20mA Air-Core Tachometer Drive Circuit

Description

The CS289 is specifically designed for use with air-core meter movements. The IC has charge pump circuitry for frequency-to-voltage conversion, a shunt regulator for stable
operation, a function generator, and sine and cosine amplifiers. The buffered sine and cosine outputs will typically sink or source 20 mA .

Features

Single Supply Operation
On-Chip Regulation
20mA Output Drive Capability

Package Options

20L SOIC Wide

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Current (Note 2)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=15.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=13.1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=11.3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 54 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	mA mA mA
Regulated Voltage	$\mathrm{I}_{\text {REG }}=4.3 \mathrm{~mA}$	7.7	8.5	9.3	V
Regulation	$\mathrm{I}_{\text {REG }}=0$ to 5 mA		0.10	0.20	V
Signal Input Current	$\mathrm{T}=25^{\circ} \mathrm{C}$	0.1	2.0	4.0	mA
Saturation Voltage	$\mathrm{I}_{\text {SQ }} \mathrm{OUT}=5 \mathrm{~mA}, \mathrm{I}_{\text {SQ }} \mathrm{IN}=500 \mu \mathrm{~A}$		0.20	0.55	V
Leakage Current	$\mathrm{I}_{\text {SQ }} \mathrm{OUT}=16 \mathrm{~V}, \mathrm{~V}_{\text {SQ }} \mathrm{IN}=0 \mathrm{~V}$			10	$\mu \mathrm{A}$
Input Current	$\mathrm{C}_{\mathrm{P}^{+}}=0, \mathrm{~T}=25^{\circ} \mathrm{C}$		1	15	nA
F to V Output	$\begin{aligned} & \mathrm{V}_{\mathrm{SQ}} \mathrm{IN}=0(\text { zero input }), \varnothing=0^{\circ} \\ & \mathrm{V}_{\mathrm{COS}}=0(\text { Note } 1), \varnothing=270^{\circ} \end{aligned}$	$\begin{aligned} & 1.8 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 7.1 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 7.9 \end{aligned}$	V
Linearity	E_{O} vs. Frequency $\mathrm{V}_{\mathrm{COS}}=0(\text { Note } 1), \varnothing=270^{\circ}, \mathrm{T}=25^{\circ} \mathrm{C}$	-1.5		1.5	\%
$\mathrm{V}_{\text {sine }}$ at $\varnothing=0^{\circ}$	$\mathrm{V}_{\mathrm{SQ}} \mathrm{IN}=0$ (zero input), $\varnothing=0^{\circ}$	-0.55	0.00	0.55	V
MAX $\mathrm{V}_{\text {sine+ }}$	$\mathrm{V}_{\text {COS }}=0$ (Note 1), $\varnothing=90^{\circ}$	3.8	4.5	5.8	V
MAX $\mathrm{V}_{\text {sine- }}$	$\mathrm{V}_{\mathrm{COS}}=0$ (Note 1), $\varnothing=270^{\circ}$	-3.8	-4.5	-5.8	V
Coil Drive Current	$\begin{aligned} & \mathrm{V}_{\mathrm{COS}}=0(\text { Note } 1), \varnothing=90^{\circ}, \mathrm{T}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{COS}}=0(\text { Note } 1), \varnothing=270^{\circ} \end{aligned}$		20 20	25 25	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
MAX $\mathrm{V}_{\text {COS+ }}$	$\mathrm{V}_{\mathrm{SQ}} \mathrm{IN}=0$ (zero input), $\varnothing=0^{\circ}$	3.8	4.5	5.8	V
MAX V $\mathrm{COS}^{\text {- }}$	$\mathrm{V}_{\text {sine }}=0$ (Note 1), $\varnothing=180^{\circ}$	-3.8	-4.5	-5.8	V
Coil Drive Current	$\begin{aligned} & \mathrm{V}_{\mathrm{SQ}} \mathrm{IN}=0(\text { zero input }), \varnothing=0^{\circ} \\ & \mathrm{V}_{\text {sine }}=0(\text { Note } 1), \varnothing=180^{\circ} \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
External Voltage Ref.		4.98	5.40	5.85	V

Note 1: $\mathrm{V}_{\text {sine }}$ measured $\mathrm{V}_{\text {sine }}$ to $\mathrm{V}_{\mathrm{Z}} . \mathrm{V}_{\mathrm{COS}}$ measured $\mathrm{V}_{\mathrm{COS}}$ to V_{Z}. All other voltages specified are measured to ground.
Note 2: Max PWR dissipation $\leq \mathrm{V}_{\mathrm{CC}} X \mathrm{I}_{\mathrm{CC}}-\left(\mathrm{V}_{2} \mathrm{I}_{\text {sine }}+\mathrm{V} 12 \mathrm{I}_{\mathrm{COS}}\right)$.

Package Pin Description

Package Pin Description			
PACKAGE		PIN SYMBOL	FUNCTION
20L SO	14L PDIP		
1	1	V_{Z}	External Zener reference.
2	2	$\mathrm{V}_{\text {sine }}$	Sine output signal.
3	4	$\mathrm{V}_{\text {BIAS }}$	Test pin or "0" calibration pin.
$\begin{gathered} 4,5,6,7 \\ 14,15,16,17 \end{gathered}$	7	Gnd	Analog Ground connection.
8	5	$\mathrm{C}_{\text {P- }}$	Negative input to charge pump.
9	6	$\mathrm{C}_{\text {P+ }}$	Positive input to charge pump.
10	3	NC	No Connection
11	8	$\mathrm{F} / \mathrm{V}_{\text {OUT }}$	Output voltage proportional to input signal frequency.

Package Pin Description: continued			
PACKAGE PIN \#		PIN SYMBOL	FUNCTION
20L SO	14L PDIP		
12	9	$\mathrm{S}_{\mathrm{Q}} \mathrm{OUT}$	Buffered square wave output signal.
13	10	$\mathrm{S}_{\mathrm{Q}} \mathrm{IN}$	Speed or RPM input signal.
18	11	$\mathrm{V}_{\text {REG }}$	Voltage regulator output.
19	12	$\mathrm{V}_{\mathrm{COS}}$	Cosine output signal.
20	13	V_{CC}	Supply voltage.
	14	Pwr Gnd	Power Ground connection.

Note 1: $V_{\text {sine }}$ measured $V_{\text {sine }}$ to $V_{Z} \cdot V_{C O S}$ measured $V_{C O S}$ to V_{Z}. All other voltages specified are measured to ground.
Note 2: Max PWR dissipation $\leq V_{C C} \times I_{C C}-\left(V_{2} I_{\text {sine }}+V 12 I_{C O S}\right)$.

Typical Performance Characteristics

Output Angle in Polar Form

Charge Pump Output Voltage

Charge Pump
The input frequency is buffered through a transistor, then applied to the charge pump for frequency-to-voltage conversion (Figure 1). The charge pump output voltage, $\mathrm{E} \varnothing$, will range from 2.1 V with no input $\left(\varnothing=0^{\circ}\right.$) to 7.1 V at $\varnothing=$ 270°. The charge that appears on C_{T} is reflected to Cout through a Norton amplifier. The frequency applied at $S_{Q} I N$ charges and discharges C_{T} through R_{1} and R_{2}. COUT reflects the charge as a voltage across resistor R_{T}.

Function Generator/Sine and Cosine Amplifiers

The output waveforms of the sine and cosine amplifiers are derived by On-Chip Amplifier/Comparator circuitry. The various trip points for the circuit (i.e. $90^{\circ}, 180^{\circ}, 270^{\circ}$) are determined by an internal resistor divider connected to the voltage regulator. The voltage $\mathrm{E} \varnothing$ is compared to the divider network by the function generator circuitry. Use of an external zener reference at V_{Z} allows both sine and cosine amplifiers to swing positive and negative with respect to this reference. The output magnitudes and directions have the relationship as shown in Typical Characteristics diagrams.
Note: Pin connections referenced are for the 14L DIP.

Function Generator Output (\varnothing): $\mathrm{V}_{\mathrm{CC}}=13.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\varnothing=\operatorname{ArcTan}\left(\frac{\mathrm{V}_{\text {sine }}}{\mathrm{V}_{\text {cos }}}\right)$ (Measured angle after calibration at $180^{\circ} \mathrm{C}$)
For $\varnothing_{\mathrm{A}}=45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}, 225^{\circ}, 270^{\circ}$, (Desired angle)
$\left(\varnothing_{A}-\varnothing_{M}\right) \leq 4.0^{\circ}$

Temperature Sensitivity: $\mathrm{V}_{\mathrm{CC}}=13.1 \mathrm{~V}$
$\Delta \varnothing_{M T}=\varnothing_{M}\left(T=25^{\circ} \mathrm{C}\right)-\varnothing \mathrm{M}\left(-20^{\circ} \mathrm{C} \leq \mathrm{T} \leq+85^{\circ} \mathrm{C}\right)$
$\left(\Delta \varnothing_{\mathrm{MT}}\right) \leq 3.5^{\circ} \mathrm{C},-20^{\circ} \mathrm{C} \leq \mathrm{T} \leq+85^{\circ} \mathrm{C}$

Voltage Sensitivity: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\Delta \varnothing_{M V}=\varnothing_{M}\left(V_{C C}=13.1 V\right)-\varnothing_{M}\left(11.3 \mathrm{~V} \leq V_{C C} \leq 15 \mathrm{~V}\right)$
$\left(\Delta \emptyset_{\mathrm{MV}}\right) \leq 2^{\circ}, 11.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 15 \mathrm{~V}$

* ADJUST FOR TRIMMING

Figure 1. Functional Diagram of CS289 Circuit.

Tachometer Application

$$
\frac{\text { RPM }}{60} \times \frac{\# \text { OF CYL. }}{2}=\text { Frequency }
$$

$$
\mathrm{V}_{\mathrm{F} / \mathrm{V}_{\text {OUT }}}=2.1+\text { Frequency } \times \mathrm{C}_{\mathrm{T}} \times \mathrm{R}_{\mathrm{T}}\left(\mathrm{~V}_{\mathrm{REG}}-0.7\right)
$$

The above equations were used in calculating the following values, where $\mathrm{V}_{\mathrm{F} / \mathrm{V}_{\text {OUT }}}=7.1 \mathrm{~V}$ at $=270^{\circ}$ and $\mathrm{C}_{\mathrm{T}}=0.01 \mathrm{~F}$.

$$
\begin{aligned}
& 4 \text { cylinder: Freq }=200 \mathrm{~Hz}, \mathrm{R}_{\mathrm{T}}=320 \mathrm{k} \Omega \\
& 6 \text { cylinder: } \text { Freq }=300 \mathrm{~Hz}, \mathrm{R}_{\mathrm{T}}=220 \mathrm{k} \Omega \\
& 8 \text { cylinder: } \text { Freq }=400 \mathrm{~Hz}, \mathrm{R}_{\mathrm{T}}=150 \mathrm{k} \Omega
\end{aligned}
$$

Figure 2: Alternate Trimming Method

Typical values shown above apply to a nominal value of $\mathrm{V}_{\text {REG }}$ of 8.5 volts. It must be realized that trimming of R_{T} will be necessary to compensate for variations in regulator voltage from one unit to another.
An alternative to this adjustment is to replace R_{2} with a potentiometer, as shown in Figure 2.
Partial schematic shown in Figure 3 represents one method for use with DC applications instead of frequency.

Figure 3: DC Application

Package				
PACKAGE DIMENSIONS IN mm (INCHES)				
Lead Count	D			
	Metric		English	
	Max	Min	Max	Min
14L PDIP	19.69	18.67	. 775	. 735
20L SO Wide	13.00	12.60	. 512	. 496

Surface Mount Wide Body (DW); 300 mil wide

Ordering Information

Part Number		Description
CS289GDW20		20 Lead SO Wide
CS289GDWR20	$\frac{\text { 20 Lead SO Wide (tape \& reel) }}{14 \text { Lead PDIP }}$	
CS289GN14		

ON Semiconductor and the ON Logo are trademarks of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor reserves the right to make changes without further notice to any products herein. For additional information and the latest available information, please contact your local ON Semiconductor representative.

