setting register (Lower) ch. 2	R/W	00000000в
0F88н	WRDR2	Wild register data setting register ch. 2	R/W	00000000в
$\begin{aligned} & \text { OF89н } \\ & \text { to } \\ & \text { OF91н } \end{aligned}$	-	(Disabled)	-	-
0F92н	T01CR0	8/16-bit composite timer 01 control status register 0 ch. 0	R/W	00000000в
0F93н	TOOCR0	8/16-bit composite timer 00 control status register 0 ch. 0	R/W	00000000в
0F94H	T01DR	8/16-bit composite timer 01 data register ch. 0	R/W	00000000в
0F95н	T00DR	8/16-bit composite timer 00 data register ch. 0	R/W	00000000в
0F96н	TMCRO	8/16-bit composite timer 00/01 timer mode control register ch. 0	R/W	00000000в
0F97H	-	(Disabled)	-	-
0F98н	-	(Disabled)	-	-
0F99н	-	(Disabled)	-	-
ОF9Ан	-	(Disabled)	-	-
ОF9Вн	-	(Disabled)	-	-
$\begin{aligned} & \text { OF9CH } \\ & \text { to } \\ & \text { ofBBн } \end{aligned}$	-	(Disabled)	-	-
OFBCH	-	(Disabled)	-	-
OFBD ${ }_{\text {¢ }}$	-	(Disabled)	-	-
$\begin{aligned} & \text { OFBEн } \\ & \text { to } \\ & \text { OFC2н } \end{aligned}$	-	(Disabled)	-	-
0FC3н	AIDRL	A/D input disable register (Lower)	R/W	00000000в
$\begin{aligned} & \text { OFC4н } \\ & \text { to } \\ & \text { OFE3н } \end{aligned}$	-	(Disabled)	-	-
OFE4н	CRTH	Main CR clock trimming register (Upper)	R/W	1XXXXXXX
0FE5	CRTL	Main CR clock trimming register (Lower)	R/W	000XXXXX
$\begin{aligned} & \text { OFE6н } \\ & \text { to } \\ & \text { OFE7н } \end{aligned}$	-	(Disabled)	-	-
OFE8н	SYSC	System configuration register	R/W	11000011в

(Continued)
(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0FE9н	CMCR	Clock monitoring control register	R/W	XX000000в
0FEAн	CMDR	Clock monitoring data register	R/W	00000000в
0FEBн	WDTH	Watchdog timer selection ID register (Upper)	R/W	ХХХХХХХХ
0FECH	WDTL	Watchdog timer selection ID register (Lower)	R/W	ХХХХХХХХ
OFED	-	(Disabled)	-	-
0FEEн	ILSR	Input level select register	R/W	00000000в
$\begin{aligned} & \text { OFEFH } \\ & \text { to } \\ & \text { oFFFF } \end{aligned}$	-	(Disabled)	-	-

- R/W access symbols

R/W : Readable / Writable
R : Read only
W : Write only

- Initial value symbols
$0 \quad$: The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
$X \quad$: The initial value of this bit is undefined.

Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an undefined value is returned.

MB95200H/210H Series

INTERRUPT SOURCE TABLE (MB95200H Series)

INTERRUPT SOURCE TABLE (MB95210H Series)

MB95200H/210H Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 6	V	
Input voltage*1	VI	Vss - 0.3	Vss +6	V	'
Output voltage**	Vo	Vss - 0.3	Vss +6	V	2
Maximum clamp current	Iclamp	-2	+2	mA	Applicable to pins*3
Total maximum clamp current	$\Sigma \mathrm{Ilclampl}$	-	20	mA	Applicable to pins*3
"L" level maximum output current	loc1	-	15	mA	Other than P05, P06, P62 and P63*5
	loL2		15		P05, P06, P62 and P63*5
"L" level average current	lolav 1	-	4	mA	Other than P05, P06, P62 and P63 ${ }^{\circ 5}$ Average output current = operating current \times operating ratio (1 pin)
	lolav2		12		P05, P06, P62 and P63 ${ }^{45}$ Average output current = operating current \times operating ratio (1 pin)
"L" level total maximum output current	Elo	-	100	mA	
"L" level total average output current	Elolav	-	50	mA	Total average output current = operating current \times operating ratio (Total number of pins)
" H " level maximum output current	Іон1	-	-15	mA	Other than P05, P06, P62 and P63*5
	Іон2		-15		P05, P06, P62 and P63 ${ }^{\text {5 }}$
" H " level average current	Іohav 1	-	-4	mA	Other than P05, P06, P62 and P63 ${ }^{+5}$ Average output current = operating current \times operating ratio (1 pin)
	Іоhavz		-8		P05, P06, P62 and P63 ${ }^{45}$ Average output current = operating current \times operating ratio (1 pin)
" H " level total maximum output current	Σ ¢он	-	- 100	mA	
" H " level total average output current	Σ Iohav	-	- 50	mA	Total average output current = operating current \times operating ratio (Total number of pins)
Power consumption	Pd	-	320	mW	
Operating temperature	T_{A}	-40	+ 85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+ 150	${ }^{\circ} \mathrm{C}$	

*1: The parameter is based on $\mathrm{Vss}=0.0 \mathrm{~V}$.
${ }^{*} 2$: V_{1} and V_{0} must not exceed $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$. V_{1} must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the Iclamp rating is used instead of the V_{1} rating.
*3: Applicable to pins: P00 to P07, P62 to P64, PG1 to PG2, PF0, PF1*4

- Use under recommended operating conditions.
- Use with DC voltage (current).
- The HV (High Voltage) signal is an input signal exceeding the Vcc voltage. Always connect a limiting resistor between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal.
- The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient current of stationary current.
- When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage) input potential may pass through the protective diode to increase the potential of the Vcc pin, affecting other devices.
- If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power is supplied from the pins, incomplete operations may be executed.
- If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power supply may not be sufficient to enable a power-on reset.
- Do not leave the HV (High Voltage) input pin unconnected.
- Example of a recommended circuit :

*4: P00 to P03, P07, P62 to P64, PG1 to PG2, PF0 and PF1 are available in MB95F204H/F203H/F202H/F204K/ F203K/F202K.
*5: P62 and P63 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.

WARNING: A semiconductor device may be damaged by applying stress (voltage, current, temperature, etc.) in excess of the absolute maximum rating. Therefore, ensure that not a single parameter exceeds its absolute maximum rating.

2. Recommended Operating Conditions

$(\mathrm{Vss}=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks	
		Min	Max			
Power supply voltage	Vcc	$2.4{ }^{* 1 * 2}$	5.5*1	V	In normal operation	Other than on-chip debug mode
		2.3	5.5		Hold condition in stop mode	
		2.7	5.5		In normal operation	On-chip debug mode
		2.3	5.5		Hold condition in stop mode	
Smoothing capacitor	Cs	0.022	1	$\mu \mathrm{F}$	*	
Operating temperature	TA	- 40	+ 85	${ }^{\circ} \mathrm{C}$	Without the on-chip debug function	
		+ 5	+ 35		With the on-chip debug function	

*1: The value varies depending on the operating frequency, the machine clock and the analog guaranteed range.
*2: The value is 2.88 V when the low-voltage detection reset is used.
*3: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the Vcc pin must have a capacitance larger than Cs. For the connection to a smoothing capacitor Cs , see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and Cs and the distance between Cs and the V ss pin when designing the layout of a printed circuit board.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the electrical characteristics of the device are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact sales representatives beforehand.

MB95200H/210H Series

3. DC Characteristics

$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
" H " level input voltage	$\mathrm{V}_{\text {HH }}$	P04	*1	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	When CMOS input level (hysteresis input) is selected
	$\mathrm{V}_{\text {Ifs }}$	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P12, } \\ & \text { P62 to P64, } \\ & \text { PF0 to PF1, } \\ & \text { PG1 to PG2 } \end{aligned}$	*1	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	Hysteresis input
	Vінм	PF2	-	0.7 Vcc	-	$\mathrm{V} \mathrm{cc}+0.3$	V	Hysteresis input
"L" level input voltage	VIL	P04	*1	Vss - 0.3	-	0.3 Vcc	V	When CMOS input level (hysteresis input) is selected
	Vııs	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P12, } \\ & \text { P62 to P64, } \\ & \text { PF0 to PF1, } \\ & \text { PG1 to PG2 } \end{aligned}$	*1	Vss - 0.3	-	0.2 Vcc	V	Hysteresis input
	VILm	PF2	-	Vss - 0.3	-	0.3 Vcc	V	Hysteresis input
Open-drain output application voltage	V	PF2, P12	-	Vss - 0.3	-	0.2 Vcc	V	
"H" level output voltage	Vor1	Output pins other than P05, P06, P62, P63, PF2 and P12 ${ }^{2}$	$\mathrm{IoH}=-4 \mathrm{~mA}$	Vcc-0.5	-	-	V	
	Voh2	$\begin{aligned} & \text { P05, P06, P62, } \\ & \text { P63² } \end{aligned}$	$\mathrm{IoH}=-8 \mathrm{~mA}$	Vcc-0.5	-	-	V	
"L" level output voltage	Vol1	Output pins other than P05, P06, P62 and P63 ${ }^{2}$	$\mathrm{loL}=4 \mathrm{~mA}$	-	-	0.4	V	
	Vol2	$\begin{aligned} & \text { P05, P06, P62, } \\ & \text { P63 }^{22} \end{aligned}$	$\mathrm{loL}=12 \mathrm{~mA}$	-	-	0.4	V	
Input leak current (Hi-Z output leak current)	lı	All input pins	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}}$	- 5	-	+ 5	$\mu \mathrm{A}$	When pull-up resistance is disabled
Pull-up resistance	Rpull	P00 to P07, PG1, PG2 ${ }^{3}$	$\mathrm{V}_{1}=0 \mathrm{~V}$	25	50	100	k Ω	When pull-up resistance is enabled
Input capacitance	Cin	Other than Vcc and V_{ss}	$\mathrm{f}=1 \mathrm{MHz}$	-	5	15	pF	

MB95200H/210H Series

*1: The input level of P04 can be switched between "CMOS input level" and "hysteresis input level". The input level selection register (ILSR) is used to switch between the two input levels.
*2: P62 and P63 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.
*3: P00 to P03, P07, PG1 and PG2 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.

MB95200H/210H Series

(Continued)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current ${ }^{* 4}$	Icc	Vcc (External clock operation)	$\begin{aligned} & V_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~F}_{\mathrm{CH}}=32 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=16 \mathrm{MHz} \\ & \text { Main clock mode } \\ & \text { (divided by 2) } \end{aligned}$	-	13	17	mA	Flash memory product (except writing and erasing)
				-	33.5	39.5	mA	Flash memory product (at writing and erasing)
				-	15	21	mA	At A/D conversion
	Iccs		$\begin{array}{\|l} \hline V_{\mathrm{cc}}=5.5 \mathrm{~V} \\ \mathrm{~F}_{\mathrm{CH}}=32 \mathrm{MHz} \\ \mathrm{~F}_{\mathrm{MP}}=16 \mathrm{MHz} \\ \text { Main sleep mode } \\ \text { (divided by 2) } \end{array}$	-	5.5	9	mA	
	Iccl		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~F}_{\mathrm{L}}=32 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{MPL}}=16 \mathrm{kHz} \\ & \text { Subclock mode } \\ & \text { (divided by 2) } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	65	153	$\mu \mathrm{A}$	
	Iccıs		$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$ $\mathrm{F}_{\mathrm{cL}}=32 \mathrm{kHz}$ $\mathrm{F}_{\mathrm{MPL}}=16 \mathrm{kHz}$ Subsleep mode (divided by 2) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	10	84	$\mu \mathrm{A}$	

(Continued)

MB95200H/210H Series

(Continued)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current ${ }^{\star 4}$	Ісст	Vcc (External clock operation)	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$ $\mathrm{F}_{\mathrm{cL}}=32 \mathrm{kHz}$ Watch mode Main stop mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	5	30	$\mu \mathrm{A}$	
	Ісcmcr		$\begin{aligned} & \hline V_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~F}_{\mathrm{CRH}}=12.5 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=12.5 \mathrm{MHz} \\ & \text { Main CR clock } \\ & \text { mode } \end{aligned}$	-	10	13.2	mA	
	Iccscr		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{FcL}^{2}=32 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{MPL}}=16 \mathrm{kHz} \\ & \text { Sub-CR clock } \\ & \text { mode } \\ & \text { (divided by 2) } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	110	410	$\mu \mathrm{A}$	
	Iccts		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~F}_{\mathrm{CH}}=32 \mathrm{MHz} \end{aligned}$ Timebase timer mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	1.1	3	mA	
	Ic ch		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \text { Substop mode } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	3.5	22.5	$\mu \mathrm{A}$	Main stop mode for single clock selection
	Ivv	Vcc	Current consumption for low-voltage detection circuit only	-	37	54	$\mu \mathrm{A}$	
	Ісrн		Current consumption for the internal main CR oscillator oscillating at 12.5 MHz	-	0.5	0.6	mA	
	Icrl		Current consumption for the internal sub-CR oscillator oscillating at 100 kHz	-	20	72	$\mu \mathrm{A}$	

*4: • The power supply current is determined by the external clock. When the low-voltage detection option is selected, the power-supply current will be the sum of adding the current consumption of the low-voltage detection circuit (lıvo) to a specified value. In addition, when both the low-voltage detection option and the internal CR oscillator are selected, the power supply current will be the sum of adding up the current con-

MB95200H/210H Series

sumption of the low-voltage detection circuit, the current consumption of the internal CR oscillators (Icre, Icrl) and a specified value. In on-chip debug mode, the internal CR oscillator (Iсвн) and the low-voltage detection circuit are always enabled, and current consumption therefore increases accordingly.

- See "4. AC Characteristics: (1) Clock Timing" for Fсн and Fcl.
- See "4. AC Characteristics: (2) Source Clock/Machine Clock" for Fmp and Fmpı.

MB95200H/210H Series

4. AC Characteristics

(1) Clock Timing
$\left(\mathrm{Vcc}=2.4 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	Fch	X0, X1	-	1	-	16.25	MHz	When the main oscillation circuit is used
		X0, HCLK1, HCLK2	X1 open	1	-	12	MHz	When the main external clock is used
		$\begin{aligned} & \mathrm{X0}, \mathrm{X1}, \\ & \text { HCLK1, } \\ & \text { HCLK2 } \end{aligned}$	-	1	-	32.5	MHz	
	Fcrh	-	-	12.25	12.5	12.75	MHz	When the main internal clock is used
				9.8	10	10.2	MHz	
				7.84	8	8.16	MHz	
				0.98	1	1.02	MHz	
	FcL	X0A, X1A	-	-	32.768	-	kHz	When the main oscillation circuit is used
				-	32.768	-	kHz	When the sub-external clock is used
	Fcrl	-	-	50	100	200	kHz	When the sub-internal CR clock is used
Clock cycle time	thcyl	X0, X1	-	61.5	-	1000	ns	When the main oscillation circuit is used
		X0, HCLK1, HCLK2	X1 open	83.4	-	1000	ns	When the external clock is used
		$\begin{aligned} & \hline \mathrm{X0}, \mathrm{X1}, \\ & \text { HCLK1, } \\ & \text { HCLK2 } \end{aligned}$	-	30.8	-	1000	ns	
	tLCYL	X0A, X1A	-	-	30.5	-	$\mu \mathrm{s}$	When the subclock is used
Input clock pulse width	twh 1 twL1	X0, HCLK1, HCLK2	X1 open	33.4	-	-	ns	When the external clock is used, the duty ratio should range between 40% and 60\%.
		$\begin{aligned} & \hline \mathrm{XO}, \mathrm{X1}, \\ & \text { HCLK1, } \\ & \text { HCLK2 } \end{aligned}$	-	12.4	-	-	ns	
	twh2 twL2	XOA	-	-	15.2	-	$\mu \mathrm{s}$	

MB95200H/210H Series

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Input clock rise time and fall time	$\begin{aligned} & \text { tcR } \\ & \text { tcF } \end{aligned}$	X0, HCLK1, HCLK2	X1 open	-	-	5	ns	When the external clock is
		$\begin{aligned} & \text { X0, X1 } \\ & \text { HCLK1, } \\ & \text { HCLK2 } \end{aligned}$	-	-	-	5	ns	used
Internal CR oscillation start time	tcrhwk	-	-	-	-	80	$\mu \mathrm{s}$	When the main internal CR clock is used
	tcrlwk	-	-	-	-	10	$\mu \mathrm{s}$	When the sub-internal CR clock is used

- Figure of main clock input port external connection

When a crystal oscillator or When the external clock is used When the external clock is used a ceramic oscillator is used (X 1 is open)

- Figure of subclock input port external connection

When a crystal oscillator or When the external clock is used a ceramic oscillator is used

(2) Source Clock/Machine Clock

$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value			Unit	Remarks

*1: This is the clock before it is divided according to the division ratio set by the machine clock division ratio selection bits (SYCC : DIV1 and DIVO) . This source clock is divided to become a machine clock according to the division ratio set by the machine clock division ratio selection bits (SYCC : DIV1 and DIVO). In addition, a source clock can be selected from the following.

- Main clock divided by 2
- Main CR clock
- Subclock divided by 2
- Sub-CR clock divided by 2
*2: This is the operating clock of the microcontroller. A machine clock can be selected from the following.
- Source clock (no division)
- Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16

- Operating voltage - Operating frequency (When $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)
> MB95200H/210H (without the on-chip debug function)

- Operating voltage - Operating frequency (When $\mathrm{T}_{\mathrm{A}}=+5^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$)
~ MB95200H/210H (with the on-chip debug function)

MB95200H/210H Series

(3) External Reset

$$
\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
RSTX "L" level pulse width	trstı	2 tmсLк*1	-	ns	In normal operation
		Oscillation time of the oscillator*2 +100	-	$\mu \mathrm{s}$	In stop mode, subclock mode, sub-sleep mode, and watch mode
		100	-	$\mu \mathrm{s}$	In timebase timer mode

*1: See " (2) Source Clock/Machine Clock" for tмськ.
*2 : The oscillation time of an oscillator is the time that the amplitude reaches 90%. The crystal oscillator has an oscillation time of between several ms and tens of ms . The ceramic oscillator has an oscillation time of between hundreds of $\mu \mathrm{s}$ and several ms. The external clock has an oscillation time of 0 ms . The CR oscillator clock has an oscillation time of between several $\mu \mathrm{s}$ and several ms.

MB95200H/210H Series

(4) Power-on Reset

(Vss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Condition	Value		Remarks	
			Min	Max		
Power supply rising time	t_{R}	-	-	50	ms	
Power supply cutoff time	toff	-	1	-	ms	Wait time until power-on

Note: A sudden change of power supply voltage may activate the power-
on reset function. When changing the power supply voltage during
the operation, set the slope of rising to within $30 \mathrm{mV} / \mathrm{ms}$ as shown
below.

MB95200H/210H Series

(5) Peripheral Input Timing

Parameter	Symbol	Pin name	Value		Unit
			Min	Max	
Peripheral input " H " pulse width	tıı!	INT02 to INT07, EC0, EC1*2	2 tmack ${ }^{\text {+ }}$	-	ns
Peripheral input "L" pulse width	thıl		2 tmack ${ }^{\text {+1 }}$	-	ns

*1 : See " (2) Source Clock/Machine Clock" for tmсLк.
*2 : INT02, INT03, INT05, INT07 and EC1 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.

(6) LIN-UART Timing (Available in MB95F204H/F203H/F202H/F204K/F203K/F202K only)

Sampling is executed at the rising edge of the sampling clock*1, and serial clock delay is disabled ${ }^{\star 2}$.
(ESCR register : SCES bit = 0, ECCR register : SCDE bit = 0)
$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCK	Internal clock operation output pin: $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$	5 tmсLк*3	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslovi	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \uparrow	tivshi	SCK, SIN		tмськ ${ }^{* 3}+190$	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshl\|x	SCK, SIN		0	-	ns
Serial clock "L" pulse width	tsLsh	SCK	External clock operation output pin: $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$	3 tmсLк $^{* 3}-\mathrm{tr}^{\text {d }}$	-	ns
Serial clock "H" pulse width	tshsL	SCK		tмськ ${ }^{* 3}+95$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslove	SCK, SOT		-	2 tмськ $^{* 3}+95$	ns
Valid SIN \rightarrow SCK \uparrow	tivshe	SCK, SIN		190	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tsHIXE	SCK, SIN		tıcık ${ }^{* 3}+95$	-	ns
SCK fall time	t_{F}	SCK		-	10	ns
SCK rise time	t_{R}	SCK		-	10	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.
*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.
*3: See " (2) Source Clock/Machine Clock" for tmclk.

Sampling is executed at the falling edge of the sampling clock ${ }^{\star 1}$, and serial clock delay is disabled**. (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0)

			($\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$,	$0.0 \mathrm{~V}, \mathrm{~T}$	$-40^{\circ} \mathrm{C}$ to	(
				Va	ue	
			(Min	Max	
Serial clock cycle time	tscyc	SCK		5 tmсLk $^{* 3}$	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	tshovi	SCK, SOT	Internal clock	-95	+95	ns
Valid SIN \rightarrow SCK \downarrow	tivsLı	SCK, SIN	$C L=80 \mathrm{pF}+1 \mathrm{TTL}$	tmcLk $^{* 3}+190$	-	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tstixı	SCK, SIN		0	-	ns
Serial clock "H" pulse width	tshsL	SCK		$3 \mathrm{tmcLk}^{* 3}-\mathrm{tr}_{\text {R }}$	-	ns
Serial clock "L" pulse width	tsLsh	SCK		tmсLk $^{* 3}+95$	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	tshove	SCK, SOT	External clock	-	2 tıcLk $^{* 3}+95$	ns
Valid SIN \rightarrow SCK \downarrow	tivsle	SCK, SIN	operation output pin :	190	-	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tsclixe	SCK, SIN	$\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$	tmсLк $^{* 3}+95$	-	ns
SCK fall time	t_{F}	SCK		-	10	ns
SCK rise time	t_{R}	SCK		-	10	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.
*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.
*3: See " (2) Source Clock/Machine Clock" for tmack.

MB95200H/210H Series

Sampling is executed at the rising edge of the sampling clock ${ }^{\star 1}$, and serial clock delay is enabled*2. (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	tscrc	SCK	Internal clock operation output pin :$\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$	5 tмськ*3	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	tshovi	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \downarrow	tivsul	SCK, SIN		Амсцк ${ }^{\text {* }}+190$	-	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tslıx	SCK, SIN		0	-	ns
SOT \rightarrow SCK \downarrow delay time	tsovı	SCK, SOT		-	4 tmclk* ${ }^{\text {a }}$	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.
*2: The serial clock delay function is a function that delays the output signal of the serial clock for half clock.
*3: See " (2) Source Clock/Machine Clock" for tmclk.

MB95200H/210H Series

Sampling is executed at the falling edge of the sampling clock ${ }^{* 1}$, and serial clock delay is enabled ${ }^{\star 2}$. (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	tscrc	SCK	Internal clock operating output pin :$\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}+1 \mathrm{TTL}$	5 tмськ*3	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslovi	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \uparrow	tivshi	SCK, SIN		tmcık ${ }^{\text {* }}+190$	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshl\|x	SCK, SIN		0	-	ns
SOT \rightarrow SCK \uparrow delay time	tsover	SCK, SOT		-	4 tmclk* ${ }^{\text {a }}$	ns

*1:There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.
*2: The serial clock delay function is a function that delays the output signal of the serial clock for half clock.
*3: See " (2) Source Clock/Machine Clock" for tmclk.

(7) Low-voltage Detection

Parameter	Symbol	$\left(\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)				
		Value			Unit	Remarks
		Min	Typ	Max		
Release voltage	Vol+	2.52	2.7	2.88	V	At power supply rise
Detection voltage	VdL-	2.42	2.6	2.78	V	At power supply fall
Hysteresis width	V HYS	70	100	-	mV	
Power supply start voltage	Voff	-	-	2.3	V	
Power supply end voltage	Von	4.9	-	-	V	
Power supply voltage change time (at power supply rise)	tr	1	-	-	$\mu \mathrm{s}$	Slope of power supply that the reset release signal generates
		-	3000	-	$\mu \mathrm{s}$	Slope of power supply that the reset release signal generates within the rating (Vol+)
Power supply voltage change time (at power supply fall)	tit	300	-	-	$\mu \mathrm{s}$	Slope of power supply that the reset detection signal generates
		-	300	-	$\mu \mathrm{s}$	Slope of power supply that the reset detection signal generates within the rating (VoL-)
Reset release delay time	td	-	-	300	$\mu \mathrm{s}$	
Reset detection delay time	td2	-	-	20	$\mu \mathrm{s}$	

MB95200H/210H Series

5. A/D Converter

(1) A/D Converter Electrical Characteristics
$\left(\mathrm{V} \mathrm{cc}=4.0 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
Resolution	-	-	-	10	bit	
Total error		-3	-	+ 3	LSB	
Linearity error		-2.5	-	+2.5	LSB	
Differential linear error		-1.9	-	+1.9	LSB	
Zero transition voltage	Vot	Vss - 1.5 LSB	Vss + 0.5 LSB	Vss + 2.5 LSB	V	
Full-scale transition voltage	$V_{\text {fst }}$	Vcc-4.5 LSB	Vcc-2 LSB	$\mathrm{Vcc}+0.5 \mathrm{LSB}$	V	
Compare time	-	0.9	-	16500	$\mu \mathrm{s}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
		1.8	-	16500	$\mu \mathrm{s}$	$4.0 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$
Sampling time	-	0.6	-	∞	$\mu \mathrm{s}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$, with external impedance < $5.4 \mathrm{k} \Omega$
		1.2	-	∞	$\mu \mathrm{s}$	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 4.5 \mathrm{~V}, \\ & \text { with external } \\ & \text { impedance }<2.4 \mathrm{k} \Omega \end{aligned}$
Analog input current	Iain	-0.3	-	+ 0.3	$\mu \mathrm{A}$	
Analog input voltage	$V_{\text {AIN }}$	Vss	-	Vcc	V	

MB95200H/210H Series

(2) Notes on Using the A/D Converter

- External impedance of analog input and its sampling time

- The A/D converter has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A / D conversion precision. Therefore, to satisfy the A / D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.
- Analog input equivalent circuit

Note: The values are reference values.

- Relationship between external impedance and minimum sampling time

- A/D conversion error

As IVcc - Vssl decreases, the A/D conversion error increases proportionately.

MB95200H/210H Series

(3) Definitions of A/D Converter Terms

- Resolution

It indicates the level of analog variation that can be distinguished by the A/D converter.
When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$.

- Linearity error (unit : LSB)

It indicates how much an actual conversion value deviates from the straight line connecting
the zero transition point ("00 00000000 " $\leftarrow \rightarrow$ "00 00000001 ") of a device to the full-scale transition point ("11 1111 1111" $\leftarrow \rightarrow$ "11 1111 1110") of the same device.

- Differential linear error (unit : LSB)

It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value.

- Total error (unit: LSB)

It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise.

(Continued)
(Continued)

MB95200H/210H Series

6. Flash Memory Program/Erase Characteristics

Parameter	Value			Unit	Remarks	
	Min	Typ	Max			
Chip erase time	-	$1^{* 1}$	$15^{* 2}$	s	OOH programming time prior to erasure is excluded.	
Byte programming time	-	32	3600	$\mu \mathrm{~s}$	System-level overhead is excluded.	
Erase/program voltage	9.5	10	10.5	V	The erase/program voltage must be applied to the RSTX pin in erase/program.	
Erase/program cycle	-	100000	-	cycle		
Power supply voltage at erase/ program	4.5	-	5.5	V		
Flash memory data retention time	$20^{\star 3}$	-	-	year	Average $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	

*1: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, 100000$ cycles
*2: $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Vc}=4.5 \mathrm{~V}, 100000$ cycles
*3: This value is converted from the result of a technology reliability assessment. (The value is converted from the result of a high temperature accelerated test by using the Arrhenius equation with the average temperature being $+85^{\circ} \mathrm{C}$).

MASK OPTIONS

No.	Part Number	MB95F204H MB95F203H MB95F202H MB95F214H MB95F213H MB95F212H	MB95F204K MB95F203K MB95F202K MB95F214K MB95F213K MB95F212K
	Selection Method	Setting disabled	Setting disabled
1	Low-voltage detection reset - With low-voltage detection reset - Without low-voltage detection reset	Without low-voltage detection reset	With low-voltage detection reset
2	Reset - With dedicated reset input - Without dedicated reset input	With dedicated reset input	Without dedicated reset input

ORDERING INFORMATION

Part Number	Package
MB95F204HP-G-SH-SNE2	
MB95F204KP-G-SH-SNE2	24-pin plastic SDIP
MB95F203HP-G-SH-SNE2	24-1
MB95F203KP-G-SH-SNE2	(DIP-24P-M07)
MB95F202HP-G-SH-SNE2	
MB95F202KP-G-SH-SNE2	
MB95F204HPF-G-SNE2	
MB95F204KPF-G-SNE2	20-pin plastic SOP
MB95F203HPF-G-SNE2	(FPT-20P-M09)
MB95F203KPF-G-SNE2	
MB95F202HPF-G-SNE2	
MB95F202KPF-G-SNE2	
MB95F214HPH-G-SNE2	
MB95F214KPH-G-SNE2	8-pin plastic DIP
MB95F213HPH-G-SNE2	(DIP-8P-M03)
MB95F213KPH-G-SNE2	
MB95F212HPH-G-SNE2	
MB95F212KPH-G-SNE2	
MB95F214HPF-G-SNE2	
MB95F214KPF-G-SNE2	8-pin plastic SOP
MB95F213HPF-GSNE2	(FPT-8P-M08)
MB95F213KPF-G-SNE2	
MB95F212HPF-G-SNE2	
MB95F212KPF-G-SNE2	

MB95200H/210H Series

PACKAGE DIMENSIONS

24-pin plastic DIP	Lead pitch	1.778 mm
Package width \times package length	$6.40 \mathrm{~mm} \times 22.86 \mathrm{~mm}$	
Sealing method	Plastic mold	
Mounting height	4.80 mm Max	
(DIP-24P-M07)		

Please check the latest package dimensions at the following URL. http://edevice.fujitsu.com/package/en-search/
(Continued)

20-pin plastic SOP	Lead pitch	1.27 mm
	Package width \times package length	$7.50 \mathrm{~mm} \times 12.70 \mathrm{~mm}$
	Lead shape	Gullwing
	Lead bend direction	Normal bend
	Sealing method	Plastic mold
	Mounting height	2.65 mm Max
(FPT-20P-M09)		

Please check the latest package dimensions at the following URL. http://edevice.fujitsu.com/package/en-search/
(Continued)

MB95200H/210H Series

(Continued)

8-pin plastic DIP	Lead pitch	2.54 mm
	Sealing method	Plastic mold
(DIP-8P-M03)		

8-pin plastic DIP
(DIP-8P-M03)

Dimensions in mm (inches).
Note: The values in parentheses are reference values
© 2006-2008 FUJITSU MICROELECTRONICS LIMITED D08008S-c.1-3

Please check the latest package dimensions at the following URL.
http://edevice.fujitsu.com/package/en-search/
(Continued)

MB95200H/210H Series

(Continued)

8-pin plastic SOP	Lead pitch	1.27 mm
Package width \times package length	$5.30 \mathrm{~mm} \times 5.24 \mathrm{~mm}$	
Lead shape	Gulling	
Lead bend direction	Normal bend	
Sealing method	Plastic mold	
Mounting height	2.10 mm Max	

8-pin plastic SOP
(FPT-8P-M08)

保

Dimensions in mm (inches).
Note: The values in parentheses are reference values.
Note 1) Pins width and pins thickness include plating thickness.
Note 2) Pins width do not include tie bar cutting remainder. Note 3) \# : These dimensions do not include resin protrusion.

Please check the latest package dimensions at the following URL. http://edevice.fujitsu.com/package/en-search/

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku,
Tokyo 163-0722, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3387
http://jp.fujitsu.com/fml/en/
For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC.
1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH
Pittlerstrasse 47, 63225 Langen,
Germany
Tel: +49-6103-690-0 Fax: +49-6103-690-122
http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD.
206 KOSMO TOWER, 1002 Daechi-Dong,
Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
http://www.fmk.fujitsu.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD.
151 Lorong Chuan, \#05-08 New Tech Park, Singapore 556741
Tel: +65-6281-0770 Fax: +65-6281-0220
http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.
Rm.3102, Bund Center, No. 222 Yan An Road(E), Shanghai 200002, China
Tel: +86-21-6335-1560 Fax: +86-21-6335-1605
http://cn.fujitsu.com/fmc/
FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.
10/F., World Commerce Centre, 11 Canton Road
Tsimshatsui, Kowloon
Hong Kong
Tel: +852-2377-0226 Fax: +852-2376-3269
http://cn.fujitsu.com/fmc/tw

All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

