INTEGRATED CIRCUITS

Preliminary specification

2001 Apr 06

Philips Semiconductors

P87C51MB2/P87C51MC2

GENERAL DESCRIPTION

The P87C51Mx2 represents the first microcontroller based on Philips Semiconductors' new 51MX core. The P87C51MC2 features 96 Kbytes of OTP program memory and 3 Kbytes of data SRAM, while the P87C51MB2 has 64 Kbytes of OTP and 2 Kbytes of RAM. In addition, both devices are equipped with a Programmable Counter Array (PCA), a watchdog timer that can be configured to different time ranges through SFR bits, as well as two enhanced UARTs or one enhanced UART and an SPI.

Philips Semiconductors' 51MX (Memory eXtension) core is an accelerated 80C51 architecture that executes instructions at twice the rate of standard 80C51 devices. The linear address range of the 51MX has been expanded to support up to 8 Mbytes of program memory and 8Mbytes of data memory. It retains full program code compatibility to enable design engineers to re-use 80C51 development tools, eliminating the need to move to a new, unfamiliar architecture. The 51MX core also retains 80C51 bus compatibility to allow for the continued use of 80C51-interfaced peripherals and Application Specific Integrated Circuits (ASICs).

The P87C51Mx2 provides greater functionality, increased performance and overall lower system cost. By offering an embedded memory solution combined with the enhancements to manage the memory extension, the P87C51Mx2 eliminates the need for software work-arounds. The increased program memory enables design engineers to develop more complex programs in a high-level language like C, for example, without struggling to contain the program within the traditional 64 Kbytes of program memory. These enhancements also greatly improve C Language efficiency for code size below 64 Kbytes.

The 51MX core is described in more details in the 51MX Architecture Reference.

KEY FEATURES

- Extended features of the 51MX Core:
 - 23-bit program memory space and 23-bit data memory space linear program and data address range expanded to support up to 8 Mbytes each
 - Program counter expanded to 23 bits
 - Stack pointer extended to 16 bits enabling stack space beyond the 80C51 limitation
 - New 23-bit extended data pointer and two 24-bit universal pointers greatly improve C compiler code efficiency in using pointers to access variables in different spaces.
- 100% binary compatibility with the classic 80C51 so that existing code is completely reusable
- Up to 24 MHz CPU clock with 6 clock cycles per machine cycle
- 96 Kbytes or 64 Kbytes of on-chip OTP
- 3 Kbytes or 2 Kbytes of on-chip RAM
- Programmable Counter Array (PCA)
- Two full-duplex enhanced UARTs
- Industry-standard Serial Peripheral Interface (SPI)

KEY BENEFITS

- Increases program/data address range to 8 Mbytes each
- Enhances performance and efficiency for C programs
- Fully 80C51-compatible microcontroller
- Provides seamless and compelling upgrade path from classic 80C51
- · Preserves 80C51 code base, investment/knowledge, and peripherals & ASICs
- Supported by 80C51 development and programming tools (Keil, Nohau, BP Micro, etc.)
- The P87C51Mx2 makes it possible to develop applications at a lower cost and with a reduced time-to-market

P87C51MB2/P87C51MC2

COMPLETE FEATURES

- · Fully static
- Up to 24 MHz CPU clock with 6 clock cycles per machine cycle
- 96 Kbytes or 64 Kbytes of on-chip OTP
- 3 Kbytes or 2 Kbytes of on-chip RAM
- 23-bit program memory space and 23-bit data memory space
- Four-level interrupt priority
- 34 I/O lines (5 ports)
- Three Timers: Timer0, Timer1 and Timer2
- Two full-duplex enhanced UARTs with baud rate generator
- Framing error detection
- · Automatic address recognition
- Supports industry-standard Serial Peripheral Interface (SPI) with a baud rate up to 6 Mbits/sec
- Power control modes
- · Clock can be stopped and resumed
- Idle mode
- Power down mode
- Second DPTR register
- · Asynchronous port reset
- Programmable Counter Array (PCA) (compatible with 8xC51Rx+) with five Capture/Compare modules
- Low EMI (inhibit ALE)
- Watchdog timer with programmable prescaler for different time ranges (compatible with 8xC66x with added prescaler)

ORDERING INFORMATION

		MEMORY		TEMPERATURE			FREQ			
	PART ORDER NUMBER	ОТР	RAM	RANGE AND PACKAGE	RANGE		V _{DD} = 2.7-5.5V	V _{DD} = 4.5-5.5V	DWG #	
1	P87C51MB2BA	64 KB	2048 B	0 to +70°C, PLCC44	2.7-5.5V	4.5-5.5V	0-12MHz	0-24MHz	SOT187-2	
2	P87C51MC2BA	96 KB	3072 B	0 to +70°C, PLCC44	2.7-5.5V	4.5-5.5V	0-12MHz	0-24MHz	SOT187-2	

P87C51MB2/P87C51MC2

LOGIC SYMBOL

P87C51MB2/P87C51MC2

PIN CONFIGURATION

	Pin	Function	Pin	Function
	1	$(NC/V_{SS})^1$	23	$(NC/V_{DD})^1$
PLCC44	2	P1.0/T2	24	P2.0/A8/A16
1 20044	3	P1.1/T2EX	25	P2.1/A9/A17
6 1 40	4	P1.2/ECI	26	P2.2/A10/A18
	5	P1.3/CEX0	27	P2.3/A11/A19
7 39	6	P1.4/CEX1/MOSI	28	P2.4/A12/A20
	7	P1.5/CEX2/SPICLK	29	P2.5/A13/A21
PLASTIC	8	P1.6/CEX3	30	P2.6/A14/A22
LEADED CHIP CARRIER	9	P1.7/CEX4	31	P2.7/A15
	10	RST	32	PSEN
47	11	P3.0/RXD0	33	ALE
29	12	P4.0/RXD1/MISO ¹	34	$P4.1/TXD1/\overline{SS}^1$
18 28	13	P3.1/TXD0	35	EA/Vpp
	14	P3.2/INT0	36	P0.7/AD7
	15	P3.3/INT1	37	P0.6/AD6
	16	P3.4/T0	38	P0.5/AD5
	17	P3.5/T1	39	P0.4/AD4
	18	P3.6/WR	40	P0.3/AD3
	19	P3.7/RD	41	P0.2/AD2
	20	XTAL2	42	P0.1/AD1
	21	XTAL1	43	P0.0/AD0
	22	Vss	44	Vnn

1. Pins 1, 12, 23, 34 were not internally connected in some derivatives. Please refer to section on Pin Descriptions for details.

P87C51MB2/P87C51MC2

BLOCK DIAGRAM

P87C51MB2/P87C51MC2

PIN DESCRIPTIONS

MNEMONIC	PIN NO.	TYPE	NAME AN	NAME AND FUNCTION						
P0.0 - P0.7	43 - 36	I/O	Port 0: Por them float a order addre application	Yort 0: Port 0 is an open drain, bidirectional I/O port. Port 0 pins that have 1s written to hem float and can be used as high-impendance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application, it uses strong internal pull-ups when emitting 1s.						
P1.0 - P1.7	2 - 9	I/O	Port 1: Port that have 1 inputs. As i the internal P1.5 are di	Fort 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups on all pins. Port 1 pins hat have 1s written to them are pulled high by the internal pull-ups and can be used as apputs. As inputs, port 1 pins that are externally pulled low will source current because of the internal pull-ups. (Note: When SFR bit SPEN (SPCTL.6) is '1', the pull-ups at P1.4 and '1.5 are disabled.)						
	2	I/O	P1.0	T2	Timer/Counter 2 external count input/Clockout					
	3	Ι	P1.1	T2EX	Timer/Counter 2 Reload/Capture/Direction Control					
	4	I	P1.2	ECI	External Clock Input to the PCA					
	5	I/O	P1.3	CEX0	Capture/Compare External I/O for PCA module 0					
	6	I/O	P1.4	CEX1	Capture/Compare External I/O for PCA module 1 (with pull-up on pin)					
		I/O		MOSI SPI Master Out/Slave In (Selected when SFR bit SPEN is '1', in which case the pull-up for this pin is disabled)						
	7	I/O	P1.5	P1.5 CEX2 Capture/Compare External I/O for PCA module 2 (with pin)						
		I/O		SPICLK SPI Clock (Selected when SFR bit SPEN (SPCTL.6) is case the pull-up for this pin is disabled)						
	8	I/O	P1.6	P1.6 CEX3 Capture/Compare External I/O for PCA module 3						
	9	I/O	P1.7	CEX4	Capture/Compare External I/O for PCA module 4					
P2.0 - P2.7	24 - 31	I/O	Port 2: Por written to the inputs, port internal pul address by external da (MOVX @E 1s. During emits the c Note that we when ALE	t 2 is a 8-bit nem are pull 2 pins that I-ups. (See te during fei ta memory EPTR, EMO accesses to ontents of th then 23-bit a is High, and	t bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s led high by the internal pull-ups and can be used as inputs. As are externally being pulled low will source current because of the DC Electrical Characteristics: I_{IL}). Port 2 emits the high-order tches from external program memory and during accesses to that use 16-bit addresses (MOVX @ DPTR) or 23-bit addresses V). In this application, it uses strong internal pull-ups when emitting external data memory that use 8-bit addresses (MOV @ Ri), port2 he P2 Special Function Register.					
	44.40.40	1/0	Address bit	A15 is outp	but on P2.7 regardless of ALE.					
P3.U - P3.7	11,13 -19	1/0	written to the inputs, port pull-ups.	a an a-b nem are pull 3 pins that	led high by the internal pull-ups and can be used as inputs. As are externally pulled low will source current because of the internal					
	11	Ι	P3.0	RXD0	Serial input port 0					
	13	0	P3.1	TXD0	Serial output port 0					
	14	Ι	P3.2	INT0	External interrupt 0					
	15	Ι	P3.3	INT1	External interrupt 1					
	16	Ι	P3.4	Т0	Timer0 external input					
	17	Ι	P3.5	T1	Timer1 external input					
	18	0	P3.6	WR	External data memory write strobe					
	19	0	P3.7	RD	External data memory read strobe					

2001 Apr 06

MNEMONIC	PIN NO.	TYPE	NAME ANI	AME AND FUNCTION						
P4.0 - P4.1	12,34	I/O	Port 4: Port that have 1 inputs. As i the internal pins are dis	t 4 is an 8-b s written to nputs, port 4 pull-ups. (N sabled.)	it bidirectional I/O port with internal pull-ups on all pin. Port 4 pins them are pulled high by the internal pull-ups and can be used as 4 pins that are externally pulled low will source current because of lote: When SFR bit SPEN (SPCTL.6) is '1', the pull-ups at these port					
	12	I	P4.0	RXD1	Serial input port 1. (Note: This pin is a no connect pin on some derivatives.) (with pull-up on pin)					
		I/O		 MISO SPI Master In/Slave Out (Selected when SFR bit SPEN is '1', in which case the pull-up for this pin is disabled) TXD1 Serial output port 1. (Note: This pin is a no connect pin 						
	34	0	P4.1	TXD1	Serial output port 1. (Note: This pin is a no connect pin on some derivatives.) (with pull-up on pin)					
		I		SS	SPI Slave Select (Selected when SFR bit SPEN (SPCTL.6) is '1', in which case the pull-up for this pin is disabled)					
RST	10	Ι	Reset: A hi device. An capacitor to	igh on this p internal diffu V _{DD.}	in for two machine cycles while the oscillator is running, resets the used resistor to ${\rm V}_{\rm SS}$ permits a power-on reset using only an external					
ALE	33	0	Address L access to e the oscillato pulse is ski '0', ALE is e be active o	Idress Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 e oscillator frequency, and can be used for external timing or clocking. Note that one ALE ilse is skipped during each access to external data memory. If SFR bit AO (AUXR.0) is , ALE is emitted at the constant rate as indicated above. With this bit set to '1', ALE will e active only during a MOVX instruction.						
PSEN	32	0	Program S code from t except that memory. P	Program Store Enable: The read strobe to external program memory. When executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.						
EA/Vpp	35	Ι	External A to enable th high, the de latched who	ccess Enation the device to evice execution on RST is re	ble/Programming Supply Voltage: EA must be externally held low fetch code from external program memory locations. If EA is held tes from internal program memory. The value on the EA pin is beleased and any subsequent changes have no effect.					
XTAL1	21	I	Crystal 1: circuits.	Input to the i	inverting oscillator amplifier and input to the internal clock generator					
XTAL2	20	0	Crystal 2:	Output from	the inverting oscillator amplifier.					
V _{SS}	22	Ι	Ground: 0	V reference.						
V _{DD}	44	Ι	Power Sup Power Dow	ply: This is n modes.	the power supply voltage for normal operation as well as Idle and					
(NC/V _{SS})	1	Ι	No Connect connected pins is not in V _{DD} pins to system-leve	No Connect/Ground: This pin is a no connect pin on some derivatives, but is internally connected to V_{SS} on the P87C51Mx2. If connected externally, this pin must only be connected to the same V_{SS} as at pin 22. (Note: Connecting the second pair of V_{SS} and V_{DD} bins is not required. However, they may be connected in addition to the primary V_{SS} and V_{DD} pins to improve power distribution, reduce noise in output signals, and improve system-level EMI characteristics.)						
(NC/V _{DD})	23	I	No Connect internally connect be connect V_{DD} pins is and V_{DD} pins system-level	ct/Power Su connected to ed to the sa not required ns to improve el EMI chara	upply: This pin is a no connect pin on some derivatives, but is V_{DD} on the P87C51Mx2. If connected externally, this pin must only me V_{DD} as at pin 44. (Note: Connecting the second pair of V_{SS} and d. However, they may be connected in addition to the primary V_{SS} <i>v</i> e power distribution, reduce noise in output signals, and improve acteristics.)					

80C51 8-bit microcontroller family with extended memory

64KB/96KB OTP with 2KB/3KB RAM

P87C51MB2/P87C51MC2

SPECIAL FUNCTION REGISTERS

Note: Special Function Register (SFR) accesses are restricted in the following ways:

1. User must NOT attempt to access any SFR locations not defined.

- 2. SFR bits labeled '-', '0' or '1' can ONLY be written and read as follows:
 - '-' MUST be written with '0', but can return any value when read (even if it was written with '0'). It is a reserved bit and may be used in future derivatives.
 - '0' MUST be written with '0', and will return a '0' when read.
 - '1' MUST be written with '1', and will return a '1' when read.

Special Function Registers

SYMBOL	DESCRIPTION	DIRECT ADDRESS	MSB	BIT ADD	RESS, SYI	MBOL, OR A	ALTERNAT	E PORT FU	INCTION	LSB	Reset Value
			E7	E6	E5	E4	E3	E2	E1	E0	
ACC*	Accumulator	E0H									00H
					1	1	1	1			
AUXR#	Auxiliary Function Register	8EH	-	-	-	-	-	-	EXTRAM	AO	00H%
AUXR1#	Auxiliary Function Register 1	A2H	-	-	-	LPEP	GF2	0	-	DPS	00H%
			F7	F6	F5	F4	F3	F2	F1	F0	
В*	B Register	F0H									00H
BRGR0#8	Baud Rate Generator Rate Low	86H‡	BRATE11	BRATE10	BRATE9	BRATE8	BRATE7	BRATE6	BRATE5	BRATF4	00H
BRGR1#§	Baud Rate Generator Rate High	87H [‡]	BRATE3	BRATE2	BRATE1	BRATE0	-	-	-	-	00H [%]
- 0	, , , , , , , , , , , , , , , , , , ,										
BRGCON#	Baud Rate Generator Control	85H‡	-	-	-	-	-	-	SOBRGS	BRGEN	00H%
CCAP0H#	Module 0 Capture High	FAH									ХХН
CCAP1H#	Module 1 Capture High	FBH									ХХН
CCAP2H#	Module 2 Capture High	FCH									XXH
ССАРЗН#	Module 3 Capture High	FDH									XXH
CCAP4H#	Module 4 Capture High	FEH									XXH
CCAP0L#	Module 0 Capture Low	EAH									XXH
CCAP1L#	Module 1 Capture Low	EBH									XXH
CCAP2L#	Module 2 Capture Low	ECH									XXH
CCAP3L#	Module 3 Capture Low	EDH									XXH
CCAP4L#	Module 4 Capture Low	EEH									XXH
CCAPM0#	Module 0 Mode	DAH	-	ECOM_0	CAPP_0	CAPN_0	MAT_0	TOG_0	PWM_0	ECCF_0	00H ⁷
CCAPM1#	Module 1 Mode	DBH	-	ECOM_1	CAPP_1	CAPN_1	MAT_1	TOG_1	PWM_1	ECCF_1	00H [%]
CCAPM2#	Module 2 Mode	DCH	-	ECOM_2	CAPP_2	CAPN_2	MAT_2	TOG_2	PWM_2	ECCF_2	00H%
CCAPM3#	Module 3 Mode	DDH	-	ECOM_3	CAPP_3	CAPN_3	MAT_3	TOG_3	PWM_3	ECCF_3	00H%
CCAPM4#	Module 4 Mode	DEH	-	ECOM_4	CAPP_4	CAPN_4	MAT_4	TOG_4	PWM_4	ECCF_4	00H [%]

P87C51MB2/P87C51MC2

Special Function Registers (Continued)

SYMBOL	DESCRIPTION	DIRECT ADDRESS	MSB	BIT ADD	RESS, SYI	MBOL, OR A	ALTERNAT	E PORT FL	INCTION	LSB	Reset Value
			DF	DE	DD	DC	DB	DA	D9	D8	
CCON#	PCA Counter Control	D8H	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	00H%
CH#	PCA Counter High	F9H									00H
CL#	PCA Counter Low	E9H		1							00H
CMOD#	PCA Counter Mode	D9H	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF	00H%
DPTR	Data Pointer (2 bytes)										00H
DPH	Data Pointer High	83H									00H
DPL	Data Pointer Low	82H									00H
EPL#	Extended Data Pointer Low	FCH [‡]									00H
EPM#	Extended Data Pointer Middle	FDH [‡]									00H
EPH#	Extended Data Pointer High	FEH [‡]									00H
			AF	AE	AD	AC	AB	AA	A9	A8	
IEN0*	Interrupt Enable 0	A8H	EA	EC	ET2	ES0/ ES0R	ET1	EX1	ET0	EX0	00H
	Interrupt Enchle 1	-	EF	EE	ED	EC	EB	EA	E9	E8	
		E8H	-	-	-	-	ESPI	ES1T	ES0T	ES1R	00H [%]
			BF	BE	BD	BC	BB	BA	B9	B8	
IP0*	Interrupt Priority	B8H	-	PPC	PT2	PS0/ PS0R	PT1	PX1	PT0	PX0	00H
				1					1		
IP0H	Interrupt Priority 0 High	B7H	-	PPCH	PT2H	PS0H/ PS0RH	PT1H	PX1H	PT0H	PX0H	00H
			FF	FE	FD	FC	FB	FA	F9	F8	
IP1*	Interrupt Priority 1	F8H	-	-	-	-	PSPI	PS1T	PS0T	PS1/ PS1R	00H%
				1							
IP1H	Interrupt Priority 1 High	F7H	-	-	-	-	PSPIH	PS1TH	PS0TH	PS1H/ PS1RH	00H [%]
MXCON#	MX Control Register	FFH [‡]	-	1.	-	-	-	EAM	ESMM	EIFM	00H [%]
											1
			87	86	85	84	83	82	81	80	
P0*	Port 0	80H	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	FFH
			97	96	95	94	93	92	91	90	
P1*	Port 1	90H	CEX4	CEX3	CEX2/ SPICLK	CEX1/ MOSI	CEX0	ECI	T2EX	T2	FFH

2001 Apr 06

P87C51MB2/P87C51MC2

Special Function Registers (Continued)

SYMBOL	DESCRIPTION	DIRECT ADDRESS	MSB	BIT ADD	DRESS, SY	MBOL, OR A	ALTERNAT	E PORT F	UNCTION	LSB	Reset Value
			A7	A6	A5	A4	A3	A2	A1	A0	
P2*	Port 2	A0H	AD15	AD14/ AD22	ADA13/ AD21	AD12/AD20	AD11/ AD19	AD10/ AD18	AD9/ AD17	AD8/ AD16	FFH
			B7	B6	B5	B4	B3	B2	B1	B0	
P3*	Port 3	B0H	RD	WR	T1	Т0	INT1	INT0	TxD0	RxD0	FFH
			C7‡	C6 [‡]	C5 [‡]	C4 [‡]	C3‡	C2 [‡]	C1 [‡]	C0‡	
P4*#	Port 4	C0H‡	-	-	-	-	-	-	TxD1/SS	RxD1/ MISO	FFH
PCON#	Power Control Register	87H	SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL	00H/10H ⁸
			D7	D6	D5	D4	D3	D2	D1	D0	_
PSW*	Program Status Word	D0H	CY	AC	F0	RS1	RS0	OV	F1	Р	00H
RCAP2H#	Timer2 Capture High	СВН									00H
RCAP2L#	Timer2 Capture Low	CAH	0E	05	مە	00	OR	0.0	00	08	00H
S0CON*	Serial Port 0 Control	98H	SM0_0/ FE_0	9∟ SM1_0	SM2_0	REN_0	5B TB8_0	RB8_0	55 TI_0	80 RI_0	00H
S0BUF	Serial Port 0 Data Buffer Register	99H									ххH
SOADDR	Serial Port 0 Address Register	A9H									00H
SOADEN	Serial Port 0 Address Enable	B9H									00H
S0STAT#	Serial Port 0 Status	8CH [‡]	DBMOD_ 0	INTLO_0	CIDIS_0	DBISEL_0	FE_0	BR_0	OE_0	STINT_0	00H [%]
			87 [‡]	86 [‡]	85 [‡]	84 [‡]	83 [‡]	82 [‡]	81 [‡]	80 [‡]	
S1CON#*	Serial Port 1 Control	80H [‡]	SM0_1/ FE_1	SM1_1	SM2_1	REN_1	TB8_1	RB8_1	TI_1	RI_1	00H
S1BUF#	Serial Port 1 Data buffer Register	81H [‡]									ХХН
S1ADDR#	Serial Port 1 Address Register	82H [‡]									00H
S1ADEN#	Serial Port 1 Address Enable	83H [∓]		1	1	1		1		1	00H
S1STAT#	Serial Port 1 Status	84H [‡]	DBMOD_ 1	INTLO_1	CIDIS_1	DBISEL1	FE_1	BR_1	OE_1	STINT_1	00H%
SP	Stack Pointer (or Stack Pointer Low Byte When EDATA Supported)	81H									08H
SPCTL#	SPI Control Register	E2H	SSIG	SPEN	DORD	MSTR	CPOL	CPHA	-	-	00H%
SPCFG#	SPI Configuration Register	E1H	SPIF	SPWCOL	-	-	PSC3	PSC2	PSC1	PSC0	00H%
SPDAT#	SPI Data	E3H			1	L			1		00H
SPE#	Stack Pointer High	FBH [‡]									00H

2001 Apr 06

P87C51MB2/P87C51MC2

Special Function Registers (Continued)

DESCRIPTION	DIRECT		BIT ADD	RESS, SY	MBOL, OR	ALTERNAT	E PORT FU	INCTION		Reset
	ADDRESS	MSB							LSB	Value
		8F	8E	8D	8C	8B	8A	89	88	
Timer Control Register	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00H
					•			•		
		CF	CE	CD	CC	СВ	CA	C9	C8	
Timer2 Control Register	C8H	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00H
Timer2 Mode Control	C9H	-	-	-	-	-	-	T2OE	DCEN	00H [%]
Timer 0 High	8CH									00H
Timer 1 High	8DH									00H
Timer 2 High	CDH									00H
Timer 0 Low	8AH									00H
Timer 1 Low	8BH									00H
Timer 2 Low	ССН									00H
Timer 0 and 1 Mode	89H	GATE	C/T	M1	M0	GATE	C/T	M1	M0	00H
Watchdog Timer Reset	A6H									FFH
Watchdog Timer Control	8FH [‡]	-	-	-	-	-	WDPRE2	WDPRE1	WDPRE0	00H%
	DESCRIPTION Timer Control Register Timer2 Control Register Timer2 Mode Control Timer 0 High Timer 0 High Timer 1 High Timer 2 High Timer 0 Low Timer 1 Low Timer 1 Low Timer 2 Low Timer 0 and 1 Mode Watchdog Timer Reset Watchdog Timer Control	DESCRIPTIONDIRECT MDDRESSTimer Control Register88HTimer2 Control RegisterC8HTimer2 Mode ControlC9HTimer 0 High8CHTimer 1 High8DHTimer 1 Low8AHTimer 1 Low8BHTimer 2 LowCCHTimer 0 and 1 Mode89HWatchdog Timer Control8FH [‡]	DESCRIPTIONDIRECT ADDRESSMSBTimer Control Register88H1F1Timer Control RegisterCFCFTimer2 Control RegisterC8H1F2Timer2 Mode ControlC9H-Timer 0 High8CH-Timer 1 High8DH-Timer 2 HighCDH-Timer 1 Low8BH-Timer 2 LowCCH-Timer 0 and 1 Mode89HGATEWatchdog Timer Control8FH [‡] -Watchdog Timer Control8FH [‡] -	DESCRIPTIONDIRECT MDRESSBIT ADD MSBTimer Control Register88H8F8ETimer 2 Control RegisterCFCETimer 2 Mode ControlC9HTimer 0 High Timer 1 High8CH MBHTimer 1 High Timer 1 Low Timer 2 Low8BH CCHTimer 0 and 1 Mode89HGATEC/TWatchdog Timer Control8FH‡	DESCRIPTIONDIRECT ADDRESSBIT ADDRESS, SYI MSBTimer Control Register $8F$ $8E$ $8D$ Timer2 Control Register $C8H$ $TF1$ $TR1$ $TF0$ Timer2 Mode Control $C9H$ $ -$ Timer 0 High $8CH$ $ -$ Timer 1 High $8DH$ $ -$ Timer 1 Low $8BH$ CCH $ -$ Timer 1 Low $8BH$ $ -$ Timer 0 and 1 Mode $89H$ $GATE$ C/T $M1$ Watchdog Timer Control $8FH^{\ddagger}$ $ -$	DESCRIPTIONDIRECT ADDRESSBIT ADDRESS, SYMBOL, OR MSBTimer Control Register88H8F8E8D8CTimer2 Control RegisterC8HTF1TR1TF0TR0Timer2 Mode ControlC9HTimer 0 High Timer 1 High8CH Timer 1 Low8CH Timer 1 Low8CH Timer 1 LowTimer 0 Low8AH Timer 1 Low8BH Timer 1 LowCCHTimer 0 and 1 Mode89HGATEC/TM1M0Watchdog Timer ResetA6H HWatchdog Timer Control8FH [‡]	DESCRIPTIONDIRECT ADDRESSBIT ADDRESS, SYMBOL, OR ALTERNAT MSBTimer Control Register88F8F8E8D8C8BTf1TR1TF0TR0IE1Timer2 Control RegisterC8HTF2EXF2RCLKTCLKEXEN2Timer2 Mode ControlC9H $ -$ Timer 0 High8CH $ -$ Timer 0 High8CH $ -$ Timer 0 High8CH $ -$ Timer 1 High8DHCDH $ -$ Timer 1 Low8AHBHH $ -$ Timer 0 and 1 Mode89HGATEC/TM1M0GATEWatchdog Timer Control8FH [‡] $ -$ Watchdog Timer Control8FH [‡] $ -$	DESCRIPTION DIRECT MSB BIT ADDRESS, SYMBOL, OR ALTERNATE PORT FL MSB Timer Control Register 88H 8F 8E 8D 8C 8B 8A Timer Control Register 88H TF1 TR1 TF0 TR0 IE1 IT1 Timer2 Control Register C8H TF2 EXF2 RCLK TCLK EXEN2 TR2 Timer2 Mode Control C9H -	DESCRIPTIONDIRECT MDRESSBIT ADDRESS, SYMBOL, OR ALTERNATE PORT FUNCTION MSBTime Control Register884898080888489Timer Control Register687CECDTR01E11T11E0Timer2 Control RegisterC8H7F1TR1TF0TCKCBCAC9Timer2 Mode ControlC9HCCCBCAC9Timer 0 High8CHT20ETimer 0 High8DHCDHT20ETimer 0 High8CHT20ETimer 0 High8DHCDHT20ETimer 0 Low8DHCDHMITimer 1 Low8DHCHMITimer 0 and 1 Mode89HGATEC/TM1M0GATEC/TMIWatchdog Timer Control8FH*Watchdog Timer Control8FH*Watchdog Timer Control8FH*Matchdog Timer Control8FH*Matchdog Timer Control8FH* <t< td=""><td>DESCRIPTION DIRECT MDDRESS BIT ADDRESS, SYMBUL, OR ALTERNATE PORT FUNCTION MSB LSB Time Control Register $88H$ $8F$ $8E$ $8D$ $8C$ $8B$ $8A$ 89 $8R$ Timer Control Register $88H$ $7F1$ $TR1$ $TF0$ $TR0$ $IE1$ $IT1$ $IE0$ $T00$ Timer Control Register CB CF CE CD CC CB CA $C9$ $C8$ Timer Control Register CBH $TT2$ $EXF2$ $RCLK$ $TCLK$ $EXEN2$ $TR2$ $CT2$ $CPRI2$ Timer 2 Mode Control $C9H$ CP C C CB CA $C9$ $C8$ Timer 0 High $8CH$ CH T T</td></t<>	DESCRIPTION DIRECT MDDRESS BIT ADDRESS, SYMBUL, OR ALTERNATE PORT FUNCTION MSB LSB Time Control Register $88H$ $8F$ $8E$ $8D$ $8C$ $8B$ $8A$ 89 $8R$ Timer Control Register $88H$ $7F1$ $TR1$ $TF0$ $TR0$ $IE1$ $IT1$ $IE0$ $T00$ Timer Control Register CB CF CE CD CC CB CA $C9$ $C8$ Timer Control Register CBH $TT2$ $EXF2$ $RCLK$ $TCLK$ $EXEN2$ $TR2$ $CT2$ $CPRI2$ Timer 2 Mode Control $C9H$ CP C C CB CA $C9$ $C8$ Timer 0 High $8CH$ CH T

Notes:

- * SFRs are bit addressable.
- # SFRs are modified from or added to the 80C51 SFRs.
- ‡ Extended SFRs accessed by preceeding the instruction with 51MX escape (opcode A5h).
- Reserved bits, must be written with 0's.
- & Power on reset is 10H. Other reset is 00H.
- § BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is '0'. If any of them is written if BRGEN = 1, result is unpredictable.
- % The unimplemented bits (labeled '-') in the SFRs are 'X's (unknown) at all times. '1's should NOT be written to these bits, as they may be used for other purposes in future derivatives. The reset values shown for these bits are '0's although they are unknown when read.

P87C51MB2/P87C51MC2

FUNCTIONAL DESCRIPTION

The following paragraphs briefly describe the features of the P87C51Mx2. For more detailed information, please refer to the P87C51Mx2 User Manual or the 51MX Architecture Reference.

INTERRUPTS

Table 1 summarizes the interrupt sources, flag bits, vector addresses, enable bits, priority bits, polling priority, and whether each interrupt may wake up the CPU from Power Down mode.

Description	Interrupt Flag Bit(s)	Vector Address	Interrupt Enable Bit(s)	Interrupt Priority	Polling Priority	Power Down Wakeup
External Interrupt 0	IE0	0003h	EX0 (IEN0.0)	IP0H.0, IP0.0	1 (highest)	Yes
Timer 0 Interrupt	TF0	000Bh	ET0 (IEN0.1)	IP0H.1, IP0.1	2	No
External Interrupt 1	IE1	0013h	EX1 (IEN0.2)	IP0H.2, IP0.2	3	Yes
Timer 1 Interrupt	TF1	001Bh	ET1 (IEN0.3)	IP0H.3, IP0.3	4	No
Serial Port 0 Tx and Rx ^{1,5}	TI_0 & RI_0 ⁵	00000			6	No
Serial Port 0 Rx ^{1,5}	RI_0 ⁵	00230	ESU(IEIN0.4)	IP0n.4, IP0.4	0	INO
Timer 2 Interrupt	TF2, EXF2	002Bh	ET2 (IEN0.5)	IP0H.5, IP0.5	7	No
PCA interrupt	CF, CCFn*	0033h	EC (IEN0.6)	IP0H.6, IP0.6	5	No
Serial Port 1 Tx and Rx ^{2,6}	TI_1 & RI_1 ⁶	00526			11	No
Serial Port 1 Rx ^{2,6}	RI_1 ⁶	00530	EST (IEINT.0)	IP1H.0, IP1.0	11	INO
Serial Port 0 Tx ³	TI_0	003Bh	EI10 (IEN1.1)	IP1H.1, IP1.1	8	No
Serial Port 1 Tx ⁴	TI_1	0043h	EI11 (IEN1.2)	IP1H.2, IP1.2	9	No
SPI Interrupt	SPI	004Bh	EI11 (IEN1.3)	IP1H.3, IP1.3	10	No
		005Bh	EI12 (IEN1.4)	IP1H.4, IP1.4	12	No
Papanyad		0063h	EI13 (IEN1.5)	IP1H.5, IP1.5	13	No
Reserveu		006Bh	EI13 (IEN1.6)	IP1H.6, IP1.6	14	No
		0073h	EI14 (IEN1.7)	IP1H.7, IP1.7	15 (lowest)	No

 S0STAT.5 = 0 selects combined Serial Port 0 Tx and Rx interrupt; S0STAT.5 = 1 selects Serial Port 0 Rx interrupt only (and TX interrupt will be different, see Note 3 below).

 S1STAT.5 = 0 selects combined Serial Port 1 Tx and Rx interrupt; S1STAT.5 = 1 selects Serial Port 1 Rx interrupt only (and TX interrupt will be different, see Note 4 below).

3. This interrupt is used as Serial Port 0 Tx interrupt if and only if S0STAT.5 = 1, and is disabled otherwise.

4. This interrupt is used as Serial Port 1 Tx interrupt if and only if S1STAT.5 = 1, and is disabled otherwise.

5. If SOSTAT.0 = 1, the following Serial Port 0 additional flag bits can cause this interrupt: FE_0, BR_0, OE_0.

6. If S1STAT.0 = 1, the following Serial Port 1 additional flag bits can cause this interrupt: FE_1, BR_1, OE_1.

 Table 1: Summary of Interrupts

P87C51MB2/P87C51MC2

DATA RAM

The P87C51MB2 and P87C51MC2 have 2 Kbytes and 3 K bytes of on-chip RAM respectively. Usages of the different data segments are described in the 51MX Architecture Reference.

	Data Memory	Size (in Bytes)		
Туре	Description	P87C51MB2	P87C51MC2	
DATA	memory that can be addressed directly and indirectly	128	128	
IDATA	memory that can be addressed indirectly (where direct address is for SFR only)	128	128	
EDATA	memory that can only be addressed indirectly	1024	1024	
XDATA	memory (on-chip "External Data") that is accessed using the MOVX instructions	768	1792	
	Total	2048	3072	

Table 2: On-Chip Data Memory Usage.

PORT 4

The P87C51Mx2 has a fifth I/O port (Port 4) that is shared with the second UART pins (RXD1 and TXD1) and two of the SPI pins (MISO and SS). This port is also bit addressable and can be accessed in the same manner as any other ports, except that the associated SFR is in the extended SFR space. Accesses to this SFR space is the same as those to the conventional SFR space except that the instructions must be preceeded by an escape code (A5h), as described in the 51MX Architecture Reference.

LOW POWER MODES

The P87C51Mx2 supports the standard 51MX low power modes - Stop Clock Mode, Idle Mode and Power-Down Mode.

The PCON register is the same as the standard 51MX PCON register. Note that bits PCON.7 and PCON.6 are for UART configurations (see section "UARTs").

ONCE[™] MODE

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems without the device having to be removed from the circuit. It is supported in the P87C51Mx2.

PERIPHERALS

The P87C51Mx2 peripherals are described in more detail in the User Manual. The on-chip peripherals include:

- Timers:
 - Timers 0 and 1.
 - Timer 2.

Note: When Timer 1 or Timer 2 can only be used as a baud rate generator for UART 0, but not for UART 1.

• Two enhanced UARTs with an independent Baud Rate Generator - The section "UARTs" provides information regarding the two UARTs.

Note: UART 1 shares the RXD1 and TXD1 with the SPI pins. The SPEN (SPCTL.6) bit must be cleared '0' (reset value) to enable UART 1 operation.

- Serial Peripheral Interface (SPI). **Note:** The SPI shares pins with the UART 1 shares the RXD1 and TXD1 with the SPI pins. The SPEN (SPCTL.6) bit must be set to '1' to enable SPI operation.
- Watchdog Timer.
- Programmable Counter Array (PCA).

2001 Apr 06

P87C51MB2/P87C51MC2

UARTS

P87C51Mx2 includes two enhanced UART ports with one independent Baud Rate Generator:

- UART 0 is the standard 51MX enhanced UART as described in the User Manual. It can be selected to use Timer1 overflow, Timer2 overflow or the independent Baud Rate Generator.
- UART 1 only uses the independent Baud Rate Generator to generate its baud rate. It has the same baud rate for both transmission and reception.
- The Baud Rate Generator is described in the User Manual.

Each of the UARTs has one set of enhanced UART SFRs. Please refer to the descriptions on the corresponding SFRs in the User Manual:

Register	Description	SFR Location	51MX Extended SFR Location	See Description in User Manual on
SOCON	Serial Port 0 Control	98H		SCON
SOBUF	Serial Port 0 Data Buffer	99H		SBUF
SOADDR	Serial Port 0 Address	A9H		SADDR
SOADEN	Serial Port 0 Address Enable	B9H		SADEN
SOSTAT	Serial Port 0 Status		8CH	SSTAT
S1CON	Serial Port 1 Control		80H	SCON
S1BUF	Serial Port 1 Data Buffer		81H	SBUF
S1ADDR	Serial Port 1 Address		82H	SADDR
S1ADEN	Serial Port 1 Address Enable		83H	SADEN
S1STAT	Serial Port 1 Status		84H	SSTAT

Table 3: UARTs 0 and 1 SFRs.

PCON.7 and PCON.6 SFR Bits

The PCON.7 and PCON.6 SFR bits configure the UARTs as follows:

- PCON.7 (SMOD1) Baud Rate Control bit for serial port 0. When 0, the baud rate for UART 0 will be the input rate (T1 timer or baud rate generator, as determined by the BRGCON extended SFR) divided by two. When 1, the baud rate for UART 0 will be the input rate (T1 timer or baud rate generator). UART 1 is not affected by this bit
- PCON.6 (SMOD0) Framing Error Location:
 - When 0, bit 7 of S0CON and S1CON will function as SM0 for UARTs 0 and 1 respectively.
 - When 1, bit 7 of S0CON and S1CON will be used for framing error status for UART 0 and 1 respectively. PCON.6 also determines when the UART receive interrupts RI_0 and RI_1 occur in UART modes 2 or 3. (Refer to User Manual for details.)

P87C51MB2/P87C51MC2

Baud Rate Selection

UART 0 and UART 1 selects the baud rate differently as shown in Tables 4 and 5:

S0CON.7 (SM0_0)	S0CON.6 (SM1_0)	T2CON.5/4 (RCLK - Receive TCLK - Transmit)	PCON.7 (SMOD1)	BRGCON.1 (S0BRGS)	Receive/Transmit Baud Rate for UART 0
0	0	Х	Х	Х	f _{OSC} /6
		0	0	Х	T1_rate/32 [*]
0	1	0	1	Х	T1_rate/16 [*]
0	I	1	Х	0	T2_rate/16 [*]
		1	Х	1	f _{OSC} /(BRATE×16+16) [*]
1	0	Х	0	Х	f _{OSC} /32
1	0	Х	1	Х	f _{OSC} /16
		0	0	Х	T1_rate/32 [*]
1	1	0	1	Х	T1_rate/16 [*]
1	I	1	Х	0	T2_rate/16 [*]
		1	Х	1	f _{OSC} /(BRATE×16+16) [*]
* UART0c	an have differ	ent receive and transm	nit baud rates.		

Table 4: Baud Rate Generation for UART 0. Use T2CON.5 (RCLK) in Receive Baud Rate Selection, T2CON.4 (TCLK) in Transmit Baud Rate Selection

S1CON.7 (SM0_1)	S1CON.6 (SM1_1)	Baud Rate for UART 1				
0	0	f _{OSC} /6				
0	1	f _{OSC} /(BRATE×16+16) [*]				
1	0	f _{OSC} /(BRATE×16+16) [*]				
1	1	f _{OSC} /(BRATE×16+16) [*]				
 UART 1 has the same receive and transmit baud rate. 						

Table 5: Baud Rate Generation for UART 1.

P87C51MB2/P87C51MC2

SECURITY BITS

The P87C51Mx2 has security bits to protect users' firmware codes. With none of the security bits programmed, the code in the program memory can be verified. With only security bit 1 (see Table 6) is programmed, MOVC instructions executed from external program memory are disabled from fetching code bytes from the internal memory. EA is latched on Reset and all further programming of EPROM is disabled. When security bits 1 and 2 are programmed, in addition to the above, verify mode is disabled. When all three security bits are programmed, all of the conditions above apply and all external program memory execution is disabled.

	Security Bits ^{1,2}			
	Bit 1	Bit 2	Bit 3	Protection Description
1	U	U	U	No program security features enabled. EEPROM is programmable and verifiable.
2	Р	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on Reset, and further programming of the EPROM is disabled.
3	Р	Р	U	Same as 2, also verification is disabled.
4	Р	Р	Р	Same as 3, external execution is disabled.
Notes: 1. P - p	orogramm	ed. U- un	program	med.

2. Any other combination of security bits is not defined.

Table 6: EPROM Security Bits

P87C51MB2/P87C51MC2

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Operating temperature under bias	-55 to +125	°C
Storage temperature range	-65 to +150	°C
Voltage on EA/V _{PP} pin to V _{SS}	0 to + 13.0	V
Voltage on any other pin to V _{SS}	-0.5 to V _{DD} +0.5V	V
Maximum I _{OL} per I/O pin	20	mA
Power dissipation (based on package heat transfer, not device power consumption)	1.5	W

Notes:

- 1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section of this specification are not implied.
- 2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.
- 3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.

P87C51MB2/P87C51MC2

DC ELECTRICAL CHARACTERISTICS

V_{DD} = 2.7V to 5.5V unless otherwise specified;

 $T_{amb} = 0$ to +70°C for commercial, unless otherwise specified.

CVMDOL	DADAMETED	TEST CONDITIONS	LIMITS				
STNBOL	PARAMETER	TEST CONDITIONS	MIN	TYP ¹	MAX	UNIT	
V _{IL}	Input low voltage		-0.5		0.2V _{DD} -0.1	V	
V _{IH}	In <u>put</u> high voltage (ports 0, 1, 2, 3, 4, EA)		0.2V _{DD} +0.9		V _{DD} +0.5	V	
V _{IH1}	Input high voltage, XTAL1, RST		0.7V _{DD}		V _{DD} +0.5	V	
V _{OL}	Output low voltage, ports 1, 2, 3, 4 ⁸	V _{DD} = 2.7V, I _{OL} = 1.6mA			0.4	V	
V _{OL1}	Output low voltage, port 0, ALE, PSEN ^{7,8}	V _{DD} = 2.7V, I _{OL} = 3.2mA			0.4	V	
V _{OH}	Output high voltage, ports 1, 2, 3, 4	$V_{DD} = 4.5V, I_{OH} = -30\mu A$ $V_{DD} = 2.7V, I_{OH} = -10\mu A$	V _{DD} - 0.7			V	
V _{OH1}	Output high voltage (port 0 in external bus mode), ALE ⁹ , PSEN ³	$V_{DD} = 2.7V, I_{OH} = -3.2mA$	V _{DD} - 0.7			V	
IIL	Logical 0 input current, ports 1, 2, 3, 4	$V_{IN} = 0.4V$	-1		-75	μA	
I _{TL}	Logical 1 -to-0 transition current, ports 1, 2, 3, 4 ⁸	4.5V < V _{DD} < 5.5V, V _{IN} = 2.0V, See Note 4			-650	μA	
I _{L1}	Input leakage current, port 0	$0.45 < V_{IN} < V_{DD}$ -0.3			±10	μA	
	Power supply current						
	Active mode (see Note 5)	V _{DD} = 5.5V			7 + 2.7 /MHz × f _{OSC}	mA	
		V _{DD} = 3.6V			4 + 1.3 /MHz × f _{OSC}		
I _{CC}		V _{DD} = 5.5V			4 + 1.3 /MHz × f _{OSC}		
	Tale mode (see Note 5)	V _{DD} = 3.6V			1 + 1.0 /MHz × f _{OSC}	mA	
	Power-down mode or clock	$V_{DD} = 5.0V$		20		μA	
	conditions)	$V_{DD} = 5.5V$			100	μA	
R _{RST}	Internal reset pull-down resistor		40		225	kΩ	
C ₁₀	Pin capacitance ¹⁰ (except \overline{EA})				15	pF	

Notes:

1. Typical ratings are not guaranteed. The values listed are at room temperature (+25°C), 5V, unless otherwise stated.

- 2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V_{OL} of ALE and ports 1, 3 and 4. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading>100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I_{OL} can exceed these conditions provided that no single output sinks more than 5mA and no more than two
- outputs exceed the test conditions. 3. Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the V_{DD}-0.7V specification when the address bits are stabilizing.
- Pins of ports 1, 2, 3 and 4 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when V_{IN} is approximately 2 V for 4.5V < V_{DD} < 5.5V.
- 5. See Figures 13 through 16 for I_{CC} test conditions. f_{OSC} is the oscillator frequency in MHz.
- 6. This value applies to $T_{amb} = 0^{\circ}C$ to +70°C.

P87C51MB2/P87C51MC2

7. Load capacitance for port 0, ALE, and $\overline{PSEN} = 100 \text{ pF}$, load capacitance for all other outputs = 80pF

8. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum I_{OL} per port pin:15 mAMaximum I_{OL} per 8-bit port:26 mA

Maximum total I_{OL} for all outputs: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

9. ALE is tested to V_{OH1}, except when ALE is off then V_{OH} is the voltage specification.

10. Pin capacitance is characterized but not tested.

P87C51MB2/P87C51MC2

AC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0$ to +70°C for commercial unless otherwise specified. ^{1,2,3}

ame			2.7V < VDD < 5.5V		4.5V < VDD < 5.5V						
SYMBOL	FIGURE(S)	PARAMETER	Variable Clock ⁴ f _{OSC} =12MHz ⁴		Variable	f _{OSC} =24MHz ⁴		UNIT			
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fosc		Oscillator frequency	0	12			0	24			MHz
t _{CLCL}	15	CLock cycle			83				41.5		ns
t _{LHLL}	1,2	ALE pulse width	t _{CLCL} -66		16		t _{CLCL} -33		8		ns
t _{AVLL}	1,2,3, 4,5,6	Address valid to ALE low	t _{CHCX} -25		8		t _{CHCX} -12		4		ns
t _{LLAX}	1,2,3, 4,5,6	Address hold after ALE low	t _{CLCX} -25		8		t _{CLCX} -12		4		ns
t _{LLIV}	1,2	ALE low to valid instruction in		2t _{CLCL} -108		58		2t _{CLCL} -54		29	ns
t _{LLPL}	1,2	ALE low to PSEN low	t _{CLCX} -25		8		t _{CLCX} -12		4		ns
t _{PLPH}	1,2	PSEN pulse width	t _{CLCL} +t _{CHCX} -66		50		t _{CLCL} +t _{CHCX} -33		25		ns
t _{PLIV}	1,2	PSEN low to valid instruction in		t _{CLCL} +t _{CHCX} -91		25		t _{CLCL} +t _{CHCX} -46		12	ns
t _{PXIX}	1,2	Input instruction hold after PSEN	0		0		0		0		ns
t _{PXIZ}	1,2	Input instruction float after PSEN		t _{CLCX} -25		8		t _{CLCX} -12		4	ns
t _{AVIV}	1	Address (A8-A15) to valid instruction in (non-Extended Addressing Mode)		2t _{CLCL} +t _{CHCX} -36		180		2t _{CLCL} +t _{CHCX} -28		81	ns
t _{AVIV1}	2	Address (A8-A15) to valid instruction in (Extended Addressing Mode)		t _{CLCL} +t _{CHCX} -44		89		2t _{CLCL} +t _{CHCX} -34		33	ns
t _{PLAZ}	1,2	PSEN low to address float		16		16		8		8	ns
Data Mem	ory		1								
t _{RLRH}	3,4	RD pulse width	3t _{CLCL} -166		83		3t _{CLCL} -83		41.5		ns
t _{WLWH}	5,6	WR pulse width	3t _{CLCL} -166		83		3t _{CLCL} -83		41.5		ns
t _{RLDV}	3,4	RD low to valid data in		2t _{CLCL} +t _{CHCX} -141		58		2t _{CLCL} +t _{CHCX} -70		29	ns
t _{RHDX}	3,4	Data hold after RD	0		0		0		0		ns
t _{RHDZ}	3,4	Data float after RD	Data float after RD t _{CLCL} -34			49		t _{CLCL} -17		24	ns
t _{LLDV}	3,4	ALE low to valid data in		4t _{CLCL} -250		83		4t _{CLCL} -125		41	ns
t _{AVDV}	3	Address (A8-A15) to valid data in (non-Extended Addressing Mode)		4t _{CLCL} +t _{CHCX} -36		346		^{4t} _{CLCL} +t _{CHCX} -28		164	ns
t _{AVDV1}	4	Address (A8-A15) to valid data in (Extended Addressing Mode)		3t _{CLCL} +t _{CHCX} -44		255		3t _{CLCL} +t _{CHCX} -34		116	ns
t _{LLWL}	3,4, 5,6	ALE low to \overline{RD} or \overline{WR} low	t _{CLCL} +t _{CLCX} -83	t _{CLCL} +t _{CLCX} +83		208	t _{CLCL} +t _{CLCX} -41	t _{CLCL} +t _{CLCX} +41		104	ns
t _{AVWL}	3,5	Address (A8-A15) valid to WR or RD low (non-Extended Addressing Mode)	2t _{CLCL} -15		151		2t _{CLCL} -20		63		ns
t _{AVWL1}	4,6	Address (A8-A15) valid to WR or RD low (Extended Addressing Mode)	t _{CLCL} -20		63		t _{CLCL} -25		16.5		ns
t _{QVWX}	5,6	Data valid to WR transition	t _{CLCX} -33		0		t _{CLCX} -16		0		ns
t _{WHQX}	5,6	Data hold after WR	t _{CHCX} -24		9		t _{CHCX} -11		5		ns
t _{QVWH}	5,6	Data valid to WR high	3t _{CLCL} +t _{CLCX} -207		75		3t _{CLCL} +t _{CLCX} -103		37.5		ns
t _{RLAZ}	3,4	RD low to address float		0		0		0		0	ns
t _{WHLH}	3,4, 5,6	RD or WR high to ALE high	t _{CHCX} -24	t _{CHCX} +25	9	75	t _{CHCX} -11	t _{CHCX} +12	5	37	ns
External C	External Clock						r				
t _{CHCX}	12	High time	33	t _{CLCL} -t _{CLCX}	33	50	16	t _{CLCL} -t _{CLCX}	16	24.5	ns
t _{CLCX}	12	Low time	33	t _{CLCL} -t _{CHCX}	33	50	16	t _{CLCL} -t _{CHCX}	16	24.5	ns
t _{CLCH}	12	Rise time		8		8		4		4	ns
t _{CHCL}	12	Fall Time		8		8		4		4	ns

P87C51MB2/P87C51MC2

			2.7V < VDD < 5.5V		4.5V < VDD < 5.5V						
SYMBOL	FIGURE(S)	PARAMETER	Variable Clock ⁴ f _{OSC} =12MHz ⁴		Variable Clock ⁴		f _{OSC} =24MHz ⁴		UNIT		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Shift Regi	ister	·	•				•				
t _{XLXL}	7	Serial port clock cycle time	6t _{CLCL}		500		6t _{CLCL}		250		ns
t _{QVXH}	7	Output data setup to clock rising edge	5t _{CLCL} -221		195		5t _{CLCL} -110		98		ns
t _{XHQX}	7	Output data hold after clock rising edge	t _{CLCL} -50		34		t _{CLCL} -25		17		ns
t _{XHDX}	7	Input data hold after clock rising edge	0		0		0		0		ns
t _{XHDV}	7	Clock rising edge to input data valid		5t _{CLCL} -222		195		5t _{CLCL} -111		97	ns
SPI Interfa	ace										
		Operating frequency									
f _{SPI}		- 3.0MHz	0	3.0	0	3.0	0	3.0	0	3.0	MHz
		- 6.0MHz	-	-	-	-	0	6.0	0	6.0	
		Cycle time									
t _{SPICYC}	8, 9, 10, 11	- 3.0MHz	333		333		333		333		ns
		- 6.0MHz	-		-		166		166		
		Enable lead time (Slave)									
t _{SPILEAD}	10, 11	- 3.0MHz	TBD		TBD		TBD		TBD		ns
		- 6.0MHz	-		-		TBD		TBD		
		Enable lag time (Slave)									
t _{SPILAG}	10, 11	- 3.0MHz	TBD		TBD		TBD		TBD		ns
		- 6.0MHz	-		-		TBD		TBD		
-		SPICLK high time									
t _{SPICLKH}	8, 9, 10, 11	- Master	TBD		TBD		TBD		TBD		ns
		- Slave	TBD		TBD		TBD		TBD		
		SPICLK low time									
t _{SPICI KI}	8, 9, 10, 11	- Master	TBD		TBD		TBD		TBD		ns
0. TOLICE		- Slave	TBD		TBD		TBD		TBD		
t _{SPIDSU}	8, 9, 10, 11	Data setup time (Master or Slave)	TBD		TBD		TBD		TBD		ns
t _{SPIDH}	8, 9, 10, 11	Data hold time (Master or Slave)	TBD		TBD		TBD		TBD		ns
t _{SPIA}	10, 11	Access time (Slave)		TBD		TBD		TBD		TBD	ns
0	,	Disable time (Slave)									
tepinis	10, 11	- 3.0MHz		TBD		TBD		TBD		TBD	ns
011010	,	- 6.0MHz		TBD		TBD		TBD		TBD	
		Enable to output data valid									
tepipy	8 9 10 11	- 3 0MHz		TBD		TBD		TBD		TBD	ns
GFIDV	0, 0, 10, 11	- 6 0MHz		-		-		TBD		TBD	
teniou	8 9 10 11	Output data hold time	0		0		0		0		ns
-35101	0, 0, 10, 11	Rise time	0		Ű		Ű		Ŭ		110
		- SPL outputs (SPICLK MOSL MISO)		TBD		TBD		TBD		TRD	
t _{SPIR}	8, 9, 10, 11	SPL inputs (SPICLK MOSL MISO)		TDD		100		TBD		. 50	ns
		$\frac{1}{SS}$ (SFIGER, WOSI, WISO,		TBD		TBD		TBD		TBD	
		Fall time									
teor	8, 9, 10, 11	- SPI outputs (SPICLK,MOSI, MISO)		TBD		TBD		TBD		TBD n	ns
-05115	2, 0, 10, 11	<u>- S</u> PI inputs (SPICLK,MOSI, MISO, SS)		TBD		TBD		TBD		TBD	

Notes:

1. Parameters are valid over operating temperature range unless otherwise specified.

2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.

3. Interfacing the microcontroller to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0 drivers.

4. Parts are tested down to 2 MHz, but are guaranteed to operate down to 0Hz.

P87C51MB2/P87C51MC2

EXPLANATION OF AC SYMBOLS

Each timing symbol has five characters. The first character is always 't' (= time). The other characters, depending on their positions, indicate the name of a signal or the logical status of that signal. The designations are:

- A Address
- C Clock
- D Input data
- H Logic level high
- I Instruction (program memory contents)
- L Logic level low, or ALE
- P PSEN
- Q Output data
- R RD signal
- t Time
- V Valid
- W- WR signal
- X No longer a valid logic level
- Z Float

Examples:

t_{AVLL} - Time for address valid to ALE low.

t_{LLPL} - Time for ALE low to PSEN low

Figure 1: External Program Memory Read Cycle (Non-Extended Memory Cycle)

Figure 2: External Program Memory Read Cycle (Extended Memory Cycle)

Figure 4: External Data Memory Read Cycle (Extended Memory Cycle)

Figure 5: External Data Memory Write Cycle (Non-Extended Memory Cycle)

Figure 6: External Data Memory Write Cycle (Extended Memory Cycle)

Figure 7: Shift Register Mode Timing

Figure 8: SPI Master Timing (CPHA = 0)

Figure 9: SPI Master Timing (CPHA = 1)

P87C51MB2/P87C51MC2

Figure 10: SPI Slave Timing (CPHA = 0)

Figure 11: SPI Slave Timing (CPHA = 1)

2001 Apr 06

Figure 12: External Clock Drive

Figure 13: I_{CC} Test Condition, Active Mode (All other pins are disconnected)

Figure 14: I_{CC} Test Condition, Idle Mode (All other pins are disconnected)

Figure 15: Clock Signal Waveform for I_{CC} Tests in Active and Idle Modes $t_{CLCH} = t_{CHCL} = 5$ ns

P87C51MB2/P87C51MC2

Figure 16: I_{CC} Test Condition, Power Down Mode (All other pins are disconnected, V_{DD} = 2.0V to 5.5V)

P87C51MB2/P87C51MC2

Data sheet status

Data sheet status	Product status	Definition ^[1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 2001 All rights reserved. Printed in U.S.A.

Date of release: 04-01

Document order number:

9397 750 08199

Let's make things better.

Errata sheet

P87C51MB2/P87C51MC2

FUNCTIONAL DEVIATIONS

Deviation #1

RxD1 pin is an open drain configuration.

Work-around:

A resistor must be used if this pin is to be used as an output. These pins will become port 4 on the next release fixing this issue.

Deviation #2

Port 4 does not exist for the RxD1 and TxD1 pins. DC parameters differ from standard port pins.

Work-around:

None. These pins will become port 4 on the next release.

Deviation #3

RxD1, TxD1, and ALE pins will not go into once mode.

Work-around:

None. This will be fixed on the next release.

Deviation #4

In the UART, the contents of RB8 and SBUF change when they shouldn't if SM2=1 in modes 2 and 3.

Work-around:

None. Will be fixed on the next release.

Deviation #5

The UART double buffering will be implemented on the next release.

Work-around:

None.

Deviation #6

SPI block will be implemented on the next release.

Work-around:

None.

Deviation #7

Security bits are not 100% compatible with past 80c51 products.

Work-around:

The security bits will be compatible on the next release.

Errata sheet

P87C51MB2/P87C51MC2

Deviation #8

UART mode 0 receive data is sampled one clock later than standard 80C51 UARTS.

Work-around:

This requires an increased data hold time. This will be fixed on the next release.

Deviation #9

The PCA Watchdog timer function may not function properly at 24 MHz f_{OSC} when the PCA Count Pulse selection is set to "internal clock, $f_{OSC}/2$ ".

Work-around:

None. This will be fixed on the next release.