TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic TC94A09F

Single-Chip CD Processor with Built-in Controller

The TC94A09F is a single-chip CD processor for digital servo. The IC has a built-in 4-bit microcontroller.

The controller features an LCD/LED driver, 4-channel 6-bit AD converter, $2 / 3$-line serial interface, buzzer, interrupt function, and 8 -bit timer/counter. The CPU can select one of three crystal oscillator operating clocks ($16.9344 \mathrm{MHz}, 4.5 \mathrm{MHz}$, and 75 kHz), facilitating interface with the CD processor.

The CD processor incorporates sync separation protection and interpolation, EFM decoder, error correction, digital equalizer for servo, and servo controller. The CD processor also incorporates a 1-bit DA converter. In combination with a RF amp TA2153FN

Weight: 1.6 g (typ.) and TA2109F, the TC94A09F can very simply configure an adjustment-free CD player.

Thus, the IC is suitable for CD systems for automobiles and radio-cassette players.

Features

- Single-chip CD processor with built-in CMOS LCD/LED driver and 4-bit microcontroller
- Operating voltage At CD on: VDD $=4.5$ to 5.5 V (typ. 5.0 V)

At CD off: VDD $=3.0$ to 5.5 V (only CPU on)

- Current dissipation

At CD on: IDD $=50 \mathrm{~mA}$ (typ.)
At CD off: IDD $=2 \mathrm{~mA}$ (with 4.5 MHz crystal oscillator, only CPU on)
At CD off: IDD $=0.3 \mathrm{~mA}$ (with 75 kHz crystal oscillator, only CPU on)

- Operating temperature range
- Package
- One-time PROM version
$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$
QFP100-P-1420-0.65A (0.65 mm pitch, 2.7 mm thick)
TC94AP09F

4-bit Microcontroller

- Program memory (ROM): 16 -bit $\times 12$-k step
- Data memory (RAM): 4-bit $\times 512$-word
- Instruction execution time: 1.89/1.78/40 $\mu \mathrm{s}$ (all one-word instructions)
- Crystal oscillator frequency: $16.9344 \mathrm{MHz} / 4.5 \mathrm{MHz} / 75 \mathrm{kHz}$
- Stack level: 8
- AD converter: 6 -bit $\times 4$-channel
- LCD driver: $1 / 4$ duty, $1 / 2$ or $1 / 3$ bias method, 72 segments max
- LED driver: 4-digit $\times 14$-segment (max), also used as LCD driver switched by software
- I/O port: CMOS I/O port: 16

N-channel open drain I/O port: 4 (max)
Output-only port: 4 (max), also used as CD processor pins
Input-only port: 4

- Timer/counter: 8 bit (INTR, instruction cycle, $100 / 1 \mathrm{kHz}$ selectable as timer clock)

10 , 100 , or 500 Hz : internal port
2 Hz : Flip-flop port

- Serial interface: Supports $2 / 3$-line method (data length: 4 or 8 bits)
- Buzzer: Four types: $0.75,1,1.5$, and 3 kHz

Four modes: Continuous, Single-Shot, 10 Hz Intermittent, and 10 Hz Intermittent at 1 Hz Interval

- Interrupts: 1 external, 3 internal (CD sub-sync, serial interface, 8 -bit timer)
- Back-up mode: three types

Clock stop mode: X'tal operation stop
Hardware wait mode: X'tal oscillation operation, no operation in CPU
Software wait mode: Intermittent operation

- Reset function: Power-on reset, Built-in supply voltage detection circuit (Detection voltage $=2.5 \mathrm{~V}$ typ.)

CD Processor

- Reliable sync pattern detection, sync signal protection and interpolation
- Built-in EFM decoder and sub code decoder
- High-correction capability using cross interleave read Solomon code (CIRC) logical equation C1 correction: dual
C2 correction: quadruple
- Supports variable speeds
- Jitter absorption capability of ± 6 frames
- Built-in 16 KB RAM
- Built-in digital output circuit
- Built-in L / R independent digital attenuators
- Bilingual audio output (Note)
- Sub code Q data are read-timing free and can be output in sync with audio data. (Note)
- Built-in data slice and analog PLL (adjustment-free VCO used) circuit
- Auto adjustment of loop gain, offset, and balance at focus servo and tracking servo
- RF gain auto adjustment circuit
- Built-in digital equalizer for phase compensation
- Supports different pickups using digital equalizer coefficient RAM.
- Built-in focus and tracking servo control circuit
- Search control supports all modes and realizes high-speed, stable search.
- Lens kick and feed kick use speed control method.
- Built-in AFC circuit and APC circuit for disc motor CLV servo
- Built-in defect/shock detector
- Built in 8 times oversampling digital filter and 1-bit DA converter
(Note) Output pins for sub code Q data and audio data are also used as LCD driver pins. The function of the pins can be switched by program.

Pin Connections

(Note) Symbols for the pins used above indicate the following pin functions:

* : CD processor-dedicated pin
: Power supply pin
3 : CD processor tri-state output pin
A : CD processor analog input/output pin
R : Reference input pin
M : Controller-dedicated pin
(Note) When the CD is off, the power supply pins for the controller ($\mathrm{MV}_{\mathrm{DD}}$) and the power pins supply for the CD oscillator ($\mathrm{XV} V_{D D}$) are on and the CD processor-dedicated power supply (indicated by an asterisk *) pins are off.

Pin Descriptions

Pin Number	Symbol	Pin Name	Function and Operation	Remarks
30 31 32	$\begin{gathered} \text { P4-1/S12 } \\ \text { P4-2 } \\ \text { /SIO/SI1/ } \\ \text { SDA } \\ \\ \text { P4-3 } \\ \text { /SCK/SCL } \end{gathered}$	I/O port 4 /Serial data input /Serial data input/output /Serial clock input/output	3-bit CMOS I/O port. Input/output can be set for each bit by program. These pins are also used as serial interface (SIO) circuit input/output pins. SIO is a serial interface supporting 2 -line and 3 -line methods. Starting from the MSB or LSB, 4 or 8 -bit serial data are output to the SO/SDA pin, or data on the S11 and S12 pins are input to the device at the clock edge on the SCK/SCL pin. As the serial operating clock (SCK/SCL), an internal ($450 / 225 / 150 / 75 \mathrm{kHz}$) or external clock can be selected. Rising or falling shift can also be selected. The clock and data output can be N -channel open drain. These selections facilitate controlling the LSI and communications between the controllers. When SIO interrupts are enabled, an interrupt is generated as soon as execution of the SIO completes, and the program jumps to address 4. This is effective for performing serial communications at high speed. All SIO inputs incorporate a Schmidt circuit. SIO and its control can be set by program.	Input instruction + SIOON
38 88	TESTC TESTM	Test mode control input	Input pins for controlling Test mode. When the pins are at High level, the device is in Test mode; at Low level, in normal operation. Normally, set the pins to Low level or NC (pull-down resistors are incorporated).	
39~42	OT19/ $\overline{\text { HSO }}$ OT20/SPCK OT21/SPDA OT22/COFS	Output port /CD control signal output	4-bit general-purpose output port. After system reset, the pins are set to a Low-level output port. The pins can be switched to CD control output pins by program. Setting OT19 to OT22 to 0 switches all four pins to CD control output pins. Setting the CDIO bit to 1 enables the pins to be switched as follows according to the segment data contents of the S15 and S16 pins: - $\overline{\mathrm{HSO}}$ Outputs playback speed mode. Normal speed: High Double speed: Low -SPCK Outputs clock for reading processor status signal (176.4 kHz). -SPDA Outputs processor status signal. - COFS Outputs frame clock for correction (7.35 kHz).	

Pin Number	Symbol	Pin Name	Function and Operation	Remarks
77	XVSS	CD processor crystal oscillator pins	Power supply pins for CD crystal oscillator. To control the CD processor power supply and	
80	$X V_{\text {DD }}$		the $M V_{D D}$ and $M V_{S S}$ pins to the power supply lines used in common for the $V_{D D}$ and $V_{S S}$ pins.	
78	XI		CD crystal oscillator input/output pins. Connect a 16.9344 MHz crystal oscillator. The clock is used as the CD system clock and controller system clock. After system reset, this clock is supplied as the controller system clock and starts the CPU.	
79	XO		(Note) When switching the controller system clock from the controller oscillator to the CD crystal oscillator, make sure that the CD crystal oscillator is in stable state.	
81	DV ${ }_{\text {SR }}$	CD processor control input/output	R-channel DA converter block ground pin	
82	RO		R-channel data forward rotation output pin	
83	DV RR		R-channel reference voltage pin	
84	DV ${ }_{\text {DD }}$		DA converter block power supply pin	
85	DV RL		L-channel reference voltage pin	
86	LO		L-channel data forward rotation output pin	
87	DV ${ }_{\text {SL }}$		L-channel DA converter block ground pin	
90	$\overline{\mathrm{RST}}$	Reset input	Device system reset signal input pin While the $\overline{\mathrm{RST}}$ is at Low level, reset is applied. When the $\overline{\mathrm{RST}}$ is at High level, the CD block is in operation, and the controller program starts from address 0 . Normally, when 2.7 V or higher voltage is supplied to the MV ${ }_{D D}$ when at 0 V , system reset is applied (power-on reset). Fix the pin to High level.	

Pin Number	Symbol	Pin Name	Function and Operation	Remarks
91	$\overline{\text { HOLD }}$	Hold mode control input	Input pin used to request or release hold state. Normally, the pin is used for inputting the CD mode selection signal or battery detection signal. Halt states are Clock Stop mode (crystal oscillator stops oscillation) and Wait mode (CPU stops). The modes are entered using the CKSTP and WAIT instructions. By program, Clock Stop mode can be entered by detection of Low level on the $\overline{\text { HOLD pin or }}$ by forced execution. Clock Stop mode can be released by detection of High level on the $\overline{\text { HOLD }}$ pin or change in the $\overline{\text { HOLD }}$ pin input. Executing the CKSTP instruction stops the clock generator and the CPU, entering memory backup state. During memory backup state, current dissipation becomes low ($1 \mu \mathrm{~A}$ or below). The display output and CMOS output port automatically become Low level. The N -channel open drain output becomes off. Regardless of the $\overline{\text { HOLD }}$ pin input state, Wait mode is executed and current dissipation becomes low. Crystal oscillator only on or CPU operation suspended can be programmed. When the crystal oscillator only is on, all displays are at Low level. The other pins are in hold state. When CPU operation is suspended, all states are held except that the CPU is suspended. Wait mode is released by a change of the $\overline{\text { HOLD }}$ pin input. (Note) For Backup mode, use the oscillator connected to the MXO and MXI pins. Turn off the $\mathrm{V}_{\text {DD }}$ pin (power supply for CD), and enter Backup mode.	
92	INTR	External interrupt input	External interrupt input pin. When interrupts are enabled and a pulse of 1.11 to $3.33 \mu \mathrm{~s}$ or more (13.3 to $40 \mu \mathrm{~s}$ when the 75 kHz clock is used) is input to this pin, an interrupt is generated and the program jumps to address 1. Input logic and rising/falling edge can be individually selected for interrupt inputs. The internal 8-bit timer clock can be selected for interrupt inputs. Interrupts can be generated (address 3) by pulse count or the count value. Interrupt inputs are Schmidt inputs. The pin can be used as an input port for inputs such as remote control signals.	

Pin Number	Symbol	Pin Name	Function and Operation	Remarks
93	MXO	Crystal oscillator for controller	Crystal oscillator pins for the controller. The oscillator clock is used as a time base for the clock function as well as the system clock for the controller. After system reset, the CPU starts operation using the 16.9344 MHz CD oscillator (connected to the XI and XO pins). The oscillator is switched to the controller oscillator by program. Either a 4.5 MHz reference oscillator or a 75 kHz oscillator is connected to the MXO and MXI pins. The oscillators are switched by a bit used to select a frequency of 4.5 MHz or 75 kHz . The oscillators incorporate a feedback resistor. Switching frequencies automatically switches the feedback resistor of the crystal oscillator.	
94	MXI		$75 \mathrm{kHz}: \mathrm{R}_{\text {out2 }}=2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{fXT}}=10 \mathrm{M} \Omega$ typ. $4.5 \mathrm{MHz}: \mathrm{R}_{\text {out }}=2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{fXT}}=1 \mathrm{M} \Omega$ typ. If the operating clock is the CD crystal oscillator, fix the MXI pin to GND. During execution of the CKSTP instruction, oscillation halts. Selection and control of crystal oscillators are done by program. (Note) When the 75 kHz crystal oscillator is used, externally add/connect a $100 \mathrm{k} \Omega$ output resistor.	MXI
19, 96	MV ${ }_{\text {DD }}$	Power supply pins for controller block	Power supply pins for the controller block. Normally, $\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V . In backup state (when executing the CKSTP instruction), current dissipation becomes low (1 $\mu \mathrm{A}$ or below), dropping the power supply voltage to 2.0 V . If 2.7 V or more is applied to these pins when at 0 V , a system reset is applied to the device and the program starts from address 0 (power-on reset). (Note) At power-on reset operation, allow 10 to 100 ms while the device power supply voltage rises.	
20, 95	MV SS			

Maximum Ratings $\left(\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{DV} \mathrm{DD}=\mathrm{AV} \mathrm{DD}, \mathrm{MV} \mathrm{DD}=X \mathrm{~V}_{\mathrm{DD}}\right)$

Characteristics		Symbol	Test Condition	Unit
Power supply voltage		$V_{\text {DD }}$	$-0.3 \sim 6.0\left(M V_{D D} \geqq V^{\text {DD }}\right.$)	V
		MV ${ }_{\text {DD }}$		
Input voltage	$V_{\text {DD }}$ power supply pin	$\mathrm{V}_{\text {IN1 }}$	$-0.3 \sim V_{D D}+0.3$	V
	MV ${ }_{\text {DD }}$ power supply pin	VIN2	$-0.3 \sim M V_{D D}+0.3$	
Power dissipation		PD	1400	mW
Operating temperature		Topr	-40~85	${ }^{\circ} \mathrm{C}$
Storage temperature		$\mathrm{T}_{\text {stg }}$	-65~150	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

(unless otherwise specified, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=M V_{D D}=X V_{D D}=D V_{D D}=A V_{D D}=5 \mathrm{~V}$, $2 \mathrm{~V}_{\text {REF }}=\mathrm{P}^{2} \mathrm{~V}_{\text {REF }}=4.2 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=\mathrm{PV}_{\text {REF }}=2.1 \mathrm{~V}$)
V_{DD} (power supply pins for CD processor block: $\mathrm{V}_{\mathrm{DD}}, \mathrm{XV}_{\mathrm{DD}}, ~ D V_{\mathrm{DD}}$, and $\mathrm{AV} \mathrm{V}_{\mathrm{DD}}$)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Operating power supply voltage range	$V_{D D}$	-	$M \mathrm{~V}_{\mathrm{DD}}=X \mathrm{~V}_{\mathrm{DD}} \geqq \mathrm{V}_{\mathrm{DD}}=\mathrm{DV} \mathrm{D}_{\mathrm{DD}}=A \mathrm{~V}_{\mathrm{DD}} \quad *$	4.5	~	5.5	V
Operating power supply current	IDD	-	($\mathrm{V}_{\mathrm{DD}}, \mathrm{DV}_{\mathrm{DD}}, \mathrm{AV}_{\mathrm{DD}}$) operating at 16.9344 MHz	-	50	60	mA
	XIDD	-	(XV ${ }_{\text {DD }}$) 16.9344 MHz crystal oscillator connected	-	2.0	-	
Crystal oscillator standby current	XStBY	-	($\mathrm{XV}_{\text {DD }}$) 16.9344 MHz crystal oscillator off	-	0.01	-	$\mu \mathrm{A}$
Crystal oscillator frequency	f_{XT}	-	$\mathrm{C}_{\mathrm{i}}=\mathrm{C}_{0}=15 \mathrm{pF} \quad($ Note 1)*	-	16.9344	-	MHz

MV $V_{D D}$ (power supply pins for CPU block: $M_{D D}, X V_{D D}$ (Note 2)

Characteristics	Symbol	Test Circuit	Test Condition		Min	Typ.	Max	Unit
Operating power supply voltage range	MV ${ }_{\text {DD1 }}$		CPU and CD in operation$\mathrm{MV}_{\mathrm{DD}}=\mathrm{XV} \mathrm{~V}_{\mathrm{DD}} \geqq \mathrm{~V}_{\mathrm{DD}}=\mathrm{D} \mathrm{~V}_{\mathrm{DD}}=\mathrm{A} \mathrm{~V}_{\mathrm{DD}}$		4.5	\sim	5.5	V
	MV ${ }_{\text {DD2 }}$	-	CPU in operation (CD off, $4.5 \mathrm{MHz} / 16.9344 \mathrm{MHz}$ crystal oscillator used)		4.5	\sim	5.5	
	MV ${ }_{\text {DD3 }}$		CPU in operation (CD off, 75 kHz crystal oscillator used)		3.0	\sim	5.5	
Memory hold voltage range	MV ${ }_{\text {HD }}$	-	Crystal oscillator stopped (executing CKSTP instruction)		2.0	\sim	5.5	
Operating power supply current (Note 3)	M $\mathrm{DLD}^{\text {d }}$	-	CPU in operation	$\mathrm{XI}=16.9344 \mathrm{MHz}$ crystal oscillator connected	-	3.0	5.0	mA
	M ${ }_{\text {DD2 }}$	-		$\mathrm{MXI}=4.5 \mathrm{MHz}$ crystal oscillator connected	-	1.4	2.5	
	M ${ }_{\text {DD3 }}$	-		MXI $=75 \mathrm{kHz}$ crystal oscillator connected	-	0.3	1.0	
	M ${ }_{\text {DD4 }}$	-	Standby mode (crystal oscillator only in operation)	$\mathrm{XI}=16.9344 \mathrm{MHz}$ crystal oscillator connected	-	1.5	-	
	M ${ }_{\text {DD5 }}$	-		$\mathrm{MXI}=4.5 \mathrm{MHz}$ crystal oscillator connected	-	0.25	-	
	M ${ }_{\text {DD6 }}$	-		$\mathrm{MXI}=75 \mathrm{kHz}$ crystal oscillator connected	-	0.1	-	
Memory hold current	$\mathrm{Ml}_{\mathrm{HD}}$	-	Crystal oscillator stopped (executing CKSTP instruction)		-	0.1	1.0	$\mu \mathrm{A}$
Crystal oscillator frequency	$\mathrm{f}_{\mathrm{MXT} 1}$	-	4.5 MHz crystal oscillator set (Note 1)*		-	4.5	-	MHz
	$\mathrm{f}_{\mathrm{MXT}}$	-	75 kHz crystal oscillator set,$\mathrm{MV} \mathrm{V}_{\mathrm{DD}}=2.7 \sim 5.5 \mathrm{~V}$(Note 1)*		-	75	-	kHz
Crystal oscillator start time	$\mathrm{t}_{\text {st }}$	-	Crystal oscillator $\mathrm{f}_{\mathrm{mxt}}=75 \mathrm{kHz}$		-	-	1.0	S

Note 1: Design and set constants according to the crystal oscillator to be connected.
Note 2: The power supply/memory hold current is the value obtained by summing the $X V_{D D}$ and $M V_{D D}$ pin currents.
Note 3: The values are those when the power supply detector function is operating. Setting the function reduces current dissipation by $150 \mu \mathrm{~A}$ (typ.). (Except in Standby mode)

An asterisk (*) indicates the values are guaranteed when $V_{D D}=M V_{D D}=X V_{D D}=D V_{D D}=A V_{D D}$ and $T a=-40$ to $85^{\circ} \mathrm{C}$.
When $C D$ is off, $V_{D D}=D V_{D D}=A V_{D D}=0 V$

LCD common output/output port (COM1/OT1~COM4/OT4)

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Output current	"H" level	IOH 1	-	$\mathrm{V}_{\mathrm{OH}}=4.5 \mathrm{~V}$ (LCD output)	-200	-600	-	$\mu \mathrm{A}$
		IOH^{2}	-	$\mathrm{V}_{\mathrm{OH}}=4.5 \mathrm{~V}$ (OT output)	-15	-30	-	mA
	"L" level	IOL1	-	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$ (LCD output)	200	600	-	$\mu \mathrm{A}$
		IOL5	-	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$ (OT output)	4.0	10	-	mA
Bias voltage	1/2 level	$\mathrm{V}_{\mathrm{BS} 2}$	-	No load (LCD output, 1/2 bias method set)	2.3	2.5	2.7	V
	1/3 level	$\mathrm{V}_{\mathrm{BS} 1}$	-	No load (LCD output, 1/3 bias method set)	1.47	1.67	1.87	
	2/3 level	$\mathrm{V}_{\mathrm{BS} 3}$	-		3.13	3.33	3.53	

Segment output, output ports, I/O ports, and CD function output (S1/OT4~S9/OT13, S10/OT14/ZDET~S14/OT18/LRCK, P8-0/S14/BCK~P8-3/S18/IPF, OT19)

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Output current	"H" level	IOH^{1}	-	$\mathrm{V}_{\mathrm{OH}}=4.5 \mathrm{~V}$ (LCD output)	-200	-600	-	$\mu \mathrm{A}$
		IOH 4	-	$\mathrm{V}_{\mathrm{OH}}=4.5 \mathrm{~V}$ (OT output, CD output, excluding P8-0~P8-3 pins)	-1.5	-4.0	-	mA
	"L" level	l OL1	-	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$ (LCD output)	200	600	-	$\mu \mathrm{A}$
		IOL5	-	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$ (OT output, CD output)	4.0	10	-	mA
Input leakage current		lıI	-	$\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}(\mathrm{P} 8-0 \sim \mathrm{P} 8-3)$	-	-	± 1.0	$\mu \mathrm{A}$
Input voltage	"H" level	V_{IH}	-	(P8-0~P8-3, CLCK)	$\begin{gathered} M V_{D D} \\ \times 0.8 \end{gathered}$	~	$M V_{\text {DD }}$	V
	"L" level	VIL	-	(P8-0~P8-3, CLCK)	0	~	$\begin{gathered} M V_{D D} \\ \times 0.2 \end{gathered}$	
Bias voltage	1/3 level	$\mathrm{V}_{\text {BS1 }}$	-	No load (LCD output, 1/3 bias method set)	1.47	1.67	1.87	V
	2/3 level	$\mathrm{V}_{\text {BS3 }}$	-		3.13	3.33	3.53	

I/O port (P1-0~P4-3)

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Output current	"H" level	$\mathrm{IOH3}$	-	$\mathrm{V}_{\mathrm{OH}}=4.5 \mathrm{~V}$	-0.8	-2.0	-	mA
	"L" level	lol3	-	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$ (excluding P4-1, P4-2, P4-3 pins)	1.0	3.0	-	
		IOL5	-	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$ (P4-1, P4-2, P4-3 pins)	4.0	10	-	
Input leakage current		lıI	-	$\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
Input voltage	"H" level	V_{IH}	-	-	$\begin{gathered} \mathrm{MV} \mathrm{VDD} \\ \times 0.8 \end{gathered}$	~	MV ${ }_{\text {DD }}$	V
	"L" level	VIL	-	-	0	~	$\begin{gathered} M V_{D D} \\ \times 0.2 \end{gathered}$	
Input pull-up/down resistance		$\mathrm{R}_{\mathrm{IN} 1}$	-	(P1-0~P1-3 pins) pull-down/up set	25	50	120	$\mathrm{k} \Omega$

HOLD , INTR input port, $\overline{\text { RST }}$ input,
1-bit DAC data input (EMPHin/HSOin/LRCKin/DATAin/BCKin) Input port (IN1/IN2)

| Characteristics | | Symbol | Test
 Circuit | Test Condition | Min | Typ. | Max |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Unit

AD converter (ADin1~ADin4)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max
Unit						
Analog input voltage range	V_{AD}	-	ADin1~ADin4	0	\sim	$\mathrm{MV}_{\mathrm{DD}}$
Resolution	VRES	-	-	-	6	-
Total conversion error	-	-	-	-	± 0.5	± 1.0
Analog input leakage	I_{LI}	-	$\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}(\mathrm{ADin1} \mathrm{\sim ADin4)}$	-	-	± 1.0

DOUT, SBSY, SBOK, SEL, OT19/HSO , OT20/SPCK, OT21/SPDA, OT22/COFS output

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Output current	"H" level	IOH 4	-	$\mathrm{V}_{\mathrm{OH}}=4.5 \mathrm{~V}$	-1.5	-4.0	-	
	"L" level	$\mathrm{IOL4}$	-	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	1.5	4.0	-	mA

PDO, TMAX, RFGC, TEBC, FMO, DMO, TRO, FOO output

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Output current	"H" level	IOH	-	$\mathrm{V}_{\mathrm{OH}}=3.8 \mathrm{~V}, \mathrm{P} 2 \mathrm{~V}_{\mathrm{REF}}=4.2 \mathrm{~V}(\mathrm{PDO}, \mathrm{TMAX})$	-	-2.0	-	mA
	"L" level	IOL4	-	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}, \mathrm{P} 2 \mathrm{~V}_{\mathrm{REF}}=4.2 \mathrm{~V}(\mathrm{PDO}, \mathrm{TMAX})$	-	6.0	-	
Output resistance		Rout3	-	(RFGC, TEBC, FMO, DMO, TRO, FOO)	-	3.3	-	$\mathrm{k} \Omega$
V REF output resistance		Voref	-	(RFGC, TEBC, FMO, DMO, PDD) $\mathrm{V}_{\text {REF }}=\mathrm{PV}$ REF $=2.1 \mathrm{~V}$	-	2.1	-	V

Transfer delay time (AOUT, SPDA, DATA, SBSY, SBOK)

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max
Unit							
Transfer delay time	"H" level	$\mathrm{t}_{\mathrm{pLH}}$	-	-	-	10	-
	"L" level	$\mathrm{t}_{\mathrm{pHL}}$	-	-	-	10	-

1-bit DA converter

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Total harmony distortion	THD +N	-	1 kHz sine wave, full-scale input	-	-85	-78	
S/N ratio	S / N	-	-	90	98	-	c
Dynamic range	DR	-	1 kHz sine wave, -60 dB input conversion	85	90	-	
Crosstalk	CT	-	1 kHz sine wave, full-scale input	-	-90	-85	
Analog output level	DAC ${ }_{\text {out }}$	-	1 kHz sine wave, full-scale input	1200	1250	1300	mVrms

Others

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Input pull-down resistance	$\mathrm{R}_{\text {IN2 }}$	-	(TESTC, TESTM)	-	10	-	k Ω
XI amp feedback resistance	$\mathrm{R}_{\mathrm{fXT} 1}$	-	(XI-XO)	1.0	2.0	4.0	$\mathrm{M} \Omega$
XO output resistance	$\mathrm{R}_{\text {out } 1}$	-	(XO)	-	0.5	-	$\mathrm{k} \Omega$
MXI amp feedback resistance	$\mathrm{R}_{\mathrm{fXT}}$	-	When 4.5 MHz crystal set, (MXI-MXO)	0.5	1.0	2.5	$\mathrm{M} \Omega$
		-	When 75 kHz crystal set, (MXI-MXO)	-	10	-	
MXO output resistance	Rout2	-	(MXO)	-	2.0	-	$\mathrm{k} \Omega$
Input resistance	$\mathrm{Z}_{\text {in1 }}$	-	Set resistance by (RFI) CD command	-	10	-	$\mathrm{k} \Omega$
				-	5	-	
				-	2.5	-	
				-	1.25	-	
	$\mathrm{Z}_{\mathrm{in} 2}$	-	(TEZI)	-	10	-	

Package Dimensions

QFP100-P-1420-0.65A Unit : mm

Weight: 1.6 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

