

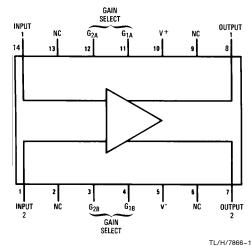
LM733/LM733C Differential Amplifier

General Description

The LM733/LM733C is a two-stage, differential input, differential output, wide-band video amplifier. The use of internal series-shunt feedback gives wide bandwidth with low phase distortion and high gain stability. Emitter-follower outputs provide a high current drive, low impedance capability. Its 120 MHz bandwidth and selectable gains of 10, 100 and 400, without need for frequency compensation, make it a very useful circuit for memory element drivers, pulse amplifiers, and wide band linear gain stages.

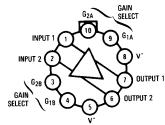
The LM733 is specified for operation over the -55° C to $+125^{\circ}$ C military temperature range. The LM733C is specified for operation over the 0° C to $+70^{\circ}$ C temperature range.

Features


- 120 MHz bandwidth
- 250 kΩ input resistance
- Selectable gains of 10, 100, 400
- No frequency compensation
- High common mode rejection ratio at high frequencies

Applications

- Magnetic tape systems
- Disk file memories
- Thin and thick film memories
- Woven and plated wire memories
- Wide band video amplifiers


Connection Diagrams

Top View Order Number LM733CN See NS Package Number N14A

Metal Can Package

TL/H/7866-2

Note: Pin 5 connected to case.

Top View
Order Number LM733H or LM733CH
See NS Package Number H10D

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{ll} \mbox{Diffential Input Voltage} & \pm 5 \mbox{V} \\ \mbox{Common Mode Input Voltage} & \pm 6 \mbox{V} \\ \mbox{V}_{CC} & \pm 8 \mbox{V} \\ \mbox{Output Current} & 10 \mbox{ mA} \end{array}$

Power Dissipation (Note 1) 500 mW

Junction Temperature + 150°C

Storage Temperature Range -65°C to +150°C

Operating Temperature Range

Electrical Characteristics ($T_A = 25^{\circ}C$, unless otherwise specified, see test circuits, $V_S = \pm 6.0V$)

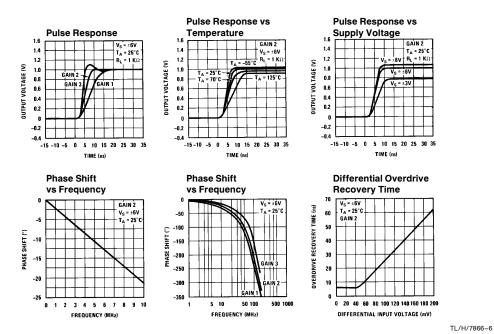
Characteristics	Test Circuit	Test Conditions	LM733			LM733C			Units
		Tool Conditions	Min	Тур	Max	Min	Тур	Max	0.1110
Differential Voltage Gain Gain 1 (Note 2) Gain 2 (Note 3) Gain 3 (Note 4)	1	$R_L = 2 k\Omega V_{OUT} = 3 Vp-p$	300 90 9.0	400 100 10	500 110 11	250 80 8.0	400 100 10	600 120 12	
Bandwidth Gain 1 Gain 2 Gain 3	2			40 90 120			40 90 120		MHz MHz MHz
Rise Time Gain 1 Gain 2 Gain 3	2	V _{OUT} = 1 Vp-p		10.5 4.5 2.5	10		10.5 4.5 2.5	12	ns ns ns
Propagation Delay Gain 1 Gain 2 Gain 3	2	V _{OUT} = 1 Vp-p		7.5 6.0 3.6	10		7.5 6.0 3.6	10	ns ns ns
Input Resistance Gain 1 Gain 2 Gain 3			20	4.0 30 250		10	4.0 30 250		kΩ kΩ kΩ
Input Capacitance		Gain 2		2.0			2.0		pF
Input Offset Current				0.4	3.0		0.4	5.0	μΑ
Input Bias Current				9.0	20		9.0	30	μΑ
Input Noise Voltage		BW = 1 kHz to 10 MHz		12			12		μVrms
Input Voltage Range	1		±1.0			±1.0			V
Common Mode Rejection Ratio Gain 2 Gain 2	1	$V_{CM}=\pm 1Vf\leq 100kHz$ $V_{CM}=\pm 1Vf=5MHz$	60	86 60		60	86 60		dB dB
Supply Voltage Rejection Ratio Gain 2	1	$\Delta V_{S} = \pm 0.5 V$	50	70		50	70		dB
Output Offset Voltage Gain 1 Gain 2 and 3	1	R _L = ∞		0.6 0.35	1.5 1.0		0.6 0.35	1.5 1.5	V V
Output Common Mode Voltage	1	R _L = ∞	2.4	2.9	3.4	2.4	2.9	3.4	V
Output Voltage Swing	1	$R_L = 2k$	3.0	4.0		3.0	4.0		
Output Sink Current			2.5	3.6		2.5	3.6		mA
Output Resistance				20			20		Ω
Power Supply Current	1	R _L = ∞		18	24		18	24	mA

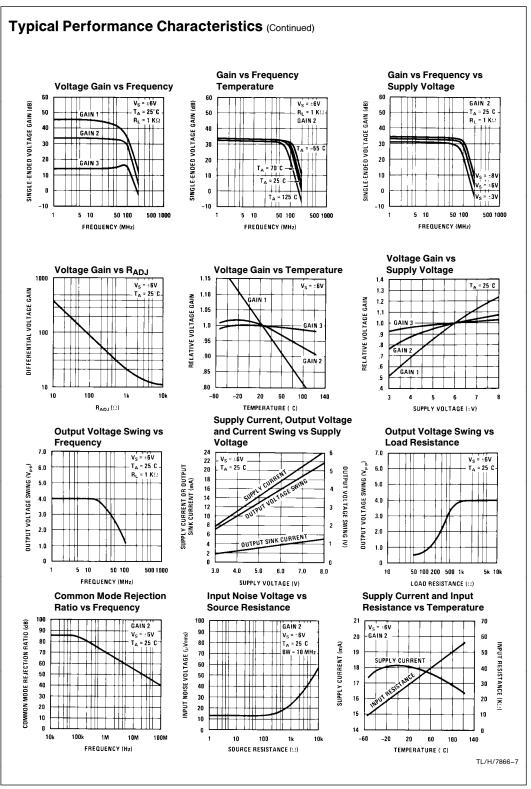
Electrical Characteristics (Continued)

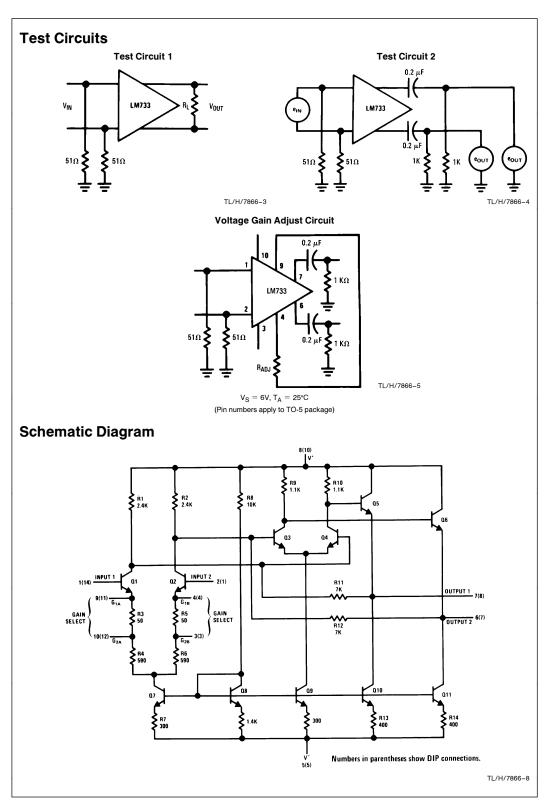
(The following specifications apply for $-55^{\circ}C < T_A < 125^{\circ}C$ for the LM733 and $0^{\circ}C < T_A < 70^{\circ}C$ for the LM733C, $V_S = \pm 6.0V$)

Characteristics	Test Circuit	Test Conditions	LM733			LM733C			Units
			Min	Тур	Max	Min	Тур	Max	Oille
Differential Voltage Gain Gain 1 Gain 2 Gain 3	1	$R_L = 2 k\Omega, V_{OUT} = 3 Vp-p$	200 80 8.0		600 120 12.0	250 80 8.0		600 120 12.0	
Input Resistance Gain 2			8			8			kΩ
Input Offset Current					5			6	μΑ
Input Bias Current					40			40	μΑ
Input Voltage Range	1		±1			± 1			٧
Common Mode Rejection Ratio Gain 2	1	$V_{CM} = \pm 1V f \le 100 \text{ kHz}$	50			50			dB
Supply Voltage Rejection Ratio Gain 2	1	$\Delta V_S = \pm 0.5 V$	50			50			dB
Output Offset Voltage Gain 1 Gain 2 and 3	1	$R_L = \infty$			1.5 1.2			1.5 1.5	V V
Output Voltage Swing	1	$R_L = 2k$	2.5			2.8			V _{pp}
Output Sink Current			2.2			2.5			mA
Power Supply Current	1	$R_L = \infty$			27			27	mA

Note 1: The maximum junction temperature of the LM733 is 150°C, while that of the LM733C is 100°C. For operation at elevated temperatures devices in the TO-100 package must be derated based on a thermal resistance of 150°C/W junction to ambient or 45°C/W junction to case. Thermal resistance of the dual-in-line package is 90°C/W.

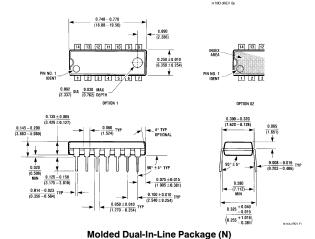

Note 2: Pins G1A and G1B connected together.


Note 3: Pins G2A and G2B connected together.


Note 4: Gain select pins open.

Note 5: Refer to RETS733X drawing for specifications of LM733H version.

Typical Performance Characteristics



Physical Dimensions inches (millimeters) 0.350-0.370 0.315_0.335 0.240-0.260 (8.001 –8.509) (6.096-6.604) (0.889) MAX \mathbb{U} \mathbb{U} \mathbb{U} \mathbb{U} 0 500 (12.70) 0.015-0.019 (0.381-0.483) DIA TYP-0.026-0.034 (0.661-0.864) (0.737 - 1.143)Metal Can Package (H) Order Number LM733H or LM733CH

NS Package Number H10D

(5.842)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Order Number LM733CN NS Package Number N14A

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86
Email: cnjwge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85
English Tel: (+49) 0-180-532 78 32
Français Tel: (+49) 0-180-532 93 58
Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.