8-bit Proprietary Microcontrollers

CMOS

F^{2} MC-8FX MB95100A Series

MB95107A/F108AS/F108AW/R107A/D108AS/ MB95D108AW/FV100B-101

■ DESCRIPTION

The MB95100A series is general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions.

■ FEATURE

- F²MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions
- 16-bit arithmetic operations
- Bit test branch instruction
- Bit manipulation instructions etc.
- Clock
- Main clock
- Main PLL clock
- Sub clock (for dual clock product)
- Sub PLL clock (for dual clock product)
(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

[^0]"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

MB95100A Series

(Continued)

- Timer
- 8/16-bit compound timer $\times 2$ channels
- 16-bit reload timer
- 8/16-bit PPG $\times 2$ channels
- 16 -bit PPG $\times 2$ channels
- Timebase timer
- Watch prescaler (for dual clock product)
- FRAM

2K bytes FRAM is loaded (MB95R107A/MB95D108AS/MB95D108AW only)

- LIN-UART
- Full duplex double buffer
- Clock asynchronous or clock synchronous serial data transfer capable
- UART/SIO
- Full duplex double buffer
- Clock asynchronous or clock synchronous serial data transfer capable
- ${ }^{2} \mathrm{C}^{*}$

Built-in wake-up function

- External interrupt
- Interrupt by edge detection (rising, falling, or both edges can be selected)
- Can be used to recover from low-power consumption (standby) modes.
- 8/10-bit A/D converter

8 -bit or 10-bit resolution can be selected.

- Low-power consumption (standby) mode
- Stop mode
- Sleep mode
- Watch mode (for dual clock product)
- Timebase timer mode
- I/O port
- The number of maximum ports
- Single clock product : 55 ports
- Dual clock product : 53 ports
- Port configuration
- General-purpose I/O ports (N-ch open drain) : 6 ports
- General-purpose I/O ports (CMOS) : Single-clock product : 49 ports Dual-clock product : 47 ports
*: Purchase of Fujitsu $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use, these components in an $I^{2} \mathrm{C}$ system provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips.

MB95100A Series

- PRODUCT LINEUP

	Part number rameter	MB95107A	MB95F108AS/ MB95F108AW	MB95R107A ${ }^{* 3}$	MB95D108AS/ MB95D108AW
Type		MASK ROM product	Flash memory product	MASK ROM product	Flash memory product
ROM capacity		48K bytes	60K bytes	48K bytes	60K bytes
RAM capacity		2 K bytes			
FRAM capacity		No		2K bytes	
Reset output		No			
	Clock system	Selectable Single/Dual clock*1	Single/Dual clock*2	Selectable Single/Dual clock* ${ }^{* 1}$	Single/Dual clock*2
	Low voltage detection reset	No			
CPU functions		Number of basic instructions $: 136$ Instruction bit length $: 8$ bits Instruction length $: 1$ to 3 bytes Data bit length $: 1,8$, and 16 bits Minimum instruction execution time $: 0.1 \mu \mathrm{~s}$ (at machine clock frequency 10 MHz) Interrupt processing time $: 0.9 \mu \mathrm{~s}$ (at machine clock frequency 10 MHz)			
	General purpose I/O ports	- Single clock product : 55 ports (N-ch open drain : 6 ports, CMOS : 49 ports) - Dual clock product : 53 ports (N-ch open drain : 6 ports, CMOS : 47 ports)			
	Timebase timer	Interrupt cycle : $0.5 \mathrm{~ms}, 2.1 \mathrm{~ms}, 8.2 \mathrm{~ms}, 32.8 \mathrm{~ms}$ (at main oscillation clock 4 MHz)			
	Watchdog timer	Reset generated cycle At main oscillation clock 10 MHz Min 105 ms At sub oscillation clock 32.768 kHz (for dual clock product) : Min 250 ms			
	Wild register	Capable of replacing 3 bytes of ROM data			
	${ }^{12} \mathrm{C}$	Master/slave sending and receiving Bus error function and arbitration function Detecting transmitting direction function Start condition repeated generation and detection functions Built-in wake-up function			
	UART/SIO	Data transfer capable in UART/SIO Full duplex double buffer, Variable data length (5/6/7/8-bit), built-in baud rate generator Transfer rate : 2400 bps to 1250000 bps (at machine clock 10 MHz) NRZ type transfer format, error detected function LSB-first or MSB-first can be selected. Clock synchronous (SIO) or clock asynchronous (UART) serial data transfer capable			
	LIN-UART	Dedicated reload timer allowing a wide range of communication speeds to be set. Full duplex double buffer. Capable of serial data transfer synchronous or asynchronous to clock signal. LIN functions available as the LIN master or LIN slave.			

(Continued)

MB95100A Series

(Continued)

Part number		MB95107A Parameter	MB95F108AS/ MB95F108AW

*1 : Specify clock mode when ordering MASK ROM.
*2 : MB95F108AS/MB95D108AS is single clock and MB95F108AW/MB95D108AW is dual clock.
*3 : This device is under development.
*4 : For details of option, refer to "■ MASK OPTION".
Note : Part number of the evaluation device in MB95100A series is MB95FV100B-101. When using it, the MCU board (MB2146-301) is required.

MB95100A Series

■ SELECT OF OSCILLATION STABILIZATION WAIT TIME (MASK ROM PRODUCT ONLY)
For the MASK ROM product, you can set the mask option when ordering MASK ROM to select the initial value of main clock oscillation stabilization wait time from among the following four values.
Note that the evaluation and Flash memory products are fixed their initial value of main clock oscillation stabilization wait time at the maximum value.

Select of oscillation stabilization wait time	Remarks
$\left(2^{2}-2\right) / F_{C H}$	$0.5 \mu \mathrm{~s}$ (at main oscillation clock 4 MHz$)$
$\left(2^{12}-2\right) / \mathrm{F}_{\mathrm{CH}}$	Approx. 1.02 ms (at main oscillation clock 4 MHz$)$
$\left(2^{13}-2\right) / \mathrm{F}_{\mathrm{CH}}$	Approx. 2.05 ms (at main oscillation clock 4 MHz$)$
$\left(2^{14}-2\right) / \mathrm{F}_{\mathrm{CH}}$	Approx. 4.10 ms (at main oscillation clock 4 MHz$)$

PACKAGES AND CORRESPONDING PRODUCTS

Part number	MB95107A MB95R107A	MB95F108AS MB95D108AS	MB95F108AW MB95D108AW	MB95FV100B-101
Package				

\bigcirc : Available
\times : Unavailable

MB95100A Series

DIFFERENCES AMONG PRODUCTS AND NOTES ON SELECTING PRODUCTS

- Notes on Using Evaluation Products

The evaluation product has not only the functions of the MB95100A series but also those of other products to support software development for multiple series and models of the $\mathrm{F}^{2} \mathrm{MC}-8 \mathrm{FX}$ family. The I/O addresses for peripheral resources not used by the MB95100A series are therefore access-barred. Read/write access to these access-barred addresses may cause peripheral resources supposed to be unused to operate, resulting in unexpected malfunctions of hardware or software.
Particularly, do not use word access to odd numbered byte address in the prohibited areas (If these access are used, the address may be read or written unexpectedly).

Note that the values read from barred addresses are different between the evaluation product and the Flash memory or MASK ROM product. Therefore, the data must not be used for software processing.
The evaluation product do not support the functions of some bits in single-byte registers. Read/write access to these bits does not cause hardware malfunctions. The evaluation, Flash memory, and MASK ROM products are designed to behave completely the same way in terms of hardware and software.

- Difference of Memory Spaces

If the amount of memory on the evaluation product is different from that of the Flash memory or MASK ROM product, carefully check the difference in the amount of memory from the model to be actually used when developing software.
For details of memory space, refer to "■ CPU CORE".

- Current Consumption

The current consumption of Flash memory product is greater than for MASK ROM product.
For details of current consumption, refer to "■ ELECTRICAL CHARACTERISTICS".

- Package

For details of information on each package, refer to "■ PACKAGES AND CORRESPONDING PRODUCTS" and "■ PACKAGE DIMENSIONS".

- Operating voltage

The operating voltage are different among the evaluation, Flash memory, and MASK ROM products.
For details of operating voltage, refer to "■ ELECTRICAL CHARACTERISTICS".

- Difference between RST and MOD pins

The input type of $\overline{\text { RST }}$ and MOD pins is CMOS input on the Flash memory product. The $\overline{\mathrm{RST}}$ and MOD pins are hysteresis inputs on the MASK ROM product. A pull - down resistor is provided for the MOD pin of the MASK ROM product.

MB95100A Series

PIN ASSIGNMENT

(FPT-64P-M03, FPT-64P-M09)
*1 : Single clock product is general-purpose port, and dual clock product is sub clock oscillation pin.
*2 : P50 and P51 cannot be used in MB95R107A, MB95D108AS, and MB95D108AW.

MB95100A Series

PIN DESCRIPTION

Pin no.	Pin name	$\begin{gathered} \text { I/O } \\ \begin{array}{c} \text { circuit } \\ \text { type* } \end{array} \end{gathered}$	Function
1	AV ${ }_{\text {cc }}$	-	A/D converter power supply pin
2	AVR	-	A/D converter reference input pin
3	PE3/INT13	P	General-purpose I/O port The pins are shared with the external interrupt input.
4	PE2/INT12		
5	PE1/INT11		
6	PE0/INT10		
7	P83	0	General-purpose I/O port
8	P82		
9	P81		
10	P80		
11	P71/TI0	H	General-purpose I/O port. The pin is shared with 16 - bit reload timer ch. 0 input.
12	P70/TO0		General-purpose I/O port. The pin is shared with 16 - bit reload timer ch. 0 output.
13	MOD	B	An operating mode designation pin
14	X0	A	Main clock input oscillation pin
15	X1		Main clock input/output oscillation pin
16	Vss	-	Power supply pin (GND)
17	Vcc	-	Power supply pin
18	PG0	H	General-purpose I/O port.
19	PG2/X1A	H/A	Single-system product is general-purpose port (PG2). Dual-system product is sub clock input/output oscillation pin (32 kHz).
20	PG1/X0A		Single-system product is general-purpose port (PG1). Dual-system product is sub clock input oscillation pin (32 kHz).
21	$\overline{\mathrm{RST}}$	B'	Reset pin
22	P00/INT00	C	General-purpose I/O port. The pins are shared with external interrupt input. Large current port.
23	P01/INT01		
24	P02/INT02		
25	P03/INT03		
26	P04/INT04		
27	P05/INT05		
28	P06/INT06		
29	P07/INT07		
30	P10/UI0	G	General-purpose I/O port. The pin is shared with UART/SIO ch. 0 data input.

(Continued)

MB95100A Series

Pin no.	Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type* } \end{gathered}$	Function
31	P11/UO0	H	General-purpose I/O port. The pin is shared with UART/SIO ch. 0 data output.
32	P12/UCK0		General-purpose I/O port. The pin is shared with UART/SIO ch. 0 clock I/O.
33	$\begin{gathered} \text { P13/TRG0/ } \\ \text { ADTG } \end{gathered}$		General-purpose I/O port. The pin is shared with 16 -bit PPG ch. 0 trigger input (TRGO) and A/D trigger input (ADTG).
34	P14/PPG0		General-purpose I/O port. The pin is shared with 16 -bit PPG ch. 0 output.
35	P20/PPG00	H	General-purpose I/O port.
36	P21/PPG01		The pins are shared with 8/16-bit PPG ch. 0 output.
37	P22/TO00		General-purpose I/O port.
38	P23/TO01		The pins are shared with 8/16-bit compound timer ch. 0 output.
39	P24/EC0		General-purpose I/O port. The pin is shared with $8 / 16$-bit compound timer ch. 0 clock input.
40	P50/SCL0	1	General-purpose I/O port (Except MB95R107A, MB95D108AS, and MB95D108AW). The pin is shared with ${ }^{12} \mathrm{C}$ ch. 0 clock I/O.
41	P51/SDA0		General-purpose I/O port (Except MB95R107A, MB95D108AS, and MB95D108AW). The pin is shared with $I^{2} \mathrm{C}$ ch. 0 data I/O.
42	P52/PPG1	H	General-purpose I/O port. The pin is shared with 16 -bit PPG ch. 1 output.
43	P53/TRG1		General-purpose I/O port. The pin is shared with 16 -bit PPG ch. 1 trigger input.
44	P60/PPG10	K	General-purpose I/O port. The pins are shared with 8/16-bit PPG ch. 1 output.
45	P61/PPG11		
46	P62/TO10		General-purpose I/O port.
47	P63/TO11		The pins are shared with 8/16-bit compound timer ch. 1 output.
48	P64/EC1		General-purpose I/O port. The pin is shared with $8 / 16$-bit compound timer ch. 1 clock input.
49	P65/SCK		General-purpose I/O port. The pin is shared with LIN-UART clock I/O.
50	P66/SOT		General-purpose I/O port. The pin is shared with LIN-UART data output.
51	P67/SIN	L	General-purpose I/O port. The pin is shared with LIN-UART data input.

(Continued)

MB95100A Series

(Continued)

Pin no.	Pin name	I / O circuit type	Function
52	P43/AN11	J	General-purpose I/O port. The pins are shared with A/D converter analog input.
53	P42/AN10		
54	P41/AN09		
55	P40/AN08		
56	P37/AN07	J	General-purpose I/O port. The pins are shared with A/D converter analog input.
57	P36/AN06		
58	P35/AN05		
59	P34/AN04		
60	P33/AN03		
61	P32/AN02		
62	P31/AN01		
63	P30/AN00		
64	AVss	-	A/D converter power supply pin (GND)

* : For the I/O circuit type, refer to "■ I/O CIRCUIT TYPE".

MB95100A Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Oscillation circuit - High-speed side Feedback resistance value : approx. $1 \mathrm{M} \Omega$ - Low-speed side Feedback resistance : approx. $24 \mathrm{M} \Omega$ (Evaluation product : approx. $10 \mathrm{M} \Omega$) Dumping resistance : approx. $144 \mathrm{k} \Omega$ (Evaluation product : without dumping resistance)
B	Mode input	- Only for input Hysteresis input only for MASK ROM product With pull-down resistor only for MASK ROM product
B'	Reset input	- Hysteresis input only for MASK ROM product
C		- CMOS output - Hysteresis input
G		- CMOS output - CMOS input - Hysteresis input - With pull - up control
H		- CMOS output - Hysteresis input - With pull - up control

(Continued)

MB95100A Series

Type	Circuit	Remarks
I		- N-ch open drain output - CMOS input - Hysteresis input - P-ch transistor is existed in MB95D108AS, MB95D108AW, and MB95R107A.
J		- CMOS output - Hysteresis input - Analog input - With pull - up control
K		- CMOS output - Hysteresis input
L		- CMOS output - CMOS input - Hysteresis input
0		- N -ch open drain output - Hysteresis input

(Continued)

MB95100A Series

(Continued)

Type	Circuit	Remarks
P		- CMOS output - Hysteresis input - With pull - up control

MB95100A Series

■ CAUTION OF USING DEVICES

- Preventing Latch-up

Care must be taken to ensure that maximum voltage ratings are not exceeded when they are used.
Latch-up may occur on CMOS ICs if voltage higher than V_{cc} or lower than V_{ss} is applied to input and output pins other than medium- and high-withstand voltage pins or if higher than the rating voltage is applied between $V_{c c}$ pin and $V_{s s}$ pin.
When latch-up occurs, power supply current increases rapidly and might thermally damage elements.
Also, take care to prevent the analog power supply voltage ($\mathrm{AVcc}, \mathrm{AVR}$) and analog input voltage from exceeding the digital power supply voltage (Vcc) when the analog system power supply is turned on or off.

- Stable Supply Voltage

Supply voltage should be stabilized.
A sudden change in power-supply voltage may cause a malfunction even within the guaranteed operating range of the Vcc power-supply voltage.
For stabilization, in principle, keep the variation in V_{cc} ripple ($\mathrm{p}-\mathrm{p}$ value) in a commercial frequency range $(50 / 60 \mathrm{~Hz})$ not to exceed 10% of the standard V_{cc} value and suppress the voltage variation so that the transient variation rate does not exceed $0.1 \mathrm{~V} / \mathrm{ms}$ during a momentary change such as when the power supply is switched.

- Precautions for Use of External Clock

Even when an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from sub clock mode or stop mode.

- PIN CONNECTION

- Treatment of Unused Pin

Leaving unused input pins unconnected can cause abnormal operation or latch-up, leaving to permanent damage.
Unused input pins should always be pulled up or down through resistance of at least $2 \mathrm{k} \Omega$. Any unused input/ output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins. If there is an unused output pin, make it open.

- Treatment of Power Supply Pins on A/D Converter

Connect to be $\mathrm{AVcc}=\mathrm{V}_{\mathrm{cc}}$ and $\mathrm{AVss}=\mathrm{AVR}=\mathrm{V}_{\mathrm{ss}}$ even if the A / D converter is not in use .
Noise riding on the $A V_{c c}$ pin may cause accuracy degradation. So, connect approx. $0.1 \mu \mathrm{~F}$ ceramic capacitor as a bypass capacitor between $\mathrm{A} \mathrm{V}_{\mathrm{cc}}$ and $\mathrm{A} \mathrm{V}_{\text {ss }}$ pins in the vicinity of this device.

- Power Supply Pins

In products with multiple Vcc or Vss pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.
Moreover, connect the current supply source with the V_{cc} and $\mathrm{V}_{\text {ss }}$ pins of this device at the low impedance.
It is also advisable to connect a ceramic bypass capacitor of approximately $0.1 \mu \mathrm{~F}$ between V_{cc} and $\mathrm{V}_{\text {ss }}$ pins near this device.

MB95100A Series

- Mode Pin (MOD)

Connect the mode pin directly to V cc or $\mathrm{V} s \mathrm{~s}$.
To prevent the device unintentionally entering the test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pins to V_{cc} or V_{ss} and to provide a low-impedance connection.

- Analog Power Supply

Always set the same potential to AVcc and Vcc pins. When $\mathrm{Vcc}>\mathrm{AVcc}$, the current may flow through the AN 00 to AN11 pins.

- Precautions for Use of FRAM

When the device is connected to $I^{2} \mathrm{C}$ external pins (SCLO and SDAO) , the device with the same slave addresses ($1010000_{\text {в }}$ to 10101118$) ~ a s ~ b u i l t-i n ~ F R A M ~ c a n n o t ~ b e ~ u s e d . ~_{\text {B }}$
When built-in FRAM is used without connecting the device to $I^{2} \mathrm{C}$ external pins, external pull-up resistor ($1.1 \mathrm{k} \Omega$ or more) should be connected to SCL0 and SDA0.
P50 and P51 cannot be used in MB95R107A, MB95D108AS, and MB95D108AW.

MB95100A Series

- PROGRAMMING FLASH MEMORY MICROCONTROLLERS USING PARALLEL PROGRAMMER

- Supported Parallel Programmers and Adapters

The following table lists supported parallel programmers and adapters.

Package	Applicable adapter model	Parallel programmers
FPT-64P-M03	TEF110-108F35AP	AF9708 (Ver 02.35G or more)
FPT-64P-M09	TEF110-108F36AP	AF972399F989834 (Ver 02.08E or more)

Note : For information on applicable adapter models and parallel programmers, contact the following: Flash Support Group, Inc. TEL: +81-53-428-8380

- Sector Configuration

The individual sectors of flash memory correspond to addresses used for CPU access and programming by the parallel programmer as follows:

*: Programmer addresses are corresponding to CPU addresses, used when the parallel programmer programs data into flash memory.
These programmer addresses are used for the parallel programmer to program or erase data in flash memory.

- Programming Method

1) Set the type code of the parallel programmer to 17226 .
2) Load program data to parallel programmer addresses 71000 to 7 FFFFн.
3) Programmed by parallel programmer

MB95100A Series

BLOCK DIAGRAM

*1 : Single clock product is general-purpose port, and dual clock product is sub clock oscillation pin.
*2 : P50 and P51 cannot be used in MB95R107A, MB95D108AS, and MB95D108AW.
*3 : MB95R107A, MB95D108AS, and MB95D108AW only

MB95100A Series

CPU CORE

1. Memory space

Memory space of the MB95100A series is 64 K bytes and consists of I/O area, data area, and program area.
The memory space includes special - purpose areas such as the general - purpose registers and vector table.
Memory map of the MB95100A series is shown below.

- Memory Map

MB95FV100B-101

0000H	I/O
0080H	RAM 3.75 Kbytes
0100H	Register
0F80H	Extended I/O
1000 H	
	Flash 60 Kbytes
FFFFH	

MB95100A Series

2. Register

The MB95100A series has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The dedicated registers are as follows:
Program counter (PC) : A 16-bit register to indicate locations where instructions are stored
Accumulator (A) : A 16-bit register for temporary storage of arithmetic operations. In the case of an 8 -bit data processing instruction, the lower 1 byte is used.
Temporary accumulator (T) : A 16-bit register which performs arithmetic operations with the accumulator. In the case of an 8 -bit data processing instruction, the lower 1 byte is used.
Index register (IX) : A 16-bit register for index modification
Extra pointer (EP) : A 16-bit pointer to point to a memory address
Stack pointer (SP) : A 16-bit register to indicate a stack area
Program status (PS) : A 16-bit register for storing a register bank pointer, a direct bank pointer, and a condition code register

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and a direct bank pointer (DP) and the lower 8 bits for use as a condition code register (CCR) . (See the diagram below.)

- Structure of the program status

MB95100A Series

The RP indicates the address of the register bank currently being used. The relationship between the content of RP and the real address conforms to the conversion rule illustrated below:

- Rule for Conversion of Actual Addresses in the General-purpose Register Area

The DP specifies the area for mapping instructions (16 different instructions such as MOV A, dir) using direct addresses to 0080н to 00FFн.

Direct bank pointer (DP2 to DP0)	Specified address area	Mapping area
XXX ${ }_{\text {(}}$ (no effect to mapping)	0000 to 007F\%	0000н to 007Fн (without mapping)
000 ${ }_{\text {B }}$ (initial value)	0080 to 00FFH	0080 to 00FFн (without mapping)
001в		0100н to 017Fн
010в		0180 to 01FFH
011в		0200 to 027Fн
100в		0280н to 02FF\%
101в		0300 to 037 ${ }^{\text {H }}$
110в		0380н to 03FFH
111в		0400н to 047F\%

The CCR consists of the bits indicating arithmetic operation results or transfer data contents and the bits that control CPU operations at interrupt.

H flag : Set to " 1 " when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to " 0 " otherwise. This flag is for decimal adjustment instructions.
I flag : Interrupt is enabled when this flag is set to " 1 ". Interrupt is disabled when this flag is set to " 0 ". The flag is cleared to " 0 " when reset.
IL1, ILO : Indicates the level of the interrupt currently enabled. Processes an interrupt only if its request level is higher than the value indicated by these bits.

IL1	ILO	Interrupt level	Priority
0	0	0	High
0	1	1	
1	0	2	
1	1	3	

[^1]
MB95100A Series

The following general-purpose registers are provided:
General-purpose registers: 8-bit data storage registers

The general-purpose registers are 8 bits and located in the register banks on the memory. 1-bank contains 8register. Up to a total of 32 banks can be used on the MB95100A series. The bank currently in use is specified by the register bank pointer (RP), and the lower 3 bits of OP code indicates the general-purpose register 0 (R0) to general-purpose register 7 (R7).

- Register Bank Configuration

MB95100A Series

FRAM

- Slave address of FRAM

FRAM operates as one of the slave devices connected to the $I^{2} \mathrm{C}$, and the $I^{2} \mathrm{C}$ is used to read from or write to FRAM.
When data is transferred by the $I^{2} \mathrm{C}$, the slave address of FRAM is shown below.

Slave address (7 bits)					R/W bit (1 bit)
Slave ID (4 bits)				Page select bit* (3 bits)	
1	0	1	0	000в : page 0 001в: page 1 010в: page 2 011в: : page 3 100в: : page 4 101в: page 5 110в: : page 6 111в : page 7	0 : at write 1 : at read

*: Page select bit : Set the value corresponding to the accessed page

- Memory configuration of FRAM

The capacitance of the built-in FRAM is 2 Kbytes. The memory configuration of FRAM consists of 8 pages as follows. The capacitance of each page is 256 bytes.

Page	Address	Capacitance
0	00н to FF\%	256 bytes
1	00н to FF\%	256 bytes
2	O0н to FF\%	256 bytes
3	00н to FF\%	256 bytes
4	00н to FF\%	256 bytes
5	00н to FF\%	256 bytes
6	O0н to FF\%	256 bytes
7	00 to $^{\text {FFF }}$	256 bytes

MB95100A Series

- Single byte write

- Compound byte write

- Current address read

- Continuous address read

- Select (random) read

Notes: - When the device is connected to ${ }^{2} \mathrm{C}$ external pins (SCLO and SDAO) , the device with the same addresses ($1010000_{\text {в }}$ to 1010111 b) as built-in FRAM cannot be used.

- When FRAM is used without connecting the device built into the pull-up resistor to $I^{2} \mathrm{C}$ external pins, external pull-up resistor ($1.1 \mathrm{k} \Omega$ or more) should be connected to SCLO and SDA0.
- P50 and P51 cannot be used in MB95R107A, MB95D108AS, and MB95D108AW.

MB95100A Series

I/O MAP

Address	Register abbreviation	Register name	R/W	Initial value
0000H	PDR0	Port 0 data register	R/W	00000000в
0001н	DDR0	Port 0 direction register	R/W	00000000в
0002н	PDR1	Port 1 data register	R/W	00000000в
0003н	DDR1	Port 1 direction register	R/W	00000000в
0004н	-	(Disabled)	-	-
0005	WATR	Oscillation stabilization wait time setting register	R/W	11111111в
0006н	PLLC	PLL control register	R/W	00000000в
0007H	SYCC	System clock control register	R/W	1010X011в
0008н	STBC	Standby control register	R/W	00000000в
0009н	RSRR	Reset source register	R	XXXXXXXX
000Ан	TBTC	Timebase timer control register	R/W	0000000в
000Вн	WPCR	Watch prescaler control register	R/W	00000000в
000Сн	WDTC	Watchdog timer control register	R/W	00000000в
000D ${ }_{\text {¢ }}$	-	(Disabled)	-	-
000Ен	PDR2	Port 2 data register	R/W	00000000в
000F ${ }_{\text {H }}$	DDR2	Port 2 direction register	R/W	00000000в
0010н	PDR3	Port 3 data register	R/W	00000000в
0011н	DDR3	Port 3 direction register	R/W	00000000в
0012н	PDR4	Port 4 data register	R/W	00000000в
0013н	DDR4	Port 4 direction register	R/W	00000000в
0014н	PDR5	Port 5 data register	R/W	00000000в
0015 ${ }^{\text {H }}$	DDR5	Port 5 direction register	R/W	00000000в
0016н	PDR6	Port 6 data register	R/W	00000000в
0017 H	DDR6	Port 6 direction register	R/W	00000000в
0018н	PDR7	Port 7 data register	R/W	00000000в
0019н	DDR7	Port 7 direction register	R/W	00000000в
001Ан	PDR8	Port 8 data register	R/W	00000000в
001Вн	DDR8	Port 8 direction register	R/W	00000000в
$\begin{gathered} 001 \mathrm{CH}_{\mathrm{H}} \\ \text { to } \\ 0025 \mathrm{H} \end{gathered}$	-	(Disabled)	-	-
0026н	PDRE	Port E data register	R/W	00000000в
0027 ${ }^{\text {H}}$	DDRE	Port E direction register	R/W	00000000в
$\begin{aligned} & \text { 0028н, } \\ & 0029 \mathrm{H} \end{aligned}$	-	(Disabled)	-	-
002Aн	PDRG	Port G data register	R/W	00000000в

(Continued)

MB95100A Series

Address	Register abbreviation	Register name	R/W	Initial value
002Вн	DDRG	Port G direction register	R/W	00000000в
002CH	-	(Disabled)	-	-
002D ${ }_{\text {н }}$	PUL1	Port 1 pull - up register	R/W	00000000в
002Ен	PUL2	Port 2 pull - up register	R/W	00000000в
002Fн	PUL3	Port 3 pull - up register	R/W	00000000в
0030н	PUL4	Port 4 pull - up register	R/W	00000000в
0031н	PUL5	Port 5 pull - up register	R/W	00000000в
0032н	PUL7	Port 7 pull - up register	R/W	00000000в
0033н	-	(Disabled)	-	-
0034н	PULE	Port E pull - up register	R/W	00000000в
0035	PULG	Port G pull - up register	R/W	00000000в
0036н	T01CR1	8/16-bit compound timer 01 control status register 1 ch. 0	R/W	00000000в
0037 ${ }^{\text {¢ }}$	T00CR1	8/16-bit compound timer 00 control status register 1 ch .0	R/W	00000000в
0038н	T11CR1	8/16-bit compound timer 11 control status register 1 ch. 1	R/W	00000000в
0039н	T10CR1	8/16-bit compound timer 10 control status register 1 ch .1	R/W	00000000в
003Ан	PC01	8/16-bit PPG1 control register ch. 0	R/W	00000000в
003Вн	PC00	8/16-bit PPG0 control register ch.0	R/W	00000000в
003CH	PC11	8/16-bit PPG1 control register ch. 1	R/W	00000000в
003D	PC10	8/16-bit PPG0 control register ch. 1	R/W	00000000в
003Ен	TMCSRH0	16-bit reload timer control status register (Upper byte) ch. 0	R/W	00000000в
003Fн	TMCSRL0	16-bit reload timer control status register (Lower byte) ch. 0	R/W	00000000в
$\begin{aligned} & \text { 0040н, } \\ & 0041 \mathrm{H} \end{aligned}$	-	(Disabled)	-	-
0042н	PCNTH0	16-bit PPG control status register (Upper byte) ch.0	R/W	00000000в
0043н	PCNTLO	16-bit PPG control status register (Lower byte) ch. 0	R/W	00000000в
0044н	PCNTH1	16-bit PPG control status register (Upper byte) ch. 1	R/W	00000000в
0045н	PCNTL1	16-bit PPG control status register (Lower byte) ch. 1	R/W	00000000в
$\begin{aligned} & \hline 0046 \mathrm{H}, \\ & 0047 \mathrm{H} \end{aligned}$	-	(Disabled)	-	-
0048н	EIC00	External interrupt circuit control register ch.0/ch. 1	R/W	00000000в
0049н	EIC10	External interrupt circuit control register ch.2/ch. 3	R/W	00000000в
004Ан	EIC20	External interrupt circuit control register ch.4/ch. 5	R/W	00000000в
004Bн	EIC30	External interrupt circuit control register ch.6/ch.7	R/W	00000000в
004CH	EIC01	External interrupt circuit control register ch.8/ch. 9	R/W	00000000в
004D ${ }_{\text {H }}$	EIC11	External interrupt circuit control register ch10/ch. 11	R/W	00000000в

(Continued)

MB95100A Series

Address	Register abbreviation	Register name	R/W	Initial value
004Ен, $004 \mathrm{~F}_{\mathrm{H}}$	-	(Disabled)	-	-
0050н	SCR	LIN-UART serial control register	R/W	00000000в
0051н	SMR	LIN-UART serial mode register	R/W	00000000в
0052н	SSR	LIN-UART serial status register	R/W	00001000в
0053н	RDR/TDR	LIN-UART reception/transmission data register	R/W	00000000в
0054н	ESCR	LIN-UART extended status control register	R/W	00000100в
0055	ECCR	LIN-UART extended communication control register	R/W	000000Xхв
0056н	SMC10	UART/SIO serial mode control register 1 ch .0	R/W	00000000в
0057	SMC20	UART/SIO serial mode control register 2 ch .0	R/W	00100000в
0058н	SSR0	UART/SIO serial status register ch.0	R/W	00000001в
0059н	TDR0	UART/SIO serial output data register ch.0	R/W	00000000в
005Ан	RDR0	UART/SIO serial input data register ch. 0	R	00000000в
$\begin{aligned} & 005 \mathrm{BH} \\ & \text { to } \\ & 005 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	-	(Disabled)	-	-
0060н	IBCR00	$1^{2} \mathrm{C}$ bus control register 0 ch. 0	R/W	00000000в
0061н	IBCR10	$1^{2} \mathrm{C}$ bus control register 1 ch .0	R/W	00000000в
0062н	IBSR0	$1^{2} \mathrm{C}$ bus status register ch. 0	R	00000000в
0063н	IDDR0	$1^{2} \mathrm{C}$ data register ch. 0	R/W	00000000в
0064н	IAAR0	$1^{2} \mathrm{C}$ address register ch. 0	R/W	00000000в
0065	ICCRO	$1^{2} \mathrm{C}$ clock control register ch. 0	R/W	00000000в
$\begin{gathered} \text { 0066н } \\ \text { to } \\ 006 \mathrm{BH} \end{gathered}$	-	(Disabled)	-	-
$006 \mathrm{CH}_{\text {H }}$	ADC1	8/10-bit A/D converter control register 1	R/W	00000000в
006D ${ }_{\text {н }}$	ADC2	8/10-bit A/D converter control register 2	R/W	00000000в
006Ен	ADDH	8/10-bit A/D converter data register (Upper byte)	R/W	00000000в
006Fн	ADDL	8/10-bit A/D converter data register (Lower byte)	R/W	00000000в
0070н	WCSR	Watch counter status register	R/W	00000000в
0071н	-	(Disabled)	-	-
0072н	FSR	FLASH memory status register	R/W	000X0000в
0073н	SWRE0	FLASH memory sector writing control register 0	R/W	00000000в
0074н	SWRE1	FLASH memory sector writing control register 1	R/W	00000000в
0075	-	(Disabled)	-	-
0076н	WREN	Wild register address compare enable register	R/W	00000000в
0077	WROR	Wild register data test setting register	R/W	00000000в

(Continued)

MB95100A Series

Address	Register abbreviation	Register name	R/W	Initial value
0078н	-	Mirror of register bank pointer (RP) and direct bank pointer (DP)	-	-
0079н	ILR0	Interrupt level setting register 0	R/W	11111111в
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111в
007Вн	ILR2	Interrupt level setting register 2	R/W	11111111в
$007 \mathrm{CH}_{\mathrm{H}}$	ILR3	Interrupt level setting register 3	R/W	11111111в
007D	ILR4	Interrupt level setting register 4	R/W	11111111в
007Ен	ILR5	Interrupt level setting register 5	R/W	11111111в
007F	-	(Disabled)	-	-
0F80н	WRARH0	Wild register address setting register (Upper byte) ch. 0	R/W	00000000в
0F81н	WRARLO	Wild register address setting register (Lower byte) ch. 0	R/W	00000000в
0F82н	WRDR0	Wild register data setting register ch. 0	R/W	00000000в
0F83н	WRARH1	Wild register address setting register (Upper byte) ch. 1	R/W	00000000в
0F84н	WRARL1	Wild register address setting register (Lower byte) ch. 1	R/W	00000000в
0F85	WRDR1	Wild register data setting register ch. 1	R/W	00000000в
0F86н	WRARH2	Wild register address setting register (Upper byte) ch. 2	R/W	00000000в
0F87\%	WRARL2	Wild register address setting register (Lower byte) ch. 2	R/W	00000000в
0F88н	WRDR2	Wild register data setting register ch. 2	R/W	00000000в
$\begin{aligned} & \text { 0F89н } \\ & \text { to } \\ & \text { 0F91н } \end{aligned}$	-	(Disabled)	-	-
0F92н	T01CR0	8/16-bit compound timer 01 control status register 0 ch. 0	R/W	00000000в
0F93н	TOOCR0	8/16-bit compound timer 00 control status register 0 ch. 0	R/W	00000000в
0F94	T01DR	8/16-bit compound timer 01 data register ch. 0	R/W	00000000в
0F95	T00DR	8/16-bit compound timer 00 data register ch. 0	R/W	00000000в
0F96н	TMCR0	8/16-bit compound timer 00/01 timer mode control register ch. 0	R/W	00000000в
0F97H	T11CR0	8/16-bit compound timer 11 control status register 0 ch. 1	R/W	00000000в
0F98н	T10CR0	8/16-bit compound timer 10 control status register 0 ch. 1	R/W	00000000в
0F99н	T11DR	8/16-bit compound timer 11 data register ch. 1	R/W	00000000в
0F9Ан	T10DR	8/16-bit compound timer 10 data register ch. 1	R/W	00000000в
0F9Bн	TMCR1	8/16-bit compound timer 10/11 timer mode control register ch. 1	R/W	00000000в
0F9CH	PPS01	8/16-bit PPG1 cycle setting buffer register ch. 0	R/W	11111111в
0F9D	PPS00	8/16-bit PPG0 cycle setting buffer register ch. 0	R/W	11111111в
ОF9Ен	PDS01	8/16-bit PPG1 duty setting buffer register ch.0	R/W	11111111в
0F9F\%	PDS00	8/16-bit PPG0 duty setting buffer register ch.0	R/W	11111111в

(Continued)

MB95100A Series

Address	Register abbreviation	Register name	R/W	Initial value
OFAOH	PPS11	8/16-bit PPG1 cycle setting buffer register ch. 1	R/W	11111111в
0FA1н	PPS10	8/16-bit PPG0 cycle setting buffer register ch. 1	R/W	11111111в
0FA2н	PDS11	8/16-bit PPG1 duty setting buffer register ch. 1	R/W	11111111в
0FA3н	PDS10	8/16-bit PPG0 duty setting buffer register ch. 1	R/W	11111111в
0FA4н	PPGS	8/16-bit PPG start register	R/W	00000000в
0FA5	REVC	8/16-bit PPG output inversion register	R/W	00000000в
0FA6н	$\begin{aligned} & \text { TMRH0/ } \\ & \text { TMRLRH0 } \end{aligned}$	16-bit timer register (Upper byte) ch.0/ 16-bit reload register (Upper byte) ch. 0	R/W	00000000в
0FA7H	TMRLO/ TMRLRLO	16-bit timer register (Lower byte) ch.0/ 16-bit reload register (Lower byte) ch. 0	R/W	00000000в
$\begin{aligned} & \hline \text { 0FA8н, } \\ & \text { OFA9н } \end{aligned}$	-	(Disabled)	-	-
ОFAAн	PDCRH0	16-bit PPG down counter register (Upper byte) ch. 0	R	00000000в
ОFABн	PDCRL0	16-bit PPG down counter register (Lower byte) ch. 0	R	00000000в
OFACH	PCSRH0	16-bit PPG cycle setting buffer register (Upper byte) ch. 0	R/W	11111111в
OFAD	PCSRL0	16-bit PPG cycle setting buffer register (Lower byte) ch. 0	R/W	11111111в
OFAEн	PDUTH0	16-bit PPG duty setting buffer register (Upper byte) ch. 0	R/W	11111111в
0 FAFH	PDUTL0	16-bit PPG duty setting buffer register (Lower byte) ch. 0	R/W	11111111в
0FB0н	PDCRH1	16-bit PPG down counter register (Upper byte) ch. 1	R	00000000в
0FB1н	PDCRL1	16-bit PPG down counter register (Lower byte) ch. 1	R	00000000в
0FB2н	PCSRH1	16-bit PPG cycle setting buffer register (Upper byte) ch. 1	R/W	111111118
0FB3н	PCSRL1	16-bit PPG cycle setting buffer register (Lower byte) ch. 1	R/W	11111111в
0FB4н	PDUTH1	16-bit PPG duty setting buffer register (Upper byte) ch. 1	R/W	11111111в
0FB5	PDUTL1	16-bit PPG duty setting buffer register (Lower byte) ch. 1	R/W	11111111в
	-	(Disabled)	-	-
OFBCH	BGR1	LIN-UART baud rate generator register 1	R/W	00000000в
0FBD	BGR0	LIN-UART baud rate generator register 0	R/W	00000000в
OFBEн	PSSR0	UART/SIO dedicated baud rate generator prescaler select register ch. 0	R/W	00000000в
OFBFH	BRSR0	UART/SIO dedicated baud rate generator baud rate setting register ch. 0	R/W	00000000в
$\begin{aligned} & \text { OFCO }, \\ & \text { 0FC1н } \end{aligned}$	-	(Disabled)	-	-
0FC2н	AIDRH	A/D input disable register (Upper byte)	R/W	00000000в
0FC3 ${ }^{\text {¢ }}$	AIDRL	A/D input disable register (Lower byte)	R/W	00000000в

(Continued)

MB95100A Series

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
$\begin{aligned} & \text { OFC4н } \\ & \text { to } \\ & \text { OFE2н } \end{aligned}$	-	(Disabled)	-	-
0FE3н	WCDR	Watch counter data register	R/W	00111111в
$\begin{aligned} & \text { OFE4н } \\ & \text { to } \\ & \text { OFEDH } \end{aligned}$	-	(Disabled)	-	-
ОFEE,	ILSR	Input level select register	R/W	00000000в
OFEF ${ }_{\text {н }}$	WICR	Interrupt pin control register	R/W	01000000в
$\begin{aligned} & \text { OFFOH } \\ & \text { to } \\ & 0 F F F F_{H} \end{aligned}$	-	(Disabled)	-	-

- R/W access symbols

R/W : Readable/Writable
R : Read only
W : Write only

- Initial value symbols

0 : The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
$X \quad$: The initial value of this bit is undefined.

Note : Do not write to the " (Disabled) ". Reading the " (Disabled) " returns an undefined value.

MB95100A Series

INTERRUPT SOURCE TABLE

Interrupt source	Interrupt request number	Vector table address		Bit name of interrupt level setting register	Same level priority order (atsimultaneous occurrence)
		Upper	Lower		
External interrupt ch. 0					High
External interrupt ch. 4					
External interrupt ch. 1	IRQ1	FFF8	FFF9		
External interrupt ch. 5	IRQ	FF\%	FFr	L01 [1.0]	
External interrupt ch. 2	IRQ2	FFF6	FFF7	L02 [1: 0]	
External interrupt ch. 6					
External interrupt ch. 3	IRQ3	FFF4	FFF5	L03 [1-0]	
External interrupt ch. 7				L03 [1.	
UART/SIO ch. 0	IRQ4	FFF2н	FFF3 ${ }_{\text {H }}$	L04 [1:0]	
8/16-bit compound timer ch. 0 (Lower)	IRQ5	FFFOH	FFF1 ${ }_{\text {H }}$	L05 [1: 0]	
8/16-bit compound timer ch. 0 (Upper)	IRQ6	FFEEн	$\mathrm{FFEF}_{\text {H }}$	L06 [1: 0]	
LIN-UART (reception)	IRQ7	FFEC ${ }_{\text {H }}$	FFED ${ }_{\text {н }}$	L07 [1: 0]	
LIN-UART (transmission)	IRQ8	FFEAн	FFEBн	L08 [1: 0]	
8/16-bit PPG ch. 1 (Lower)	IRQ9	FFE8н	FFE9 ${ }_{\text {н }}$	L09 [1: 0]	
8/16-bit PPG ch. 1 (Upper)	IRQ10	FFE6н	FFE7	L10 [1:0]	
16-bit reload timer ch. 0	IRQ11	FFE4	FFE5	L11 [1: 0]	
8/16-bit PPG ch. 0 (Upper)	IRQ12	FFE2н	FFE3	L12 [1:0]	
8/16-bit PPG ch. 0 (Lower)	IRQ13	FFEOH	FFE1H	L13 [1:0]	
8/16-bit compound timer ch. 1 (Upper)	IRQ14	FFDEH	$\mathrm{FFDF}_{\mathrm{H}}$	L14 [1:0]	
16-bit PPG ch. 0	IRQ15	FFDCH	FFDD	L15 [1: 0]	
${ }^{12} \mathrm{C}$ ch. 0	IRQ16	FFDAн	FFDB	L16 [1: 0]	
16-bit PPG ch. 1	IRQ17	FFD8	FFD9	L17 [1:0]	
8/10-bit A/D converter	IRQ18	FFD6	FFD7 ${ }_{\text {H }}$	L18 [1: 0]	
Timebase timer	IRQ19	FFD4	FFD5 ${ }_{\text {¢ }}$	L19 [1:0]	
Watch timer/counter	IRQ20	FFD2н	FFD3	L20 [1: 0]	
External interrupt ch. 8					
External interrupt ch. 9	IRQ21	FFDOн	FFD1ㅂ	L21 [1:0]	
External interrupt ch. 10				L21 [1.0]	
External interrupt ch. 11					
8/16-bit compound timer ch. 1 (Lower)	IRQ22	FFCE ${ }_{\text {н }}$	$\mathrm{FFCF}_{\mathrm{H}}$	L22 [1:0]	∇
Flash memory	IRQ23	FFCCH	FFCD	L23 [1:0]	Low

MB95100A Series

- ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc AV cc	Vss - 0.3	Vss +4.0	V	*2
	AVR	Vss - 0.3	Vss +4.0		*2
Input voltage*1	V_{11}	Vss -0.3	Vss +4.0	V	Other than P80 to P83*3
	V_{12}	Vss - 0.3	Vss +6.0		P80 to P83
Output voltage*1	Vo	Vss - 0.3	Vss +4.0	V	*3
Maximum clamp current	Iclamp	-2.0	+2.0	mA	Applicable to pins*4
Total maximum clamp current	$\Sigma \mid$ Iclamp\|	-	20	mA	Applicable to pins ${ }^{* 4}$
"L" level maximum output current	lol1	-	15	mA	Other than P00 to P07
	loL2		15		P00 to P07
"L" level average current	lolav1	-	4	mA	Other than P00 to P07 Average output current $=$ operating current \times operating ratio (1 pin)
	lolav2		12		P00 to P07 Average output current $=$ operating current \times operating ratio (1 pin)
"L" level total maximum output current	Elo	-	100	mA	
"L" level total average output current	Elolav	-	50	mA	Total average output current = operating current \times operating ratio (Total of pins)
" H " level maximum output current	Іон1	-	-15	mA	Other than P00 to P07
	Іон2		-15		P00 to P07
" H " level average current	Іоhav1	-	-4	mA	Other than P00 to P07 Average output current = operating current \times operating ratio (1 pin)
	Іонavz		-8		P00 to P07 Average output current $=$ operating current \times operating ratio (1 pin)
"H" level total maximum output current	Σ Іон	-	- 100	mA	
" H " level total average output current	Σ Iohav	-	- 50	mA	Total average output current = operating current \times operating ratio (Total of pins)

(Continued)

MB95100A Series

(Continued)

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power consumption	Pd	-	320	mW	
Operating temperature	TA	-40	+ 85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	- 55	+150	${ }^{\circ} \mathrm{C}$	MB95107A, MB95F108AS, MB95F108AW
		-40	+ 125		MB95R107A, MB95D108AS, MB95D108AW

*1 : The parameter is based on AV ss $=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}$.
*2 : Apply equal potential to $A V c c$ and $V c c$. $A V R$ should not exceed $A V c c+0.3 \mathrm{~V}$.
${ }^{*} 3$: V_{11} and Vo should not exceed $\mathrm{V}_{c c}+0.3 \mathrm{~V}$. V_{11} must not exceed the rating voltage. However, if the maximum current to/from an input is limited by some means with external components, the Iclamp rating supersedes the V_{11} rating.
*4 : Applicable to pins : P00 to P07, P10 to P14, P20 to P24, P30 to P37, P40 to P43, P52, P53, P70, P71, PE0 to PE3, PG0

- Use within recommended operating conditions.
- Use at DC voltage (current).
- The +B signal is an input signal that exceeds V cc voltage. The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the $+B$ signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the $\mathrm{V}_{c c}$ pin, and this affects other devices.
- Note that if the + B signal is inputted when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting power supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the $+B$ input pin open.
- Sample recommended circuits :
- Input/Output Equivalent circuits

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB95100A Series

2. Recommended Operating Conditions

$(\mathrm{AVss}=\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V})$

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Power supply voltage	Vcc, AVcc	-	-	$1.8{ }^{* 1}$	3.3	V	At normal operating, Flash memory product, $\mathrm{T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
		-	-	1.8*1	3.6		At normal operating, MASK ROM product, $\mathrm{T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
		-	-	2.0*1	3.3		At normal operating, Flash memory product, $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
		-	-	2.0*1	3.6		At normal operating, MASK ROM product, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
		-	-	2.7	3.3		At normal operating, Flash memory product, at FRAM access, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$
		-	-	2.7	3.6		At normal operating, MASK ROM product, at FRAM access, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$
		-	-	2.6	3.6		$\begin{aligned} & \text { MB95FV100B-101 } \\ & T_{A}=+5^{\circ} \mathrm{C} \text { to }+35^{\circ} \mathrm{C} \end{aligned}$
		-	-	1.5	3.3		Retain status in stop mode, Flash memory product
		-	-	1.5	3.6		Retain status in stop mode, MASK ROM product
" H " level input voltage	$\mathrm{V}_{\mathrm{HH1}}$	P10, P67	*2	0.7 Vcc	$\mathrm{Vcc}+0.3$	V	At selecting CMOS input level
	V_{1+2}	P50, P51	-	0.7 Vcc	Vss +5.5	V	At selecting CMOS input level MB95F108AS, MB95F108AW, MB95107A, MB95FV100B-101
					$\mathrm{Vcc}+0.3$		At selecting CMOS input level MB95D108AS, MB95D108AW, MB95R107A

(Continued)

MB95100A Series

(Continued)

Parameter	Sym-	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
"H" level input voltage	VIHS1	P00 to P07, P10 to P14, P20 to P24, P30 to P37, P40 to P43, P52, P53, P60 to P67, P70, P71, PE0 to PE3, PG0, PG1*3, PG2*3	*2	0.8 Vcc	$\mathrm{V} \mathrm{cc}+0.3$	V	Hysteresis input
	VIHS2	P80 to P83	*2	0.8 Vcc	Vss +5.5	V	Hysteresis input
	VIHS3	P50, P51	-	0.8 Vcc	Vss +5.5	V	Hysteresis input MB95F108AS, MB95F108AW, MB95107A, MB95FV100B-101
					Vss +5.0		Hysteresis input MB95D108AS, MB95D108AW, MB95R107A
	Vінм	$\overline{\mathrm{RST}}, \mathrm{MOD}$	-	0.7 Vcc	$\mathrm{V} \mathrm{cc}+0.3$	V	CMOS input (Flash memory product)
			-	0.8 Vcc	$\mathrm{V} \mathrm{cc}+0.3$	V	Hysteresis input (Mask ROM product)
"L" level input voltage	VIL	$\begin{aligned} & \hline \text { P10, P50, } \\ & \text { P51, P67 } \end{aligned}$	*2	Vss - 0.3	0.3 Vcc	V	At selecting CMOS input level (Hysteresis input)
	Vıs	P00 to P07, P10 to P14, P20 to P24, P30 to P37, P40 to P43, P50 to P53, P60 to P67, P70, P71, P80 to P83, PE0 to PE3, PGO, PG1*3, PG2*3	*2	Vss - 0.3	0.2 Vcc	V	Hysteresis input
	VILM	$\overline{\mathrm{RST}}, \mathrm{MOD}$	-	Vss - 0.3	0.3 Vcc	V	CMOS input (Flash memory product)
			-	Vss - 0.3	0.2 Vcc	V	Hysteresis input (Mask ROM product)
A/D converter reference input voltage	AVR	-	-	1.8	AVcc	V	
Operating temperature	TA	-	-	-40	+ 85	${ }^{\circ} \mathrm{C}$	

MB95100A Series

*1: The values vary with the operating frequency.
*2 : P10, P50, P51, and P67 can switch the input level to either the "CMOS input level" or "hysteresis input level". The switching of the input level can be set by the input level selection register (ILSR).
*3: Single clock product only
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB95100A Series

3. DC Characteristics

$\left(\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{cc}=3.3 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	$\begin{gathered} \text { Sym } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
" H " level output voltage	Vон1	Output pin other than P00 to P07	$\mathrm{IoH}=-4.0 \mathrm{~mA}$	2.4	-	-	V	
	Vон2	P00 to P07	$\mathrm{IoH}=-8.0 \mathrm{~mA}$	2.4	-	-	V	
"L" level output voltage	Vol 1	Output pin other than P00 to P07	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
	VoL2	P00 to P07	$\mathrm{loL}=12 \mathrm{~mA}$	-	-	0.4	V	
Open-drain output application voltage	$\mathrm{V}_{\mathrm{D} 1}$	P80 to P83	-	Vss -0.3	-	Vss +5.5	V	
				Vss -0.3	-	Vss +5.5		MB95F108AS, MB95F108AW, MB95107A
	VD2					$\mathrm{Vcc}+0.3$		MB95D108AS, MB95D108AW, MB95R107A
Input leakage current (Hi-Z output leakage current)	l,	Port other than P50, P51, P80 to P83	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}}$	-5	-	+ 5	$\mu \mathrm{A}$	When the pull-up is prohibition setting
Open-drain output leakage current	Ilod	P50, P51, P80 to P83	$\begin{aligned} & 0.0 \mathrm{~V}<\mathrm{V}_{1}< \\ & \mathrm{V}_{\mathrm{ss}}+5.5 \mathrm{~V} \end{aligned}$	-	-	+ 5	$\mu \mathrm{A}$	
Pull-up resistor	Rpull	$\begin{aligned} & \text { P10 to P14, } \\ & \text { P20 to P24, } \\ & \text { P30 to P37, } \\ & \text { P40 to P43, } \\ & \text { P52, P53, } \\ & \text { P70, P71, } \\ & \text { PE0 to PE3, } \\ & \text { PG0, PG1¹, } \\ & \text { PG2*1 } \end{aligned}$	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	$k \Omega$	When the pull-up is permission setting
Pull-down resistor	Rмод	MOD	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{cc}}$	25	50	100	$\mathrm{k} \Omega$	MASK ROM product
Input capacitance	Cin	Other than AV cc, AV ss, AVR, Vcc, Vss	$\mathrm{f}=1 \mathrm{MHz}$	-	5	15	pF	

(Continued)

MB95100A Series

$\left(\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{Vc}=3.3 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current*2	Icc	Vcc (External clock operation)	$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=20 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=10 \mathrm{MHz} \\ & \text { Main clock mode } \\ & \text { (divided by 2) } \end{aligned}$	-	11.0	14.0	mA	MB95F108AS, MB95F108AW
				-	7.3	10.0	mA	MB95107A
				-	30.0	35.0	mA	MB95F108AS, MB95F108AW (at Flash memory writing and erasing)
			$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=20 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=10 \mathrm{MHz} \end{aligned}$ Main clock mode (divided by 2) When FRAM read and write (fscl $=400 \mathrm{kHz}$)	-	11.1	15.0	mA	$\begin{aligned} & \text { MB95D108AS, } \\ & \text { MB95D108AW } \end{aligned}$
				-	7.4	11.0	mA	MB95R107A
				-	30	35	mA	MB95D108AS, MB95D108AW (at Flash memory write and erase)
	Iccs		$\begin{aligned} & \hline \mathrm{F}_{\mathrm{CH}}=20 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=10 \mathrm{MHz} \\ & \text { Main Sleep mode } \\ & \text { (divided by 2) } \\ & \hline \end{aligned}$	-	4.5	6.0	mA	
	Iccl		$\begin{aligned} & \hline \mathrm{FCL}_{\mathrm{CL}}=32 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{MPL}}=16 \mathrm{kHz} \\ & \text { Sub clock mode } \\ & \text { (divided by 2), } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	25	35	$\mu \mathrm{A}$	
	Iccıs		$\begin{aligned} & \hline \mathrm{FCL}=32 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{MPL}}=16 \mathrm{kHz} \\ & \text { Sub sleep mode } \\ & \text { (divided by 2), } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	7	15	$\mu \mathrm{A}$	
	Ісст		$\mathrm{F}_{\mathrm{cL}}=32 \mathrm{kHz}$ Watch mode	-	2	10	$\mu \mathrm{A}$	Flash memory product
			Main stop mode $T_{A}=+25^{\circ} \mathrm{C}$	-	1	5	$\mu \mathrm{A}$	MASK ROM product
	Iccmple		$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=4 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=10 \mathrm{MHz} \\ & \text { Main PLL mode } \\ & \text { (multiplied by 2.5) } \end{aligned}$	-	10	14	mA	Flash memory product
				-	6.7	10.0	mA	MASK ROM product

(Continued)

MB95100A Series

(Continued)

$$
\left(\mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{cc}=3.3 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current ${ }^{\star 2}$	IccsplL	Vcc (External clock operation)		-	190	250	$\mu \mathrm{A}$	
	Icts		$\mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz}$ Timebase timer mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	0.4	0.5	mA	
	Icch		Sub stop mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	1	5	$\mu \mathrm{A}$	
	I_{A}	AVcc	$\mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz}$ At operating of A / D conversion	-	1.3	2.2	mA	
	ІАн		$\mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz}$ At stopping of A / D conversion $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	1	5	$\mu \mathrm{A}$	

*1 : Single clock product only
*2 : Power supply current is regulated by external clock.

- Refer to "4. AC characteristics (1) Clock Timing" for Fсн and Fcl.
- Refer to "4. AC characteristics (2) Source Clock/Machine Clock" for Fmp and Fmpl.

MB95100A Series

4. AC Characteristics

(1) Clock Timing

$$
\left(\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

MB95100A Series

- Figure of main clock Input port external connection

When using a crystal or ceramic oscillator

When using external clock

- Figure of sub clock input port external connection

When using a crystal or ceramic oscillator

When using external clock

MB95100A Series

(2) Source Clock/Machine Clock

$\left(\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{AV}\right.$ ss $=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Source clock cycle time ${ }^{\star 1}$ (Clock before setting division)	tscık	-	100	-	2000	ns	When using main clock Min : Fcн $=10 \mathrm{MHz}$, PLL multiplied by 1 Max: $\mathrm{F}_{\mathrm{ch}}=1 \mathrm{MHz}$, divided by 2
			7.6	-	61.0	$\mu \mathrm{s}$	When using sub clock Min: $\mathrm{F}_{\mathrm{CL}}=32 \mathrm{kHz}$, PLL multiplied by 4 Max: $\mathrm{F}_{\mathrm{CL}}=32 \mathrm{kHz}$, divided by 2
Source clock frequency	Fsp	-	0.5	-	10.0	MHz	When using main clock
	Fspl	-	16.384	-	131.072	kHz	When using sub clock
Machine clock cycle time*2 (Minimum instruction execution time)	tmсLк	-	100	-	32000	ns	When using main clock Min : Fsp $=10 \mathrm{MHz}$, no division Max: $\mathrm{Fsp}=0.5 \mathrm{MHz}$, divided by 16
			7.6	-	976.5	$\mu \mathrm{s}$	When using sub clock Min : Fspl $=131 \mathrm{kHz}$, no division Max : Fspl $=16 \mathrm{kHz}$, divided by 16
Machine clock frequency	Fmp	-	0.031	-	10.000	MHz	When using main clock
	FMPL		1.024	-	131.072	kHz	When using sub clock

*1: Clock before setting division due to machine clock division ratio selection bit (SYCC : DIV1 and DIV0) . This source clock is divided by the machine clock division ratio selection bit (SYCC : DIV1 and DIV0), and it becomes the machine clock. Further, the source clock can be selected as follow.

- Main clock divided by 2
- PLL multiplication of main clock (select from 1, $2,2.5$ multiplication)
- Sub clock divided by 2
- PLL multiplication of sub clock (select from 2, 3, 4 multiplication)
*2 : Operation clock of the microcontroller. Machine clock can be selected as follow.
- Source clock (no division)
- Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16
- Outline of clock generation block

MB95100A Series

- MB95F108AS, MB95F108AW, MB95D108AS, MB95D108AW

Source clock frequency (FspL)

MB95100A Series

- Operating voltage - Operating frequency (When $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)
- MB95107A, MB95R107A

- MB95F108AS, MB95F108AW, MB95D108AS, MB95D108AW

MB95100A Series

- Operating voltage - Operating frequency $\left(\mathrm{T}_{\mathrm{A}}=+5^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right)$
- MB95FV100B-101
Sub PLL, Sub clock mode and watch

- Main PLL operation frequency

MB95100A Series

(3) External Reset

$$
\left(\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
$\overline{\text { RST }}$ "L" level pulsewidth	trsti	2 tmalk ${ }^{* 1}$	-	ns	At normal operating
		Oscillation time of oscillator*2 $+2 \text { tmclk }{ }^{* 1}$	-	ns	At stop mode, sub clock mode, sub sleep mode, and watch mode

*1 : Refer to " (2) Source Clock/Machine Clock" for tmсlк.
*2 : Oscillation start time of oscillator is the time that the amplitude reaches 90%. In the crystal oscillator, the oscillation time is between several ms and tens of ms . In ceramic oscillators, the oscillation time is between hundreds of $\mu \mathrm{s}$ and several ms . In the external clock, the oscillation time is 0 ms .

- At normal operating
$\overline{\mathrm{RST}}$

- At stop mode, sub clock mode, sub sleep mode, watch mode, and power-on

MB95100A Series

(4) Power-on Reset
$\left(\mathrm{AVss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Value		Unit	Remarks
			Min	Max		
Power supply rising time	tr	-	-	36	ms	
Power supply cutoff time	toff	-	1	-	ms	Waiting time until power-on

Note : The power supply must be turned on within the selected oscillation stabilization time.

Note : Sudden change of power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, set the slope of rising within $20 \mathrm{mV} / \mathrm{ms}$ as shown below.

MB95100A Series

(5) Peripheral Input Timing

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min	Max		
Peripheral input " H " pulse width	тин	INT00 to INT07, INT10 to INT13, EC0, EC1, TIO, TRG0/ADTG, TRG1	2 tmalk*	-	ns	
Peripheral input "L" pulse width	tıHL		2 tmcık*	-	ns	

*: Refer to " (2) Source Clock/Machine Clock" for tmclк.

INT00 to INT07, INT10 to INT13, EC0, EC1, TIO, TRGO/ADTG, TRG1

MB95100A Series

(6) UART/SIO, Serial I/O Timing

$$
\left(\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscrc	UCK0	Internal clock operation output pin :$\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL} .$	4 tмськ*	-	ns	
UCK $\downarrow \rightarrow$ UO time	tslov	UCKO, UO0		-190	+ 190	ns	
Valid UI \rightarrow UCK \uparrow	tivs	UCKO, UIO		2 tмськ*	-	ns	
UCK $\uparrow \rightarrow$ valid UI hold time	tshix	UCKO, UIO		2 tмськ*	-	ns	
Serial clock "H" pulse width	tshst	UCK0	External clock operation output pin : $\mathrm{C} \mathrm{L}=80 \mathrm{pF}+1 \mathrm{TTL}$.	4 tıcık*	-	ns	
Serial clock "L" pulse width	tsısh	UCK0		4 tıcık*	-	ns	
UCK $\downarrow \rightarrow$ UO time	tstov	UCKO, UO0		0	190	ns	
Valid UI \rightarrow UCK \uparrow	tivs	UCKO, UIO		2 tмськ*	-	ns	
UCK $\uparrow \rightarrow$ valid UI hold time	tshlı	UCKO, UIO		2 tмськ*	-	ns	

*: Refer to " (2) Source Clock/Machine Clock" for tmclк.

- Internal shift clock mode

- External shift clock mode

UCKO

UOO

UIO

MB95100A Series

(7) LIN-UART Timing

Sampling at the rising edge of sampling clock ${ }^{* 1}$ and prohibited serial clock delay ${ }^{* 2}$
(ESCR register : SCES bit =0, ECCR register : SCDE bit = 0)

Parameter	Sym-bol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCK	Internal clock operation output pin : $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$.	5 tmсık*	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	tslovi	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \uparrow	tivsh	SCK, SIN		tmсLк ${ }^{* 3}+190$	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tstixI	SCK, SIN		0	-	ns
Serial clock "L" pulse width	tsLsH	SCK	External clock operation outputpin: $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$.	3 tмсLк $^{* 3}-\mathrm{tr}_{\text {R }}$	-	ns
Serial clock "H" pulse width	tshsL	SCK		tмсLк ${ }^{* 3}+95$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslove	SCK, SOT		-	2 tмськ ${ }^{* 3}+95$	ns
Valid SIN \rightarrow SCK \uparrow	tivsHE	SCK, SIN		190	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tsHIXE	SCK, SIN		tмськ ${ }^{\text {a }}+95$	-	ns
SCK fall time	t_{F}	SCK		-	10	ns
SCK rise time	tR	SCK		-	10	ns

*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.
*3 : Refer to " (2) Source Clock/Machine Clock" for tmclk.

MB95100A Series

- Internal shift clock mode

- External shift clock mode

MB95100A Series

Sampling at the falling edge of sampling clock*1 and prohibited serial clock delay*2
(ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0)
*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.
*3 : Refer to " (2) Source Clock/Machine Clock" for tmalk.

MB95100A Series

- Internal shift clock mode

- External shift clock mode

MB95100A Series

Sampling at the rising edge of sampling clock*1 and enabled serial clock delay ${ }^{* 2}$

(ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)
$\left(\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCK	Internal clock operation output pin : $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$.	5 tmсL**3	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	tshovi	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \downarrow	tivsLi	SCK, SIN		tмсLк ${ }^{*}+190$	-	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tsuxi	SCK, SIN		0	-	ns
SOT \rightarrow SCK \downarrow delay time	tsovL	SCK, SOT		-	4 tmack*3	ns

*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.
*3 : Refer to " (2) Source Clock/Machine Clock" for tmск.

MB95100A Series

Sampling at the falling edge of sampling clock ${ }^{\star 1}$ and enabled serial clock delay*2

(ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)
$\left(\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCK	Internal clock operating output pin : $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$.	5 tmск** ${ }^{\text {a }}$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslovi	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \uparrow	tivshı	SCK, SIN		tmcLk ${ }^{* 3}+190$	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshlx\|	SCK, SIN		0	-	ns
SOT \rightarrow SCK \uparrow delay time	tsovin	SCK, SOT		-	4 tmcık* ${ }^{\text {a }}$	ns

*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.
*3 : Refer to " (2) Source Clock/Machine Clock" for tmсLк.

MB95100A Series

(8) $I^{2} C$ Timing

$\left(\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V}, \mathrm{AV}\right.$ ss $=\mathrm{V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$									
Parameter	Symbol	Pin name	Conditions	Value				Unit	Remarks
				Standard-mode		Fast-mode			
				Min	Max	Min	Max		
SCL clock frequency	fscl	SCL0	$\begin{aligned} & \mathrm{R}=1.7 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{* 1} \end{aligned}$	0	100	0	400	kHz	
(Repeat) Start condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	thd;sta	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		4.0	-	0.6	-	$\mu \mathrm{s}$	
SCL clock "L" width	tow	SCL0		4.7	-	1.3	-	$\mu \mathrm{s}$	
SCL clock "H" width	thigh	SCL0		4.0	-	0.6	-	$\mu \mathrm{s}$	
(Repeat) Start condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsu;sta	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		4.7	-	0.6	-	$\mu \mathrm{s}$	
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	thd;dat	$\begin{aligned} & \text { SCL0 } \\ & \text { SDAO } \end{aligned}$		0	$3.45{ }^{* 2}$	0	0.9*3	$\mu \mathrm{s}$	
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsu;Dat	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		0.25	-	0.1	-	$\mu \mathrm{s}$	
Stop condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	tsu;sto	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		4	-	0.6	-	$\mu \mathrm{s}$	
Bus free time between stop condition and start condition	tbuF	$\begin{aligned} & \hline \text { SCL0 } \\ & \text { SDAO } \end{aligned}$		4.7	-	1.3	-	$\mu \mathrm{S}$	

*1 : R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.
*2 : The maximum tho;дat have only to be met if the device dose not stretch the "L" width (tıow) of the SCL signal.
*3 : A fast-mode $I^{2} \mathrm{C}$-bus device can be used in a standard-mode $\mathrm{I}^{2} \mathrm{C}$-bus system, but the requirement tsu;Dat ≥ 250 ns must then be met.

MB95100A Series

$\left(\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V}, \mathrm{AV}\right.$ ss $=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	$\begin{array}{\|c\|} \hline \text { Pin } \\ \text { name } \end{array}$	Conditions	Value*2		Unit	Remarks
				Min	Max		
SCL clock "L" width	tow	SCL0	$\begin{aligned} & \mathrm{R}=1.7 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{\star 1} \end{aligned}$	$(2+\mathrm{nm} / 2)$ tмсцк -20	-	ns	Master mode
SCL clock "H" width	tнIGн	SCL0		(nm / 2) tıclк - 20	($\mathrm{nm} / 2$) tıcık +20	ns	Master mode
Start condition hold time	thd;sta	$\begin{array}{\|l} \text { SCLO } \\ \text { SDAO } \end{array}$		$(-1+n m / 2)$ tмськ - 20	$(-1+n m)$ tмскк +20	ns	Master mode Maximum value is applied when m , $\mathrm{n}=1,8$. Otherwise, the minimum value is applied.
Stop condition setup time	tsu;sto	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		$(1+\mathrm{nm} / 2)$ tмсцк - 20	$(1+n m / 2)$ tnclı +20	ns	Master mode
Startcondition setup time	tsu;sta	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		$(1+\mathrm{nm} / 2)$ tıcı -20	$(1+n m / 2)$ tnclk +20	ns	Master mode
Bus free time between stop condition and start condition	tbuf	$\begin{array}{\|l} \text { SCLO } \\ \text { SDAO } \end{array}$		$(2 \mathrm{~nm}+4)$ tмсıк - 20	-	ns	
Data hold time	thdidat	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		3 tмсцк - 20	-	ns	Master mode
Data setup time	tsu;Dat	$\begin{array}{\|l} \text { SCLO } \\ \text { SDAO } \end{array}$		$(-2+n m / 2)$ tмсLк - 20	(-1+nm / 2) tmсцк +20	ns	Master mode When assuming that "L" of SCL is not extended, the minimum value is applied to first bit of continuous data. Otherwise, the maximum value is applied.
Setup time between clearing interrupt and SCL rising	tsu;int	SCL0		(nm / 2) tmсlк - 20	$(1+n m / 2)$ tnclk +20	ns	Minimum value is applied to interrupt at 9th SCL \downarrow. Maximum value is applied to interrupt at 8 th $\operatorname{SCL} \downarrow$.
SCL clock "L" width	tıow	SCL0		4 tmalk - 20	-	ns	At reception
$\begin{aligned} & \text { SCL clock "H" } \\ & \text { width } \end{aligned}$	tнIGн	SCL0		4 tmсıк - 20	-	ns	At reception
Start condition detection	thd;sta	$\begin{array}{\|l\|l\|} \text { SCLO } \\ \text { SDAO } \end{array}$		2 tmсlк - 20	-	ns	Undetected when 1 tмськ is used at reception

(Continued)

MB95100A Series

（Continued）
$\left(\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{AV} s \mathrm{ss}=\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	$\begin{array}{\|c} \text { Sym- } \\ \text { bol } \end{array}$	Pin name	Condi－ tions	Value＊2		Unit	Remarks
				Min	Max		
Stop condition detection	tsu；sto	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$	$\begin{aligned} & \mathrm{R}=1.7 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{* 1} \end{aligned}$	2 tıс⿱㇒－ 20	－	ns	Undetected when 1 tmack is used at reception
Restart condition detection condition	tsu；sta	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		2 tıс⿱㇒－ 20	－	ns	Undetected when 1 tmack is used at reception
Bus free time	tbuf	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		2 tmсlк－ 20	－	ns	At reception
Data hold time	tho；效	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		2 tıсı－ 20	－	ns	At slave transmission mode
Data setup time	tsu；dat	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		tıow－ 3 tmclk－ 20	－	ns	At slave transmission mode
Data hold time	tho；dat	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		0	－	ns	At reception
Data setup time	tsu；dat	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		tмськ－ 20	－	ns	At reception
SDA $\downarrow \rightarrow$ SCL \uparrow （at wakeup function）	twake－ up	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		Oscillation stabilization wait time＋ 2 tмсцк－ 20	－	ns	

＊1：R，C ：Pull－up resistor and load capacitor of the SCL and SDA lines．
＊2 ：•Refer to＂（2）Source Clock／Machine Clock＂for tmсlк．
－m is CS4 bit and CS3 bit（bit 4 and bit 3 ）of clock control register（ICCR）．
－ n is CS2 bit to CSO bit（bit 2 to bit 0 ）of clock control register（ICCR）．
－Actual timing of $I^{2} \mathrm{C}$ is determined by m and n values set by the machine clock（tмсLк）and CS4 to CSO of ICCRO register．
－Standard－mode ：
m and n can be set at the range ： $0.9 \mathrm{MHz}<$ tмскк（machine clock）$<10 \mathrm{MHz}$ ．
Setting of m and n determines the machine clock that can be used below．
$(m, n)=(1,8)$
$: 0.9 \mathrm{MHz}<$ tмськ $^{5} 1 \mathrm{MHz}$
$(\mathrm{m}, \mathrm{n})=(1,22),(5,4),(6,4),(7,4),(8,4): 0.9 \mathrm{MHz}<$ tмськ $^{5} 2 \mathrm{MHz}$
$(\mathrm{m}, \mathrm{n})=(1,38),(5,8),(6,8),(7,8),(8,8): 0.9 \mathrm{MHz}<$ tмсLк $\leq 4 \mathrm{MHz}$
$(\mathrm{m}, \mathrm{n})=(1,98) \quad: 0.9 \mathrm{MHz}<$ Імськ $\leq 10 \mathrm{MHz}$
－Fast－mode ：
m and n can be set at the range ： $3.3 \mathrm{MHz}<$ tmack（machine clock）＜ 10 MHz ．
Setting of m and n determines the machine clock that can be used below．

$$
\begin{array}{ll}
(m, n)=(1,8) & : 3.3 \mathrm{MHz}<\text { tmcLk } \leq 4 \mathrm{MHz} \\
(m, n)=(1,22),(5,4) & : 3.3 \mathrm{MHz}<\text { tccLk } \leq 8 \mathrm{MHz} \\
(m, n)=(6,4) & : 3.3 \mathrm{MHz}<\text { tmcLk } \leq 10 \mathrm{MHz}
\end{array}
$$

MB95100A Series

5. A/D Converter

(1) A/D Converter Electrical Characteristics
($\mathrm{A} \mathrm{V}_{\mathrm{cc}}=\mathrm{V} \mathrm{Cc}=1.8 \mathrm{~V}$ to 3.3 V [Flash memory product], $\mathrm{AV} \mathrm{cc}=\mathrm{V} \mathrm{cc}=1.8 \mathrm{~V}$ to 3.6 V [MASK ROM product],

$$
\left.\mathrm{AV} \text { ss }=\mathrm{V}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Value			Unit	Remarks
		Min	Typ	Max		
Resolution	-	-	-	10	bit	
Total error		-3.0	-	+3.0	LSB	
Linearity error		-2.5	-	+2.5	LSB	
Differential linear error		- 1.9	-	+1.9	LSB	
Zero transition voltage	Vот	AVss - 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	Flash memory product: $2.7 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc} \leq 3.3 \mathrm{~V}$ MASK ROM product : $2.7 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc} \leq 3.6 \mathrm{~V}$
		AVss - 0.5 LSB	AVss + 1.5 LSB	AVss + 3.5 LSB	V	$1.8 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc}<2.7 \mathrm{~V}$
Full-scale transition voltage	$V_{\text {FSt }}$	AVR - 3.5 LSB	AVR - 1.5 LSB	AVR + 0.5 LSB	V	Flash memory product: $2.7 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc} \leq 3.3 \mathrm{~V}$ MASK ROM product : $2.7 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc} \leq 3.6 \mathrm{~V}$
		AVR - 2.5 LSB	AVR - 0.5 LSB	AVR + 1.5 LSB	V	$1.8 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc}<2.7 \mathrm{~V}$
Compare time	-	1.3	-	140	$\mu \mathrm{s}$	Flash memory product: $2.7 \mathrm{~V} \leq \mathrm{AV}$ cc $\leq 3.3 \mathrm{~V}$ MASK ROM product : $2.7 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc} \leq 3.6 \mathrm{~V}$
		20	-	140	$\mu \mathrm{s}$	$1.8 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc}<2.7 \mathrm{~V}$
Sampling time	-	0.4	-	∞	$\mu \mathrm{S}$	Flash memory product : $2.7 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc} \leq 3.3 \mathrm{~V}$ MASK ROM product : $2.7 \mathrm{~V} \leq \mathrm{AVcc} \leq 3.6 \mathrm{~V}$ ex ternal impedance < at $1.8 \mathrm{k} \Omega$
		30	-	∞	$\mu \mathrm{s}$	$1.8 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc}<2.7 \mathrm{~V}$ external impedance < at $14.8 \mathrm{k} \Omega$
Analog input current	IAIN	-0.3	-	+ 0.3	$\mu \mathrm{A}$	
Analog input voltage	$V_{\text {AIN }}$	AVss	-	AVR	V	
Reference voltage	-	AV ss +1.8	-	AVcc	V	AVR pin
Reference voltage supply current	In	-	400	600	$\mu \mathrm{A}$	AVR pin, During A/D operation
	Іre	-	-	5	$\mu \mathrm{A}$	AVR pin, At stop mode

MB95100A Series

(2) Notes on Using A/D Converter

- About the external impedance of analog input and its sampling time

- A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Also, if the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.
- Analog input equivalent circuit

During sampling: ON

$$
\begin{array}{ccc}
& \mathbf{R} & \text { C } \\
2.7 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc} \leq 3.6 \mathrm{~V} & 1.7 \mathrm{k} \Omega \text { (Max) } & 14.5 \mathrm{pF} \text { (Max) } \\
1.8 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc}<2.7 \mathrm{~V} & 84 \mathrm{k} \Omega \text { (Max) } & 25.2 \mathrm{pF} \text { (Max) }
\end{array}
$$

Note : The values are reference values.

- The relationship between external impedance and minimum sampling time

- About errors

As |AVR - AVss| becomes smaller, values of relative errors grow larger.

MB95100A Series

(3) Definition of A/D Converter Terms

- Resolution

The level of analog variation that can be distinguished by the A/D converter.
When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$.

- Linearity error (unit : LSB)

The deviation between the value along a straight line connecting the zero transition point ("00 00000000 " $\leftarrow \rightarrow$ "00 00000001 ") of a device and the full-scale transition point
("11 1111 1111" $\leftarrow \rightarrow$ "11 11111110") compared with the actual conversion values obtained.

- Differential linear error (Unit : LSB)

Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

- Total error (unit: LSB)

Difference between actual and theoretical values, caused by a zero transition error, full-scale transition error, linearity error, quantum error, and noise.

(Continued)

MB95100A Series

(Continued)

Zero transition error

Linearity error

$\begin{array}{r}\text { Linear error in } \\ \text { digital output } N\end{array}=\frac{\mathrm{V}_{\mathrm{NT}}-\left\{1 \mathrm{LSB} \times \mathrm{N}+\mathrm{V}_{\mathrm{OT}}\right\}}{1 \mathrm{LSB}}$

Full-scale transition error

Differential linear error

Differential linear error
\quad in digital output N

N : A/D converter digital output value
V_{NT} : A voltage at which digital output transits from ($\mathrm{N}-1$) to N .
$\mathrm{V}_{\text {от }}$ (Ideal value) $=\mathrm{AV}$ ss +0.5 LSB [V]
$\mathrm{V}_{\text {FST }}($ Ideal value $)=\mathrm{AVR}-1.5 \mathrm{LSB}[\mathrm{V}]$

MB95100A Series

6. Flash Memory Program/Erase Characteristics

Parameter	Value			Unit	Remarks	
	Min	Typ	Max			
Sector erase time (4K bytes sector)	-	$0.2^{\star 1}$	$3.0^{* 2}$	s	Excludes 00 н programming prior erasure.	
Sector erase time (16K bytes sector)	-	$0.5^{\star 1}$	$12.0^{\star 2}$	s	Excludes 00_{H} programming prior erasure.	
Byte programming time	-	32	3600	$\mu \mathrm{~s}$	Excludes system-level overhead.	
Program/erase cycle	10000	-	-	cycle		
Power supply voltage at program/erase	2.7	-	3.3	V		
Flash memory data retention time	$20^{\star 3}$	-	-	year	Average $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	

${ }^{*} 1: T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, 10000$ cycles
*2 $2 \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}, 10000$ cycles
*3 : This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at $+85^{\circ} \mathrm{C}$).

7. FRAM Program Characteristics

Parameter	Value			Unit	Remarks
	Min	Typ	Max		
Read/write cycle*	10^{10}	-	-	cycle	
Power supply voltage at read/write	2.7	-	3.6	V	
Data retension time	10	-	-	year	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

* : Number of data read/write

MB95100A Series

- MASK OPTION

No.	Part number	$\begin{gathered} \text { MB95107A } \\ \text { MB95R107A } \end{gathered}$	MB95F108AS MB95D108AS	$\begin{aligned} & \text { MB95F108AW } \\ & \text { MB95D108AW } \end{aligned}$	MB95FV100B-101
	Specifying procedure	Specify when ordering MASK	Setting disabled	Setting disabled	Setting disabled
1	Clock mode select ${ }^{\star 1}$ - Single-system clock mode - Dual-system clock mode	Selectable	Single-system clock mode	Dual-system clock mode	Changing by the switch on MCU board
2	FRAM ${ }^{* 1}$ - With load of FRAM - Without load of FRAM	Specify by part number	Specify by part number	Specify by part number	No
3	Low voltage detection reset ${ }^{* 2}$ - With low voltage detection reset - Without low voltage detection reset	No	No	No	No
4	Selection of oscillation stabilization wait time - Selectable the initial value of main clock oscillation stabilization wait time	Selectable 1 : $\left(2^{2}-2\right) / F_{\text {сн }}$ 2 : ($2^{12}-2$)/Fсн 3 : (2 $\left.2^{13}-2\right) /$ /Сс 4 : ($\left.2^{14}-2\right) / \mathrm{F}_{\text {ch }}$	Fixed to oscillation stabilization wait time of $\left(2^{14}-2\right) / \mathrm{FCH}_{\mathrm{CH}}$	Fixed to oscillation stabilization wait time of $\left(2^{14}-2\right) / F_{C H}$	Fixed to oscillation stabilization wait time of $\left(2^{14}-2\right) / \mathrm{F}_{\mathrm{CH}}$

*1 : Refer to table below about clock mode select and load of FRAM.
*2 : Low voltage detection reset is options of $5-\mathrm{V}$ products.

Part number	Clock mode select	Load of FRAM
MB95107A	Single-system	No
	Dual-system	No
MB95F108AS	Single-system	No
		Yes
MB95D108AS	Dual-system	No
MB95F108AW		Yes
MB95D108AW	Single-system	No
	Dual-system	No

MB95100A Series

ORDERING INFORMATION

Part number	Package	Remarks
MB95107APFV MB95F108ASPFV MB95F108AWPFV MB95R107APFV MB95D108ASPFV MB95D108AWPFV	64-pin plastic LQFP (FPT-64P-M03)	
MB95107APFM MB95F108ASPFM MB95F108AWPFM MB95R107APFM MB95D108ASPFM MB95D108AWPFM	64-pin plastic LQFP (FPT-64P-M09)	
MB2146-301 (MB95FV100B-101PBT)	$\begin{gathered} \text { MCU board } \\ \binom{\text { 224-pin plastic PFBGA }}{(\text { BGA-224P-M08 })} \end{gathered}$	

MB95100A Series

PACKAGE DIMENSIONS

(Continued)

MB95100A Series

(Continued)

64-pin plastic LQFP	Lead pitch	0.65 mm
Package width \times package length	$12 \times 12 \mathrm{~mm}$	
	Lead shape	Gullwing
Sealing method	Plastic mold	

64-pin plastic LQFP
 (FPT-64P-M09)

Note 1) *: These dimensions do not include resin protrusion.
Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder.

[^2]Dimensions in mm (inches).
Note: The values in parentheses are reference values.

MB95100A Series

The information for microcontroller supports is shown in the following homepage. http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: "Check Sheet" is seen at the following support page
 URL : http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

[^1]: N flag : Set to " 1 " if the MSB is set to " 1 " as the result of an arithmetic operation. Cleared to " 0 " when the bit is set to " 0 ".
 Z flag : Set to " 1 " when an arithmetic operation results in " 0 ". Cleared to " 0 " otherwise.
 V flag : Set to " 1 " if the complement on 2 overflows as a result of an arithmetic operation. Cleared to " 0 " otherwise.
 C flag : Set to " 1 " when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. Set to the shift-out value in the case of a shift instruction.

[^2]: (c) 2003 FUJITSU LIMITED F64018S-c-3-5

