SURFACE MOUNT NEGATIVE ADJUSTABLE 1.0 AMP VOLTAGE REGULATOR Isolated Hermetic Surface Mount Package 1.0 Amp, High Voltage, Negative Adjustable Voltage Regulator ## **FEATURES** - Isolated Hermetic Surface Mount Package - Adjustable Output Voltage - Eliminates Stocking Fixed Voltages - Built-In Thermal Overload Protection - · Short Circuit Current Limiting - Product Is Available Hi-Rel Screened - Electrically Similar To Industry Standard Type LM137HV ## **DESCRIPTION** This three terminal negative regulator is supplied in a hermetically sealed metal surface mount package. All protective features are designed into the circuit, including thermal shutdown, current limiting and safe-area control. With heat sinking, they can deliver over 1.0 amp of output current. This unit features output voltages that can be trimmed using external resistors, from -1.2 volts to -47 volts. ## ABSOLUTE MAXIMUM RATINGS @ 25°C | Input To Output Voltage Differential | 50 V | |--|-----------------| | Operating Junction Temperature Range | 55°C to + 150°C | | Storage Temperature Range | 55°C to + 150°C | | Typical Power/Thermal Characteristics: | | | Rated Power: | | | T _C | | | T _A | | | Thermal Resistance: | | | $ heta_{\sf JC} \ldots \ldots $ | 4.0°C/W | | $ heta_{\sf JA}$ | | | Max. Lead Solder Temperature for 5 sec | 225°C | 3.5 -0 V #### OM7647SM # **ELECTRICAL CHARACTERISTICS** -55°C T $_{\rm A}$ 125°C, I $_{\rm L}$ = 8mA (unless otherwise specified) | Parameter | Symbol | Test Conditions | | Min. | Max. | Unit | |------------------------|-------------------|---|---|-------|-------|------| | Reference Voltage | V _{REF} | $ V_{DIFF} = 3.0V, T_A = 25^{\circ}C$ | | -1.30 | -1.20 | | | | | V _{DIFF} = 3V | • | -1.30 | -1.20 | V | | | | $ V_{DIFF} = 50V, T_A = 25^{\circ}C$ | | -1.30 | -1.20 | | | | | V _{DIFF} | • | -1.30 | -1.20 | | | Line Regulation | R _{LINE} | $3.0 \text{ V } V_{\text{DIFF}} 50 \text{ V}, T_{\text{A}} = 25 ^{\circ}\text{C}$ | | -10 | 10 | mV | | (Note 1) | | | • | -25 | 25 | | | Load Regulation | R _{LOAD} | $ V_{DIFF} = 50V, 8mA I_L 110mA$ | | -25 | 25 | | | (Note 1) | | T _A = 25°C | | | | | | | | $ V_{DIFF} = 5V, 8mA I_L 1.5A, T_A = 25^{\circ}C$ | | -25 | 25 | mV | | | | | • | -45 | 45 | | | Thermal Regulation | V _{RTH} | V _{IN} = -14.6V, I _L = 1.5A | | -5 | 5 | mV | | | | $P_d = 20 \text{ Watts, t} = 10 \text{ ms, T}_A = 25^{\circ}\text{C}$ | | | | | | Ripple Rejection | R _N | f = 120 Hz, V _{OUT} = V _{ref} | • | 66 | | dB | | (Note 2) | | $C_{Adj} = 10 \mu F, I_{OUT} = 100 \text{ mA}$ | | | | | | Adjustment Pin Current | I _{Adj} | V _{DIFF} = 3.0V | • | | 100 | | | | | $ V_{DIFF} = 40V$ | • | | 100 | μΑ | | | | $ V_{DIFF} = 50V$ | • | | 100 | | | Adjustment Pin | I _{Adj} | V _{DIFF} = 5V, 8mA I _{OUT} 1.5A | • | -5 | 5 | μА | | Current Change | | 3V V _{DIFF} 50V | • | -6 | 6 | | | Miminum Load Current | I _{Lmin} | V _{DIFF} = 3.0V, V _{OUT} = -1.4V (forced) | • | | 3.0 | | | | | $ V_{DIFF} = 10V$, $V_{OUT} = -1.4V$ (forced) | • | | 3.0 | A | | | | $ V_{DIFF} = 40V$, $V_{OUT} = -1.4V$ (forced) | • | | 5.0 | mA | | | | $ V_{DIFF} = 50V$, $V_{OUT} = -1.4V$ (forced) | • | | 5.0 | | | Current Limit | I _{CL} | lv 50v T 25°C | | 0.0 | 4.0 | _ | | (Note 2) | | $ V_{DIFF} = 50V, T_A = 25^{\circ}C$ | | 0.2 | 1.0 | A | #### Notes: - 1. Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately. - 2. If not tested, shall be guaranteed to the specified limits. - 3. The denotes the specifications which apply over the full operating temperature range. # **MECHANICAL OUTLINE** # ± .020 -.115 **Pin Connections** Pin 1: V_{IN} Pin 2: Adjust Pin 3: V_{OUT} Case: Isolated