# SURFACE MOUNT NEGATIVE ADJUSTABLE 1.0 AMP VOLTAGE REGULATOR



Isolated Hermetic Surface Mount Package 1.0 Amp, High Voltage, Negative Adjustable Voltage Regulator

## **FEATURES**

- Isolated Hermetic Surface Mount Package
- Adjustable Output Voltage
- Eliminates Stocking Fixed Voltages
- Built-In Thermal Overload Protection
- · Short Circuit Current Limiting
- Product Is Available Hi-Rel Screened
- Electrically Similar To Industry Standard Type LM137HV

## **DESCRIPTION**

This three terminal negative regulator is supplied in a hermetically sealed metal surface mount package. All protective features are designed into the circuit, including thermal shutdown, current limiting and safe-area control. With heat sinking, they can deliver over 1.0 amp of output current. This unit features output voltages that can be trimmed using external resistors, from -1.2 volts to -47 volts.

## ABSOLUTE MAXIMUM RATINGS @ 25°C

| Input To Output Voltage Differential   | 50 V            |
|----------------------------------------|-----------------|
| Operating Junction Temperature Range   | 55°C to + 150°C |
| Storage Temperature Range              | 55°C to + 150°C |
| Typical Power/Thermal Characteristics: |                 |
| Rated Power:                           |                 |
| T <sub>C</sub>                         |                 |
| T <sub>A</sub>                         |                 |
| Thermal Resistance:                    |                 |
| $	heta_{\sf JC} \ldots \ldots $        | 4.0°C/W         |
| $	heta_{\sf JA}$                       |                 |
| Max. Lead Solder Temperature for 5 sec | 225°C           |

3.5

-0 V



#### OM7647SM

# **ELECTRICAL CHARACTERISTICS** -55°C T $_{\rm A}$ 125°C, I $_{\rm L}$ = 8mA (unless otherwise specified)

| Parameter              | Symbol            | Test Conditions                                                                     |   | Min.  | Max.  | Unit |
|------------------------|-------------------|-------------------------------------------------------------------------------------|---|-------|-------|------|
| Reference Voltage      | V <sub>REF</sub>  | $ V_{DIFF}  = 3.0V, T_A = 25^{\circ}C$                                              |   | -1.30 | -1.20 |      |
|                        |                   | V <sub>DIFF</sub>   = 3V                                                            | • | -1.30 | -1.20 | V    |
|                        |                   | $ V_{DIFF}  = 50V, T_A = 25^{\circ}C$                                               |   | -1.30 | -1.20 |      |
|                        |                   | V <sub>DIFF</sub>                                                                   | • | -1.30 | -1.20 |      |
| Line Regulation        | R <sub>LINE</sub> | $3.0 \text{ V }  V_{\text{DIFF}}  50 \text{ V}, T_{\text{A}} = 25 ^{\circ}\text{C}$ |   | -10   | 10    | mV   |
| (Note 1)               |                   |                                                                                     | • | -25   | 25    |      |
| Load Regulation        | R <sub>LOAD</sub> | $ V_{DIFF}  = 50V, 8mA I_L 110mA$                                                   |   | -25   | 25    |      |
| (Note 1)               |                   | T <sub>A</sub> = 25°C                                                               |   |       |       |      |
|                        |                   | $ V_{DIFF}  = 5V, 8mA   I_L   1.5A, T_A = 25^{\circ}C$                              |   | -25   | 25    | mV   |
|                        |                   |                                                                                     | • | -45   | 45    |      |
| Thermal Regulation     | V <sub>RTH</sub>  | V <sub>IN</sub> = -14.6V, I <sub>L</sub> = 1.5A                                     |   | -5    | 5     | mV   |
|                        |                   | $P_d = 20 \text{ Watts, t} = 10 \text{ ms, T}_A = 25^{\circ}\text{C}$               |   |       |       |      |
| Ripple Rejection       | R <sub>N</sub>    | f = 120 Hz, V <sub>OUT</sub> = V <sub>ref</sub>                                     | • | 66    |       | dB   |
| (Note 2)               |                   | $C_{Adj} = 10 \mu F, I_{OUT} = 100 \text{ mA}$                                      |   |       |       |      |
| Adjustment Pin Current | I <sub>Adj</sub>  | V <sub>DIFF</sub>   = 3.0V                                                          | • |       | 100   |      |
|                        |                   | $ V_{DIFF}  = 40V$                                                                  | • |       | 100   | μΑ   |
|                        |                   | $ V_{DIFF}  = 50V$                                                                  | • |       | 100   |      |
| Adjustment Pin         | I <sub>Adj</sub>  | V <sub>DIFF</sub>   = 5V, 8mA   I <sub>OUT</sub> 1.5A                               | • | -5    | 5     | μА   |
| Current Change         |                   | 3V  V <sub>DIFF</sub>   50V                                                         | • | -6    | 6     |      |
| Miminum Load Current   | I <sub>Lmin</sub> | V <sub>DIFF</sub>   = 3.0V, V <sub>OUT</sub> = -1.4V (forced)                       | • |       | 3.0   |      |
|                        |                   | $ V_{DIFF}  = 10V$ , $V_{OUT} = -1.4V$ (forced)                                     | • |       | 3.0   | A    |
|                        |                   | $ V_{DIFF}  = 40V$ , $V_{OUT} = -1.4V$ (forced)                                     | • |       | 5.0   | mA   |
|                        |                   | $ V_{DIFF}  = 50V$ , $V_{OUT} = -1.4V$ (forced)                                     | • |       | 5.0   |      |
| Current Limit          | I <sub>CL</sub>   | lv   50v T 25°C                                                                     |   | 0.0   | 4.0   | _    |
| (Note 2)               |                   | $ V_{DIFF}  = 50V, T_A = 25^{\circ}C$                                               |   | 0.2   | 1.0   | A    |

#### Notes:

- 1. Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
- 2. If not tested, shall be guaranteed to the specified limits.
- 3. The denotes the specifications which apply over the full operating temperature range.

# **MECHANICAL OUTLINE**



# ± .020 -.115



**Pin Connections** 

Pin 1: V<sub>IN</sub>
Pin 2: Adjust
Pin 3: V<sub>OUT</sub>
Case: Isolated