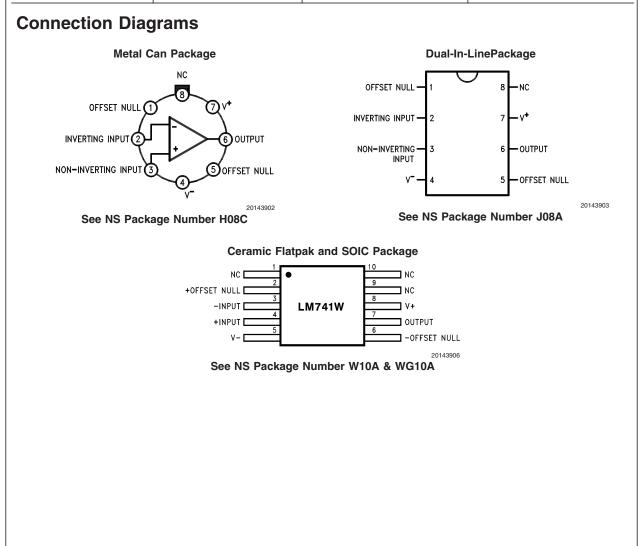
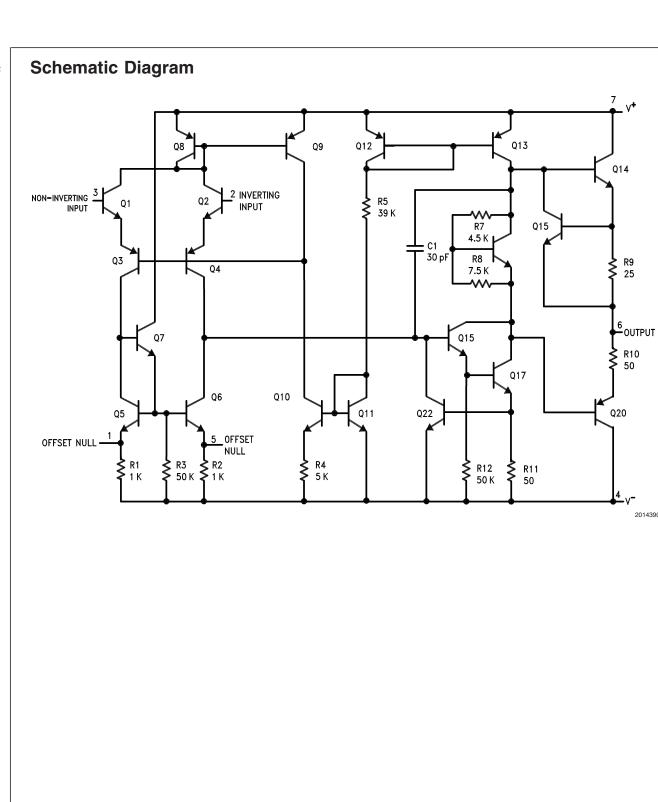


LM741QML Operational Amplifier General Description


The LM741 is a general purpose operational amplifier which features improved performance over industry standards such as the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications.

Features


The amplifier offers many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

Ordering Information

NS Part Number	JAN Part Number	NS Package Number	Package Description
LM741H/883		H08C	8 LD Metal Can
LM741J/883		J08A	8LD CERDIP
LM741W/883		W10A	10LD CERPACK
LM741WG/883		WG10A	10LD Ceramic SOIC

LM741QML

v*

20143901

www.national.com

LM741QML

±22V

500 mW ±30V

 $\pm 15V$

Continuous

 $-55^{\circ}C \leq T_A \leq +125^{\circ}C$

 $-65^{\circ}C \leq T_A \leq +150^{\circ}C$

150°C

300°C

Thermal Resistance

Junction Temperature (T_J)

Power Dissipation (Note 2)

Output Short Circuit Duration

Operating Temperature Range

Lead Temperature (Soldering, 10 Seconds)

Storage Temperature Range

Differential Input Voltage Input Voltage (Note 3)

Supply Voltage

Absolute Maximum Ratings (Note 1)

θ_{JA}	
Metal Can (Still Air)	167°C/W
Metal Can (500LF / Min Air Flow)	100°C/W
CERDIP (Still Air)	TBD
CERDIP (500LF / Min Air Flow)	TBD
CERPACK (Still Air)	228°C/W
CERPACK (500LF / Min Air Flow)	154°C/W
Ceramic SOIC (Still Air)	228°C/W
Ceramic SOIC (500LF / Min Air Flow)	154°C/W
θ_{JC}	
Metal Can	44°C/W
CERDIP	TBD
CERPACK	27°C/W
Ceramic SOIC	27°C/W
Package Weight (typical)	
Metal Can	1000mg
CERDIP	1100mg
CERPACK	260mg
Ceramic SOIC	225mg
ESD Tolerance (Note 4)	400V

Quality Conformance Inspection

Mil-Std-883, Method 5005 - Group A

Subgroup	Description	Temp °C
1	Static tests at	25
2	Static tests at	125
3	Static tests at	-55
4	Dynamic tests at	25
5	Dynamic tests at	125
6	Dynamic tests at	-55
7	Functional tests at	25
8A	Functional tests at	125
8B	Functional tests at	-55
9	Switching tests at	25
10	Switching tests at	125
11	Switching tests at	-55
12	Settling time at	25
13	Settling time at	125
14	Settling time at	-55

Electrical Characteristics

DC Parameters

The following conditions apply to all the following parameters, unless otherwise specified.

DC: $V_{CC} = \pm 15V$, $V_{CM} = 0V$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- group
V _{IO}	Input Offset Voltage	V _{CM} = -12V		-5.0	5.0	mV	1
				-6.0	6.0	mV	2, 3
		$V_{CM} = 12V$		-5.0	5.0	mV	1
				-6.0	6.0	mV	2, 3
				-5.0	5.0	mV	1
				-6.0	6.0	mV	2, 3
		$+V_{CC} = \pm 5V$		-5.0	5.0	mV	1
				-6.0	6.0	mV	2, 3
-V _{IO} Adj	Offset Null				-6.0	mV	1, 2, 3
+V _{IO} Adj	Offset Null			6.0		mV	1, 2, 3
I _{IO}	Input Offset Current	V _{CM} = -12V		-200	200	nA	1
				-500	500	nA	2, 3
		V _{CM} = 12V		-200	200	nA	1
				-500	500	nA	2, 3
				-200	200	nA	1
				-500	500	nA	2, 3
		$V_{CC} = \pm 5V$		-200	200	nA	1
				-500	500	nA	2, 3
±l _{IB}	Input Bias Current	V _{CM} = -12V		0.0	500	nA	1
				0.0	1500	nA	2, 3
		$V_{CM} = 12V$		0.0	500	nA	1
				0.0	1500	nA	2, 3
				0.0	500	nA	1
				0.0	1500	nA	2, 3
		$V_{CC} = \pm 5V$		0.0	500	mA	1
				0.0	1500	nA	2, 3
l _{cc}	Power Supply Current				2.8	mA	1
					2.5	mA	2
					3.5	mA	3
+A _{VS}	Open Loop Voltage Gain	$R_L = 2K\Omega$, $V_O = 0$ to 10V	(Note 7)	50		V/mV	1
			(Note 7)	25		V/mV	2, 3
-A _{VS}	Open Loop Voltage Gain	$R_L = 2K\Omega$, $V_O = 0$ to $-10V$	(Note 7)	50		V/mV	1
			(Note 7)	25		V/mV	2, 3
+PSRR	Power Supply Rejection Ratio	$+V_{CC} = 15V$ to 5V, $-V_{CC} = -15V$		77		dB	1, 2, 3
-PSRR	Power Supply Rejection Ratio	$-V_{CC} = -15V \text{ to } -5V,$ +V_{CC} = +15V		77		dB	1, 2, 3
CMRR	Common Mode Rejection Ratio	$-12V \le V_{CM} \le 12V$		70		dB	1, 2, 3
+l _{os}	Output Short Circuit Current			-45	-5.0	mA	1,2
				-50	-5.0	mA	3
-I _{os}	Output Short Circuit Current			5.0	45	mA	1,2
				5.0	50	mA	3
+V _{Opp}	Output Voltage Swing	$R_L = 10K\Omega$		12		V	1, 2, 3
		$R_L = 2K\Omega$		10		V	1, 2, 3
		$V_{\rm CC} = \pm 20$ V, $R_{\rm L} = 10$ K Ω		16		V	1, 2, 3
		$V_{CC} = \pm 20V, R_L = 2K\Omega$		15		V	1, 2, 3

www.national.com

Electrical Characteristics (Continued)

DC Parameters (Continued)

The following conditions apply to all the following parameters, unless otherwise specified.

DC: $V_{CC} = \pm 15V, V_{CM} = 0V$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- group
-V _{Opp}	Output Voltage Swing	$R_L = 10K\Omega$			-12	V	1, 2, 3
		$R_L = 2K\Omega$			-10	V	1, 2, 3
		$V_{CC} = \pm 20V, R_L = 10K\Omega$			-16	V	1, 2, 3
		$V_{CC} = \pm 20V, R_L = 2K\Omega$			-15	V	1, 2, 3
R _I	Input Resistance		(Note 6)	0.3		MΩ	1
VI	Input Voltage Range	$V_{CC} = \pm 15V$	(Note 5)	±12		V	1, 2, 3
Vo	Output Voltage Swing	$V_{CC} = \pm 5V$	(Note 6)	±2.0		V	1, 2, 3

AC Parameters

The following conditions apply to all the following parameters, unless otherwise specified.

AC: $V_{CC} = \pm 15V, V_{CM} = 0V$

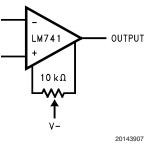
Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- group
+SR	Slew Rate	V_{I} = -5V to 5V, A_{V} = 1, R_{L} = 2K Ω		0.2		V/µS	7
-SR	Slew Rate	$V_{I} = 5V$ to -5V, $A_{V} = 1$, $R_{L} = 2K\Omega$		0.2		V/µS	7
t _R	Rise Time	$R_{L} = 2K\Omega, A_{V} = 1, C_{L} = 100pF$			1.0	μS	7
OS	Overshoot	$R_{L} = 2K\Omega, \ A_{V} = 1, \ C_{L} = 100pF$			30	%	7
GBW	Gain Bandwidth	$V_I = 50mV_{RMS}, f = 20KHz, R_L = 2K\Omega$		250		KHz	-

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

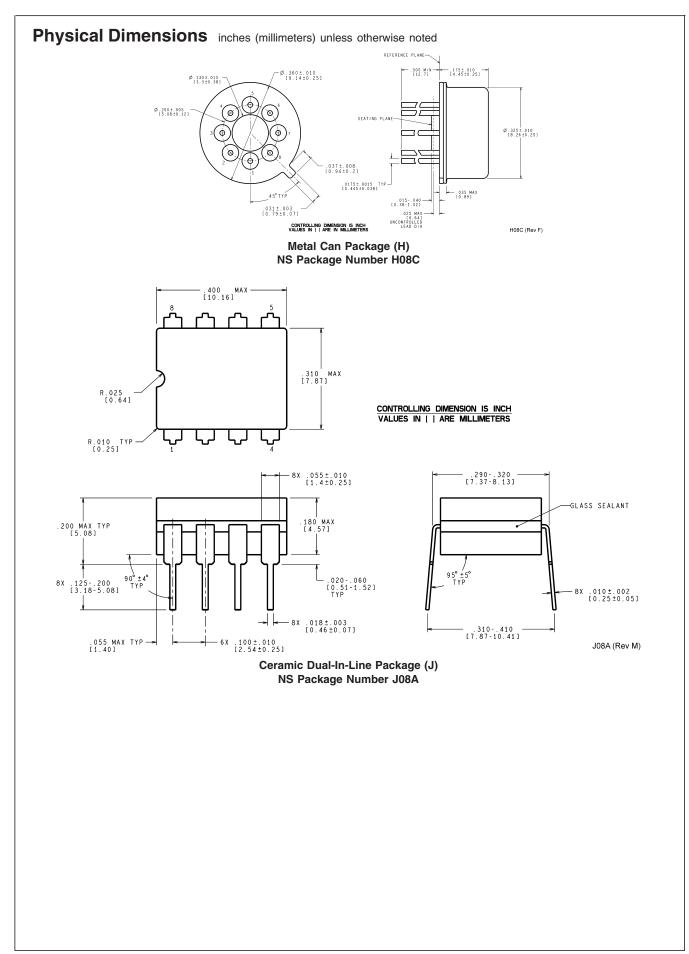
Note 4: Human body model, 1.5 k Ω in series with 100 pF.


Note 5: Guaranteed by CMRR, $I_{IB},\,I_{IO},\,V_{IO}$

Note 6: Guaranteed parameter, not tested.

Note 7: Datalog reading in K = V/mV

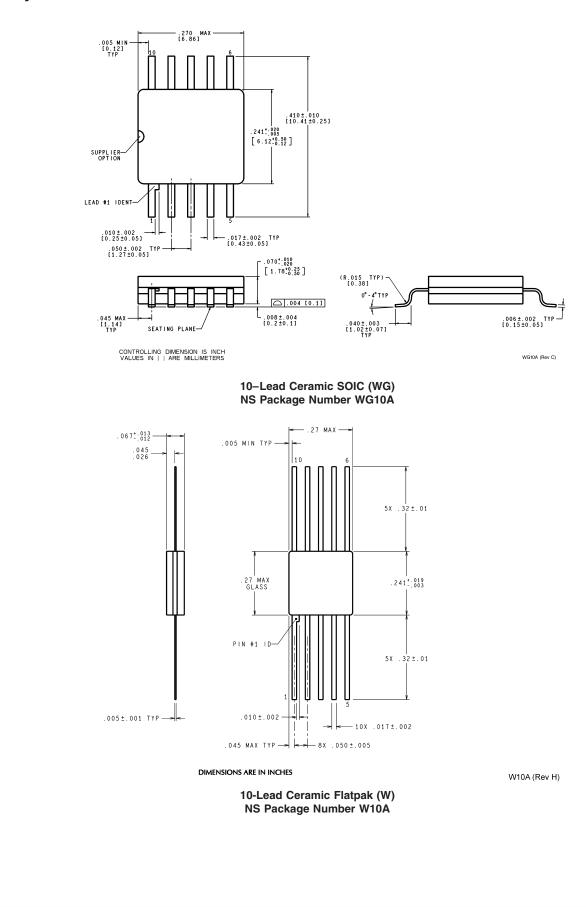
Typical Application



LM741QML

Revision History

A	New Release to the corporate format	L. Lytle	1 MDS datasheet converted into one corporate datasheet format. Since drift is not performed on 883 product, the table was removed. MNLM741-X Rev 1A0 will be archived.


www.national.com

7

LM741QML

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

www.national.com

LM741QML

LM741QML Operational Amplifier

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Notes

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1.800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560