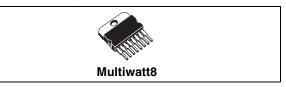


CAR ALTERNATOR VOLTAGE REGULATOR

1 FEATURES


- FOR AIR AND LIQUID COOLED APPLICATIONS
- DF OUTPUT (INVERTED FIELD MONITOR)
- THERMAL PROTECTION
- FIELD DRIVER, LAMP DRIVER, RELAY DRIVER, AND DF (FIELD MONITOR) SHORT CIRCUIT PROTECTED
- LOAD RESPONSE CONTROL
- SINGLE PHASE AUTOSTART

2 **DESCRIPTION**

The L9466 is a monolithic multifunction generator Voltage regulator intended for use in automotive charging applications.

Figure 2. Block Diagram

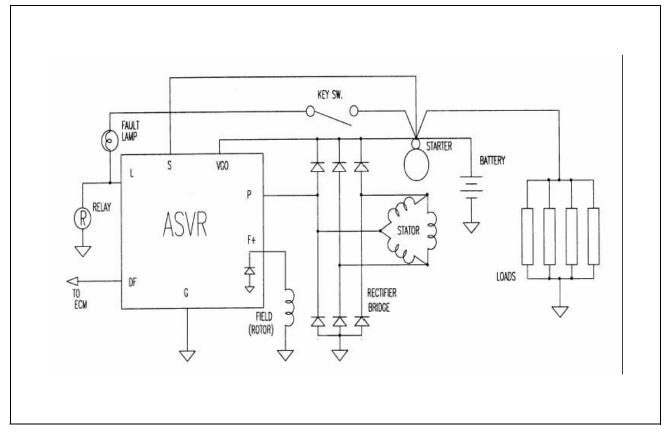
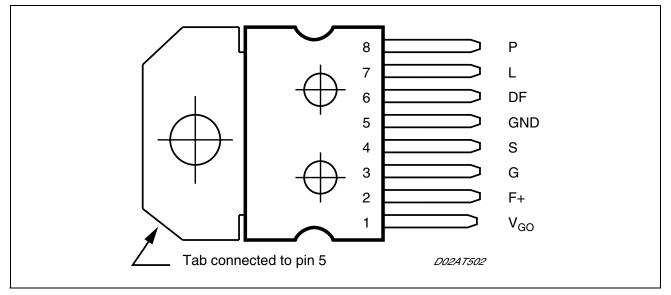

Figure 1. Package

Table 1. Order Codes

Part Number	Package
L9466N	Multiwatt8

This All Silicon Voltage Regulator regulates the output of an automotive generator by controlling the field winding current by means of a variable frequency PWM high side driver.



May 2005

Table 2. PIN DESCRIPTION

N°	Pin	Description			
1	V _{GO}	Generator Output – Voltage Sense and Power Supply to ASVR			
2	F+	Field Driver - High Side Drive Output			
3	G	Ground for ASVR (Must be connected for Ground for ASVR)			
4	S	Battery Sense Input			
5	Gnd	Internally connected to the Tab or Slug in MW-8.			
6	DF	Inverted Field Monitor Output			
7	L	Lamp - Low Side Driver; Relay - High Side Driver			
8	Р	Phase Sense Input			

Figure 3. PIN CONNECTION (Top view)

Table 3. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
	Output Current Capability	INTERNALLY LIMITED	А
	Power Dissipation	6	W
	Short Circuit Protected	All Terminal, to VGO and Ground	

Table 4. THERMAL DATA

Symbol	Parameter	Value	Unit
Тј	Junction Temperature	-40 to +150	°C
T _{stg}	Storage Temperature	-50 to +150	°C
T _{sd}	Thermal Shut-Down	175 ± 15	°C
R _{th j-case}	Thermal Resistance Junction to Case	1.5	°C/W

Notes: 1. The Field Drive capability shall not decrease as a function of temperature between 25°C and 150°C, at a rate faster than -0.024A/ °C (for example, Field Drive shall be capable of \geq 7.2A at 100°C).

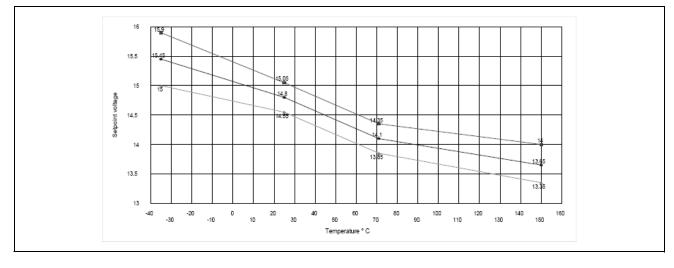


Table 5. ELECTRICAL CHARACTERISTCS

 $(T_{case} = -35^{\circ}C \text{ to } +150^{\circ}C \text{ continuous unless otherwise specified})$

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _{OS}	Operating Supply Voltage	$T_{case} = +25^{\circ}C$ to $=150^{\circ}C$	8		Vov	V
V _{OS}	Operating Supply Voltage $T_{case} = -40^{\circ}C \text{ to } +25^{\circ}C$ 10			Vov	V	
I _{SB}	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		300	μA		
V _{SP}	Regulator Set-Point	10k Ω between V_{GO} and TS	Cı	urve show	wn in Fig.	4
V_{NB}	Generator Output, No Battery	No battery, I _{OUT} = 2A to 50% Max. Load	o V _{SP} - 2		V _{SP} + 2	V
T _C	Thermal Compensation	Voltage @ V _{GO}	Cui	rves show	wn in Fige	s. 4
V_{LR}	Load Regulation	6500 grpm, 10% to 95% load			300	mV
V _{SR}	Speed Regulation	d Regulation 15A load, 2000 to 20,000 grpm			100	mV
V _{F-ON}	Output Saturation Voltage	$I_F = 6A, V_{GO} = 14.0V, T_{case} = 25^{\circ}C$			750	mV
V _{F-ON}	Output Saturation Voltage	I _F = 5A, V _{GO} = 13.5V, T _{case} = 125°C			850	mV
I _{F-LIM}	Field Limit Current ¹	Current F+ Terminal to Gnd. @ $T_{case} \le 25^{\circ}C$	9.0			A
I _{F-LIM}	Field Limit Current ¹	Current F+ Terminal to Gnd. @ $T_{case} = +150^{\circ}C$	6.0			A
I _{G-MIN}	Min. Generator Current Load	Current measured @ generator output	0.5			A
V_{D-F}	Field Discharge Diode	$I_F = 6A, T_{case} = 25^{\circ}C$			1.85	V
I _{D-R}	Diode Reverse Current	V _R = 20V			1	mA
Fosc	Oscillation Frequency	During LRC operation	340 400		460	Hz
V_{DF}	DF Saturation Voltage	$I_{DF} \le 10 \text{mA}$			0.8	V
I _{DF-LK}	DF Output Leakage Current	V _{DF} < 25V			10	μA
FTURBO	Internal Clock Frequency	$V_{DF} = 32 - 35V$; thru 2.2k Ω		4X		Hz
F _{TURBO}	IRD, SS, LRC Rate	$V_{DF} = 32 - 35V$; thru 2.2k Ω		÷ 16		

Figure 4. Set-Point Voltage vs. Mounting Tab Temperature (10k Ω between V_{GO} & TS)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{OV}	Over-Voltage		V _{SP} + 1	V _{SP} + 1.3	V _{SP} + 2	V
V _{UV}	Under-Voltage	$F_P > F_{P\text{-}LRC}$, 10kohm between S_term and V_{GO}	0.95		1.8	V
V _{L-SAT}	Lamp ON Saturation Voltage	$I_L = 0.5A$ (sinked by ASVR)	>V _{L-ACT}	1.33	1.45	V
V _{L-SAT-BO}	Lamp ON Voltage ²	I _L < 0.5A, VGO = Open; T _{case} = - 35°C to 85°C		3.8	5	V
V _{L-RLY}	Lamp OFF (Relay Drive) Saturation Voltage (vs. B+)	$I_L = 750$ mA (Sourced by ASVR) ³ Tcase < 125C			1.85	V
T _{DELAY}	Fault Indication Delay Time	Delay before Lamp ON	0.9	1.1	1.3	S

Table 6. DIAGNOSTIC (Tcase = -35°C to +150°C unless otherwise specified)

2. This condition can happen when the connection between the battery and VGO or the output terminal of the generator is broken. The 1.1 second delay is not required, and current is sinked by ASVR.

3. When no fault is detected the Lamp terminal is pulled up by ASVR.

Table 7. FAULT INDICATION TABLE

Conditions	T _{Delay} ?
Initial KEY-ON Bulb and Wiring Check (Lamp ON for 1 sec \pm 15% after initial KEY-ON)	No
V _{GO} > V _{OV}	Yes
$V_{P} < V_{P-F} \text{ AND } V_{GO} < V_{SP}$	Yes
F _P < F _{P-TR} @ V _{P-TR}	Yes
No Connection Between Battery and $V_{\mbox{GO}}$	No
At Start: Lamp ON until $F_P > F_{P-IR}$ AND $V_P > V_{P-F}$. i.e. until V_P reaches 8V.	No

Table 8. REGULATION FEATURES

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{L-PD}	L Terminal Regulator Activate VGO=12.6V Threshold		0.8	1	1.15	V
I _{L-PD}	L Terminal Pull Down Current	V _L = V _{L-ACT} VGO=12.6V	0.09		0.78	mA
V _{P-IR}	Initiate Regulation Phase Voltage Threshold	Regulator Activated	1.1	1.3	1.5	V
lΡ	Phase Terminal Current Sink	V _P > 1.5V and < 12.6V VGO = 12.6V	0.25		3.5	mA
F _{P-IR}	Initiate Regulation Phase Frequency		123	145	167	Hz
F _{P-TR}	Terminate Regulation Phase Frequency		59	72	86	Hz

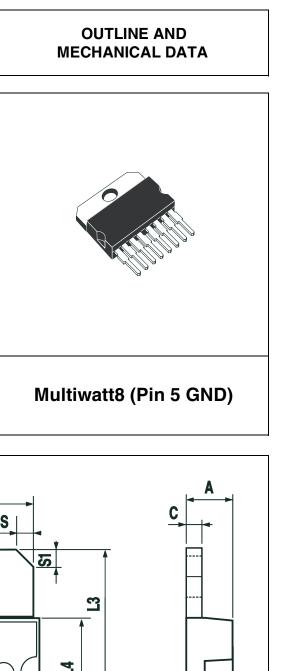
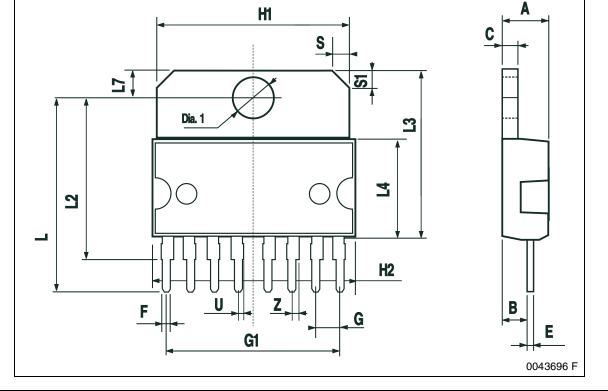

Symbol	Parameter Conditions		Min.	Тур.	Max.	Unit
IRD	Initiate Regulation Delay	Regulator Activated, V_{P-IR} AND F_{P-IR} Conditions Met First Time.	1.7	2	2.3	S
FSDC	Field Strobe Duty Cycle	Regulator Activated AND (Regulation Terminated OR Regulation NOT Initiated)	16	18.75	22	%
LRC	Load Response Control Rate	Field Drive Duty Cycle Increase	8.5	10	11.5	%/s
F _{P-LRC}	LRC Transition Frequency	LRC Enabled if F _P < F _{P-LRC}	255	300	345	Hz
SS	Soft-Start	LRC enabled until V _{SP} reached regardless other conditions	34	40	46	%/s

Table 8. REGULATION FEATURES (continua)



DIM.		mm			inch	
DINI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			5			0.197
В			2.65			0.104
С			1.6			0.063
Е	0.49		0.55	0.019		0.022
F	0.78		0.85	0.030		0.033
G	2.40	2.54	2.68	0.094	0.10	0.105
G1	17.64	17.78	17.92	0.69	0.70	0.71
H1	19.6			0.772		
H2			20.2			0.795
L	20.35		20.65	0.80		0.81
L2	17.05	17.20	17.35	0.67	0.68	0.68
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L7	2.65		2.9	0.104		0.114
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
U	0.40		0.55	0.015		0.022
Z	0.70		0.85	0.028		0.034
Dia1	3.65		3.85	0.144		0.152

Figure 5. Multiwatt 8 Mechanical Data & Package Dimensions

57

3 REVISION HISTORY

Table 9. Revision History

Date	Revision	Description of Changes
May 1994	1	First Issue

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

