

STRUCTURE

PRODUCT SERIES

TYPE PIN ASSIGNMENT BLOCK DIAGRAM PACKAGE

Functions

Silicon Monolithic Integrated Circuit

7-Channel Switching Regulator Controller for Digital Camera

BD9350MWV

Fig.1
Fig.1
Fig.2

• • • • • • •

- ●1.5V minimum input operating ●Sumplies power for the internal circuit by using charge_pump circuit
- Supplies power for the internal circuit by using charge-pump circuit which outputs a voltage twice bigger than VBATvoltage.

or a equal voltage as VBAT + VIN.

- Contains step-up converter(1ch), step-down converter(2ch), cross converter(1ch), configurable for step-up/step-down converter(1ch), with 32 step brightness controller for step-up converter(1ch).
- Contains 4FETs for the cross converter channel
- Schannels contain transistor for synchronous rectifying action mode.
- ●2channels contain FETs for the step-up converter.
- •All channels contain internal compensation between inputs outputs of error amps.
- Contains sequence control circuit for ch1,2 and 4.
- Operating frequency 1.2MHz(CH1~4), 600kHz(CH5~7).
- Contains output interception circuit when over load.
- ●2 channels have high side switches with soft start function, one channel has PMOS back gate control circuit.
- Thermally enhanced UQFN044V6060 package.(6mm x 6mm, 0.4mm pitch)

OAbsolute maximum ratings (Ta=25°C)

Parameter	Symbol	Limit	Unit
Power Supply Voltage	VBAT	-0.3~7	V
	VHx1~4	-0.3~7	V
Power Input Voltage	HS67H	-0.3~7	V
Power input voitage	VLx6~7	-0.3~20	V
	VIN	-0.3~7	V
	IomaxLx1	±12	A
	IomaxHx2	±15	A
Output Current	IomaxHx3~4	±12	A
	IomaxHS6~7	±12	A
	IomaxLx6∼7	±0.8	А
Power Dissipation	Pd	0.54 (*1)	W
Operating Temperature	Topr	-25~+85	°C
Storage Temperature	Tstg	-55~+150	°C
Junction Tempareture	Tjmax	+150	°C
(*1) Without external heat sink the power dissination re	whereas he (122m)// °C as mor 25°C		

(*1) Without external heat sink, the power dissipation reduces by 4.32mW/°C over $25^\circ C_\circ$

ORecommended operating conditions

OCH7 recommended operating conditions

Parameter	Svmbol		Limit		Unit		0 1 1		Limits		
Parameter	Symbol	MIN	TYP	MAX	Unic	Parameter	Symbol	MIN	TYP	MAX	Unit
Power Supply Voltage	VBAT	1.5	-	5.5	V	Fixed H when determine brightness	T(ON)	65X1/fosc	-	-	[S]
VREF Pin Connecting Capacitor	CVREF	0.47	1.0	4.7	μF	Fixed L when OFF	T(OFF)	65X1/fosc	-	-	[S]
VREGA Pin Connecting Capacitor	CVREGA	0.47	1.0	4.7	μF	Fixed H when setting brightness	T(H)	420	-	10000	[nS]
SCP Pin Connecting Capacitor	CSCP	1	-	0.47	μF	Fixed L when setting brightness	T(L)	420	-	10000	[nS]
C+H to C+L connecting Capacitor	CF	1.0	-	-	μF	Fixed H when EN start-up	T(EN)	5X1/fosc	-	-	[S]
[Oscillator]						Fixed L before setting brightness	T(CLR)	5X1/fosc	-	63X1/fosc	[S]
Oscillator Frequency	fosc	0.6	12	1.5	MHz	Brightness setting time When start-up	T(SET)	-	-	2048X1/fosc	[S]
OSC Timing Resistor	RT	47	62	120	kΩ	· · · · · ·					

Status of this document

The Japanese version of this document is the official specification. Please use the translation version of this document as a reference to expedite understanding of the official version. If these are any uncertainty in translation version of this document, official version takes priority.

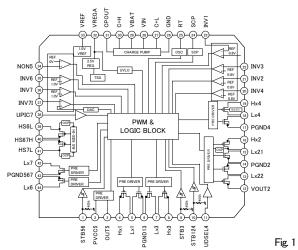
OElectrical characteristics (Ta=25°C, VBAT=3V, RT=62k, STB1~6=3V, UPIC7=2.5V)

		.9	tandard valu	Je						S	tandard vali	Je		
Parameter	Symbol	MIN	TYP	MAX	Units	Conditions	Para	meter	Symbol	Min	TYP	MAX	Units	Conditions
Charge Pump Circu	it)						[Output Driv	er]		14111		1000		
Output Voltage						Io=1mA, INV1~7=1.2V	CH1 Highsid						-	HX1=3V,
(Regulated)	Vcpout1	52	5.4	-	V	NON5=-0.2V	ON Resistan		RON1P	-	160	380	mΩ	CPOUT=5.4V
-						Only for internal Current	CH1 Lowside						-	
Output Voltage	Vcpout2	4.5	4.8	_	v	VBAT=25V, INV1~7=1.2V	ON Resistan		RON1N	-	130	180	mΩ	CPOUT=5.4V
(X2 Step up)						NON5=-0.2V	CH2 LX21Pi							
Output		_	05		0		Highside SW		RON21P	-	160	240	mΩ	HX2=3.0V,
Resistance	Vcpro	_	35	50	Ω	CF=1 μ F, VBAT=2.5V	ON Resistan							CPOUT=5.4V
Operating		0	75			DT-00LO	CH2 LX21Pi	n						
Frequency	fcp	60	75	90	kHz	RT=62kΩ	Lowside SW		RON21N	-	130	200	mΩ	CPOUT=5.4V
Minimum VBAT	14.11	15	_	_	v		ON Resistan	ce						
Voltage	Vst1	1.5	_	_	v		CH2 LX22Pi	n						
[Internal Regulator V	REGA						Highside SW		RON22P	-	180	280	mΩ	VOUT2=5.0V
Output Voltage	VREGA	24	2.5	2.6	V	lo=5mA	ON Resistan	ce						
[Prevention Circuit o	f Miss Operati	on by Low v	oltage Input]			CH2 LX22Pi	n						
Threshold Voltage	Vstd1	-	2.15	2.30	V	VREGA Monitor	Lowside SW		RON22N	-	130	200	mΩ	CPOUT=5.4V
Hysteresis Width	∠[Vstd1	50	100	200	mA		ON Resista	ance						
Short Circuit Protec	tion】						CH3 Highsid	e SW	RON3P	_	160	260	mΩ	HX3=3.0V,
Timer start	Vtcinv	0.42	0.48	0.54	V	INV monitor CH4	ON Resistan		- CONUL		.30	2.00		CPOUT=5.4V
threshold voltage	VICINV	0.42	0.40	0.04	v		CH3 Lowside		RON3N	_	130	200	mΩ	CPOUT=5.4V
SCP Stand by	Vssc	_	22	170	mV		ON Resistan		I CONULA		.50	2.50		5, 55, 5, 5, 7
Voltage	v SSC	-	~~~	1/0	111V		CH4 Highsid		RON4P	_	280	380	mΩ	HX4=5.0V
SCP Out Source	Iscp	2	4	6	μA	Vscp=0.1V	ON Resistan				200			
Current	thet	2	+	0	μΑ	* JOH-0.1 Y	CH4 Lowside		RON4N	_	130	200	mΩ	CPOUT=5.4V
SCP Threshold	Vscp	0.9	1.0	1.1	v		ON Resistan							5. 55. 5.11
Voltage	vsqp	0.9	1.0	1.1	v		CH6 NMOS		RON6N	_	500	800	mΩ	CPOUT=5.4V
[Oscillator]							ON Resistan				000	000	ma	
Frequency	fosc1	1.0	12	1.4	MH ₂	RT=62kΩ	CH6,7 Load		RON67P	_	200	300	mΩ	HS67H=3.0V
CH1~4	10301	1.0	12	1.7	1411 12	111-02/36	ON Resistan	ce	11011071		200	000		CPOUT=5.4V
Frequency	fosc2	0.5	0.6	0.7	MHz	RT=62kΩ	CH5 Driver			PVCC5	PVCC5			IOUT5=50mA,
CH5~7	10302	0.0	0.0	0.7	1411 12	111-02/36	Output Volta	ige H	Vout5H	-1.5	-1.0	-	V	NON5=0.2V,
Max Duty	Dmax1d	_	_	100	%	Vscp=0V (※1)								PVCC5=3V
1,3,4 (Step Down)	Binastra			100			CH5 Driver		Vout5L	-	0.5	1.0	v	IOUT5=50mA,
Max Duty	Dmax1u	86	92	96	%		Output Volta							NON5=0.2V
1,4(Step Up)							Switch to c	onfigure step up	/down]	000117				
Max Duty 5,6,7	Dmax2	86	92	96	%		UDSEL4	Step down	VUDDO	CPOUT ×07	-	CPOUT	V	
Max Duty	Dmax3	_	_	100	%		Control Voltage	0		0	_	CPOUT	v	
CH2 LX21								Step up	VUDUP	U	_	×0.3	v	
Max Duty	Dmax4	78	84	90	%		[STB1~6]							
CH2 LX22 [Error AMP]							STB control	Active	VSTBH1	1.5	-	5.5	V	
	TIN IL /	_	0	50	4	INV1~7, NON5=3.0V	Voltage	Non Active	VSTBL1	-0.3	_	0.3	V	
Input Bias Current INV Threshold	INV	_	U	50	nA	1001~7,10005-3.00	Pull down Re	sistance	RSTB1	250	400	700	kΩ	
JNV Threshold Voltage1	VINV1	0.79	0.80	0.81	V	CH1~4	[UPIC7]							
INV Threshold		-				<u> </u>]	UPIC7	Active	VUPIH	2.05	_	4.0	V	
Voltage2	VINV2	0.99	1.00	1.01	V	CH6, 7V	control	Non Active	VUPIL	0	_	0.4	v	
INV Threshold						<u> </u>	Voltage		VUFIL	U		0.4	v	
Voltage3	VINV3	513	540	567	mV	CH7I	[Circuit Curr		1		1	1		
Base Bias Voltage \	/nef for inverto	d Channel	1	1	1	l	1	VBAT terminal	ISTB1	-	-	5	μA	
Lease bias voitage v						NON5 resistor12kΩ, 72kΩ	1	HS67H	10777-0			-		
OntputVoltage	VOUT5	-6.09	-6.00	-5.91	V	(**2)	Stand-by	terminal	ISTB2	-	-	5	μA	
Line Regulation	DVLi	_	4.0	12.5	mV	CPOUT=1.5~5.5V	Current	HX terminal	ISTB3	_	-	5	μA	Step -down
Output Current							1	17 6 11						UDSEL4=CPOUT
When shorted	los	02	1.0	-	mA	Vref=0V	-	LX terminal	ISTB4	-	-	5	μA	Step-up UDSEL4=0V
[Soft Start]		1	1	1	1	·	Circuit Curre							
CH124							(VBAT curre		lcc1	-	7.0	11.0	mA	INV1~7=12V, NON5=-02V, VBAT=30V
Soft Start Time	Tss1,2,4	1.5	2.5	3.5	msec	RT=62kΩ	when voltage							NUND=-UZV, VBA1=30V
CH3							for the termi							
Soft Start Time	Tss3	0.5	1.5	2.5	msec	RT=62kΩ	Circuit Curre							INV1~7=12V,
CH5							(CPOUT cur		lcc2	-	3.0	5.0	mA	NON5=-0.2V, CPOUT=5.4V
Soft Start Time	Tss5	1.5	2.5	3.5	msec	RT=62kΩ	when voltage							C+H, C+L=OPEN
CH6							for the termi	nal)						
U 10	Tss6	2.0	3.0	4.0	msec	RT=62kΩ								
Soft Start Time	1330													
Soft Start Time CH7	1350													

(%1)The protective circuit start working when circuit is operated by 100% duty.

So it is possible to use only for transition time shorter than charge time for SCP.

(%2)Recommend resistor value over 20k Ω between VREF to NON5, because VREF current is under 100uA.

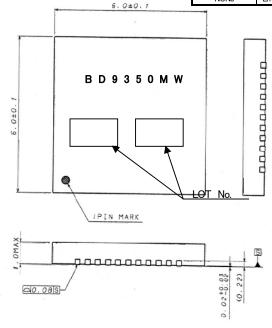

(3) UPIC7 is not connected pull-down resistor. UPIC7 must input H or L level voltage when CH1~6 is active.

©This product is not designed for normal operation with in a radioactive environment

2/4

OPin Assignment Block Diagram

OPin Description


Pin Name	Description
VBAT	Input for battery voltage
VIN	Returning voltage from output terminal
CPOUT	Output terminal for Charge Pump
GND	Ground terminal
C+H	Terminal for connecting flying capacitor for Charge Pump(H side)
C+L	Terminal for connecting flying capacitor for Charge Pump(L side)
PGND13,2,4,567	Ground terminal for internal FET
VREGA	VREGA output
VREF	CH5 base bias voltage
PVCC5	CH5 PMOS VCC input for driver

Pin Name	Description
OUT5	Terminal for connecting gate of CH5 PMOS
Hx1,3,4	Input terminal for synchronous High side switch, Power supply for Pch Driver
Lx1,34,67	Terminal for connecting inductors
H2	Power supply for channel 2
Lx21	Terminal for connecting inductor for CH2 input
L-22	Terminal for connecting inductor for CH2 output
VOUT2	CH2 output voltage
HS67H	Power supply for internal load switch
HS6L,HS7L	Output terminal for internal load switch
INV1,2,3,4,6,7	Error AMP inverted input
NON5	Error AMP non-inverted input

Г

Pin Name	Description
INV7I	Error AMP inverted input
RT	For connecting a resistor to set the OSC frequency
SCP	For connecting a capacitor to set up the delay time of the SCP
UDSEL4	Step-up/down switching mode selection(H: step-down, L:step-up)
STB124,3,56	ON/OFF switch H: operating over 1.5V
UPIC7	ON/OFF switch for CH7 brightness control

OPackage

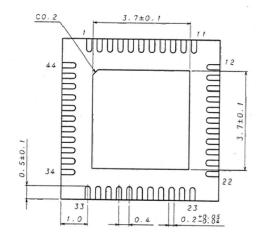


Fig. 2

REV. A

OOperation Notes

1.) Absolute maximum ratings

This product is produced with strict quality control. However, the IC may be destroyed if operated beyond its absolute maximum ratings. If the device is destroyed by exceeding the recommended maximum ratings, the failure mode will be difficult to determine. (E.g. short mode, open mode) Therefore, physical protection counter-measures (like fuse) should be implemented when operating conditions beyond the absolute maximum ratings anticipated.

2.) GND potential

Make sure GND is connected at lowest potential. All pins except NON5, must not have voltage below GND. Also, NON5 pin must not have voltage below - 0.3V on start up.

3.) Setting of heat

Make sure that power dissipation does not exceed maximum ratings.

4.) Pin short and mistake fitting

Avoid placing the IC near hot part of the PCB. This may cause damage to IC. Also make sure that the output-to-output and output to GND condition will not happen because this may damage the IC.

5.) Actions in strong magnetic field

Exposing the IC within a strong magnetic field area may cause malfunction.

6.) Mutual impedance

Use short and wide wiring tracks for the main supply and ground to keep the mutual impedance as small as possible. Use inductor and capacitor network to keep the ripple voltage minimum.

7.) Voltage of STB pin

The threshold voltages of STB pin are 0.3V and 1.5V. STB state is set below 0.3V while action state is set beyond 1.5V. The region between 0.3V and 1.5V is not recommended and may cause improper operation.

The rise and fall time must be under 10msec. In case to put capacitor to STB pin, it is recommended to use under 0.01 μ F. 8.) Thermal shutdown circuit (TSD circuit)

The IC incorporates a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit (TSD circuit) is designed only to shut the IC off to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is assumed. 9.)Rush current at the time of power supply injection.

- An IC which has plural power supplies, or CMOS IC could have momentary rush current at the time of power supply injection. Please take care about power supply coupling capacity and width of power Supply and GND pattern wiring.
- 1 0.)IC Terminal Input

This IC is a monolithic IC that has a P- board and P+ isolation for the purpose of keeping distance between elements. A P-N junction is formed between the P-layer and the N-layer of each element, and various types of parasitic elements are then formed. For example, an application where a resistor and a transistor are connected to a terminal (shown in Fig.15):

- OWhen GND > (terminal A) at the resistor and GND > (terminal B) at the transistor (NPN), the P-N junction operates as a parasitic diode.
- When GND > (terminal B) at the transistor (NPN), a parasitic NPN transistor operates as a result of the NHayers of other elements in the proximity of the aforementioned parasitic diode.

Parasitic elements are structurally inevitable in the IC due to electric potential relationships. The operation of parasitic elements Induces the interference of circuit operations, causing malfunctions and possibly the destruction of the IC. Please be careful not to use the IC in a way that would cause parasitic elements to operate. For example, by applying a voltage that is lower than the GND (P-board) to the input terminal.

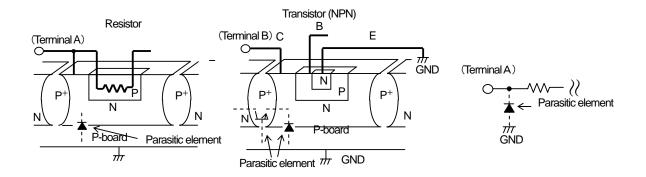


Fig - 3 Simplified structure of a Bipolar IC

	copying or reproduction of this document, in part or in whole, is permitted without the sent of ROHM Co.,Ltd.
The	content specified herein is subject to change for improvement without notice.
"Pro	content specified herein is for the purpose of introducing ROHM's products (hereinafter oducts"). If you wish to use any such Product, please be sure to refer to the specifications, ch can be obtained from ROHM upon request.
illus	mples of application circuits, circuit constants and any other information contained herein strate the standard usage and operations of the Products. The peripheral conditions must taken into account when designing circuits for mass production.
Нο	at care was taken in ensuring the accuracy of the information specified in this document. wever, should you incur any damage arising from any inaccuracy or misprint of such rmation, ROHM shall bear no responsibility for such damage.
exa imp oth	technical information specified herein is intended only to show the typical functions of and mples of application circuits for the Products. ROHM does not grant you, explicitly or licitly, any license to use or exercise intellectual property or other rights held by ROHM and er parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the of such technical information.
equ	Products specified in this document are intended to be used with general-use electronic ipment or devices (such as audio visual equipment, office-automation equipment, commu- ation devices, electronic appliances and amusement devices).
The	Products specified in this document are not designed to be radiation tolerant.
	ile ROHM always makes efforts to enhance the quality and reliability of its Products, a duct may fail or malfunction for a variety of reasons.
aga failı sha	ase be sure to implement in your equipment using the Products safety measures to guard inst the possibility of physical injury, fire or any other damage caused in the event of the ure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM II bear no responsibility whatsoever for your use of any Product outside of the prescribed pe or not in accordance with the instruction manual.
sys may inst fuel any	Products are not designed or manufactured to be used with any equipment, device or tem which requires an extremely high level of reliability the failure or malfunction of which y result in a direct threat to human life or create a risk of human injury (such as a medical rrument, transportation equipment, aerospace machinery, nuclear-reactor controller, -controller or other safety device). ROHM shall bear no responsibility in any way for use of of the Products for the above special purposes. If a Product is intended to be used for any h special purpose, please contact a ROHM sales representative before purchasing.
be	ou intend to export or ship overseas any Product or technology specified herein that may controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to ain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

Downloaded from Elcodis.com electronic components distributor