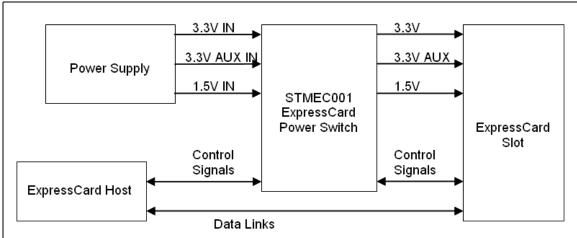


STMEC001

Power switch for ExpressCard

Features


- Comply with PC CardTM standard for ExpressCard
- 3-channel power switch
- Over-current & thermal protection & soft start
- Built-in under-voltage lockout (UVLO) circuit
- Ultra-low standby-mode current
- 5V or 12V power supply not required
- High reliability ensured with integrated overcurrent, thermal and undervoltage protection circuitries applied to each voltage rail
- Soft start function for non-rush current
- Ultra-low standby-mode current for power saving
- Ultra-low ON resistance for fast switching

Description

The STMEC001 is an ExpressCard power interface switch providing total power management solution required by ExpressCard Specification. STMEC001 consists of 3 internal switches distributing 3.3V, 3.3V_{AUX}, and 1.5V to ExpressCard Socket without additional charge pump or external switches required. STMEC001 ExpressCard power switch can be applied to notebook computers, desktop computers, personal digital assistant (PDA), and other handheld devices implementing ExpressCard.

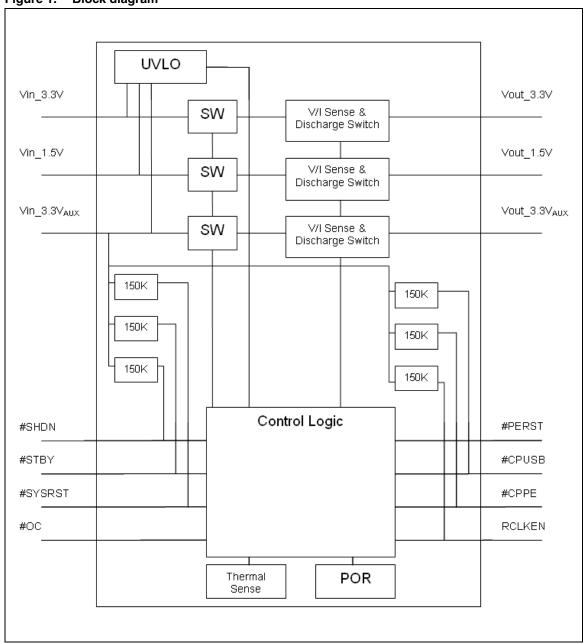
Typical application

Order codes

Part number	Package
STMEC001QTR	QFN16
STMEC001ATTR	TSSOP20

February 2007 Rev 2 1/18

www.st.com


Contents

1	Sche	matic	3
2	Maxi	mum ratings	4
3	Pin c	onfiguration	5
	3.1	Pin functional description	
	3.2	Power states	8
	3.3	Power states description	8
4	Elect	rical characteristics	9
5	Logic	c characteristics	12
6	Swite	ching times	13
7	Pack	age mechanical data	14
8	Revis	sion history	17

STMEC001 Schematic

1 Schematic

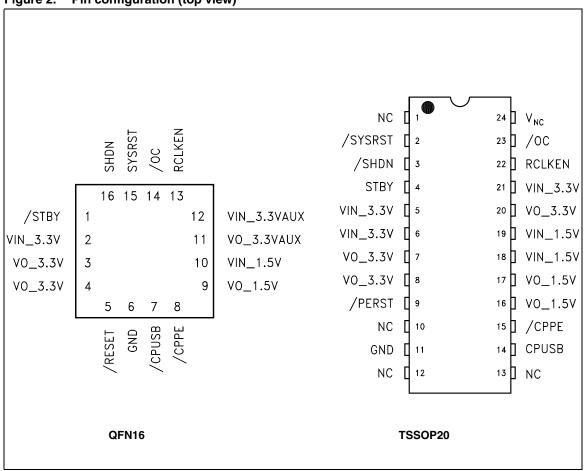
Figure 1. Block diagram

Maximum ratings STMEC001

2 Maximum ratings

Stressing the device above the rating listed in the "Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 1. Absolute maximum ratings


Symbol	Parameter	Value			
		V _I (3.3V _{IN}) –0.3 to 4.6	V		
V _I	Input voltage	V _I (1.5V _{IN}) –0.3 to 4.6	V		
		V _I (3.3V _{AUX}) –0.3 to 4.6	V		
		V _I (3.3V _{IN}) Internally limited			
Io	Output current	V _I (1.5V _{IN}) Internally limited			
		V _I (3.3V _{AUX}) Internally limited			
T _{OP}	Operating junction temperature, T _J (max to be calc. at worst case PD at 85° C ambient)	-40 to 120			
T _{STG}	Storage temperature range	-55 to 150	°C		

Note: Absolute maximum ratings are those values above which damage to the device may occur. Functional operation under these conditions is not implied. All voltages are referenced to GND.

STMEC001 Pin configuration

3 Pin configuration

Figure 2. Pin configuration (top view)

Pin configuration STMEC001

Table 2. Pin description

Pin		Maria	-	Para della co
QFN16	TSSOP20	Name	Туре	Description
-	-	NC	-	Not connected
15	1	/SYSRST	I	System Reset input - active low, logic level signal, internal 150K pull- up
16	2	/SHDN	I	Shutdown input - active low, logic level signal, internal 150K pull-down
1	3	/STBY	ı	Standby input - active low, logic level signal, internal 150K pull-down
2	4	VIN_3.3V	ı	3.3V input for VO_3.3V
-	5	VIN_3.3V	I	3.3V input for VO_3.3V
3	6	VO_3.3V	0	Switched output that delivers 0V, 3.3V or high impedance to card
4	7	VO_3.3V	0	Switched output that delivers 0V, 3.3V or high impedance to card
5	8	/PERST	0	A logic level power good to slot (delayed)
-	9	NC	-	Not connected
6	10	GND	-	Ground
-	-	NC	-	Not connected
-	-	NC	-	Not connected
7	11	/CPUSB	I	Card Present input for USB cards, internal 150K pull-up
8	12	/CPPE	ı	Card Present input for PCI Express cards, internal 150K pull-up
9	13	VO_1.5V	0	Switched output that delivers 0V, 1.5V or high impedance to card
-	14	VO_1.5V	0	Switched output that delivers 0V, 1.5V or high impedance to card
10	15	VIN_1.5V	I	1.5V input for 1.5Vout
-	16	VIN_1.5V	I	1.5V input for 1.5Vout
11	17	VO_3.3V _{AUX}	0	Switched output that delivers 0V, 3.3V or high impedance to card
12	18	VIN_3.3V _{AUX}	I	3.3 V input for VO_3.3V _{AUX} and chip power
13	19	RCLKEN	I/O	Reference Clock Enable signal. As an output, a logic level power good to host for slot (open drain). As an input, if kept inactive by the host, prevents /PERST from being de-asserted, internal 150K pull-up
14	20	/OC	0	Over current status output for slot (open drain)
-	-	NC	-	Not connected

STMEC001 Pin configuration

3.1 Pin functional description

Table 3. Pin description

Symbol	Description
CPPE	A logic low level on this input indicates that the card present supports PCI Express functions. This input pin connects to the 3.3Vaux input thru a 150Kohm internal pull-up. When inserted, the card physically connects this input to ground if the card supports PCI Express functions
CPUSB	A logic low level on this input indicates that the card present supports USB functions. This input connects to the 3.3Vaux input thru a $150 \mathrm{K}\Omega$ internal pull-up. When inserted, the card physically connects this input to ground if the card supports USB functions.
SHDN	When asserted (logic low), STMEC001 turns off all voltage outputs and the Discharge FETs at the 3 outputs are activated.
STBY	When asserted (logic low), this input places the power switch in Standby Mode by turning off the 3.3V and 1.5V power switches and keeping the 3.3Vaux switch on.
RCLKEN	This pin serves as both an input and an output. On power up, the power switch keeps this signal at a low state as long as any of the output power rails are out of their tolerance range. Once all output power rails are within tolerance, the power switch releases RCLKEN allowing it to transition to a high state (internally pulled up to 3.3Vaux). The transition of RCLKEN from a low to a high state starts an internal timer for the purpose of de-asserting /PERST. As an input, RCLKEN can be kept low to delay the start of the /PERST internal timer. RCLKEN can be used by the host system to enable a clock driver.
PERST	On power up, this output remains asserted. Once all power rails are within tolerance, RCLKEN goes asserted and /PERST is de-asserted after a time delay. On power down, this output is asserted whenever any of the power rails drop below their voltage tolerance.
SYSRST	This input is driven by the host system and directly affects /PERST. Asserting /SYSRST (logic level: low) forces /PERST to assert.
OC	This is an open drain output for overcurrent indication. Output does not turn off during overcurrent condition. The output voltage decreases as the output current exceeds overcurrent limit. Only if the temperature increases above limit that the output is turned off completely. Overcurrent in one output does not affect the other outputs.

Pin configuration STMEC001

3.2 Power states

The STMEC001 operates in a number of states, as described in the following table

Table 4. States

Voltage inputs		Logic states			Outputs			Mode		
3.3V _{AUX}	3.3V	1.5V	/SHDN	/CPUSB	/CPPE	/STBY	3.3V _{AUX}	3.3V	1.5V	
ON	Х	Х	1	1	1	Х	GND	GND	GND	No Card
ON	Х	Х	0	Х	Х	Х	GND	GND	GND	Shutdown
ON	ON	ON	1	0	Х	1	ON	ON	ON	USB Enable
ON	ON	ON	1	Х	0	1	ON	ON	ON	PE Enable
ON	ON	ON	1	1	1	0	ON	OFF	OFF	Standby
OFF	Х	X	Х	Х	Х	Х	OFF	OFF	OFF	OFF

3.3 Power states description

- VIN_3.3V, VIN_3.3V_{AUX} and VIN_1.5V are present at the input of the power switch prior to a card being inserted; power to the card will be based on the state of /CPUSB and /CPPE (see table).
- The card is present and VIN_1.5V or/and VIN_3.3V is removed from the input of the power switch; VIN_3.3V_{AUX} will still be provided to the card, VIN_1.5 and VIN_3.3V will be disabled (see table). If power to VIN_1.5V and VIN_3.3V is restored, output to the card will be restored.
- Prior to the insertion of a card, VIN_3.3V_{AUX} is available, VIN_3.3V and VIN_1.5V are not available; no power will be made available to the card. If VIN_1.5V and VIN_3.3V are made available at the input of the power switch after the card is inserted, both VO_3.3V and VO_1.5Vout will be made available to the card.
- VIN_3.3V_{AUX} NOT present; the STMEC001 is in completely OFF mode.
- In "No Card" and "Shut Down" mode, discharge FETs are turned ON
- When VIN_3.3V_{AUX} is NOT present, VIN_1.5V or/and VIN_3.3V must not be present.

STMEC001 Electrical characteristics

4 Electrical characteristics

Table 5. Recommended operating conditions

Symbol	Parameter	Value	Unit
	Input voltage: $V_I(3.3V_{IN})$ Is required for its respective functions	3.0 to 3.6	V
V _I	Input voltage: $V_I(1.5V_{IN})$ Is required for its respective functions	1.35 to 1.65	V
	Input voltage: V _I (3.3V _{AUX}) Is required for all circuit operations	3.0 to 3.6	V
	Output current: I _O (3.3V) at T _J = 100°C	1.3 (Max.)	Α
Io	Output current: I _O (1.5V) at T _J = 100°C	650 (Max.)	mA
	Output current: I _O (AuxV) at T _J = 100°C	275 (Max.)	mA
T _{OP}	Operating junction temperature, $\rm T_{\rm J}$ (max to be calc. at worst case PD at 85° C ambient)	100	°C

Table 6. Electrical characteristics $T_J = 25^{\circ}C, \ V_I(V_{IN}\ 3.3V) = V_I(V_{IN}\ 3.3V_{AUX}) = 3.3V, \ V_I(V_{IN}\ 1.5V) = 1.5V$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	VIN_3.3V to VO_3.3V	I = 1300mA, T _J = 25°C		53	64	
R _{SW} ⁽¹⁾	VIIV_3.3V 10 VO_3.3V	I = 1300mA, T _J = 100°C			80	
	VIN 1 5V to VO 1 5V	I = 650mA, T _J = 25°C		70	88	m()
	VIN_1.5V to VO_1.5V	I = 650mA, T _J = 100°C			105	mΩ
	VIN_3.3V _{AUX} to VO_V _{AUX}	I = 275mA, T _J = 25°C		140	170	
	VIIV_3.3VAUX TO VO_VAUX	I = 275mA, T _J = 100°C			210	
	R _O (3.3V) Discharge resistance	I Discharge = 1mA	0.1		0.5	
R _O	R _O (1.5V)	I Discharge = 1mA	0.1		0.5	ΚΩ
110	Discharge resistance	1 Blocharge – IIII.	0.1			132
	R _O (1.5V)	I Discharge = 1mA	0.1		0.5	
	Discharge resistance				3.0	
	I _O (3.3V) Limit	T _{.1} -40°C to100°C				_
	(Limit is the steady state value)	Output powered into a short	1.3		2.5	Α
los	I _O (1.5V) Limit	T _J -40°C to100°C	650		1300	mA
108	1.0(1.01) =	Output powered into a short	000		1000	1117
		T _J -40°C to 100°C				
	I _O (V _{AUX}) Limit	Output powered into a	275		660	
		short				

^{1.} Switch resistance (In Production - Probe testing at 1.3A. Final Test at 1.0A and apply Guard band)

Electrical characteristics STMEC001

Table 7. Power switching

Symbol	Parameter		Test conditions	Min.	Тур.	Max.	Unit
	Thermal shutdown, trip point,	Г _{J.}	Overcurrent condition.	155		165	°C
	Hysteresis				10		
	Current limit response time.		$V_O(3.3V_{OUT})$ with $100m\Omega$ short		5	20	
I _{OL}	From short to first threshold wit	hin 1.1 times	$V_O(1.5V_{OUT})$ with $100m\Omega$ short		5	20	μS
	of the final current limit.		$V_O(V_{AUX})$ with 100 m Ω short		5	20	
		V _{IN_3.3} V _{AUX}				120	
	Input quiescent current: Normal operation	V _{IN_3.3V}	1 9			40	
	Normal operation	V _{IN_1.5V}	Outputs are ON and unloaded			10	
		$V_{IN_3.3}V_{AUX}$	$V_{O}(V_{AUX})=V_{I}(3.3V_{AUX})=V_{I}(3.3V_{IN})$		150	180	μΑ
Iq	Input quiescent current Normal operation with pull-up	V _{IN_3.3V}	V _O (1.5V)=V _I (1.5V _{IN}) -T _J -40°C,100°C]		25	40	
		V _{IN_1.5V}			10	25	
	Input quiescent current: /SHDN asserted with pull-up	$V_{IN_3.3}V_{AUX}$	T _J -40°C,100°C Discharge FETs are ON		150	270	
		V _{IN_3.3V}			10	15	
	73HDN asserted with pull-up	V _{IN_1.5V}			10	15	
	Forward Leakage current (curr	ont	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	100		
SHDN	measured at input pins / No ca		V _{IN} _3.3V		15	20	μА
	/SHDN inactive	/SHDN inactive			5	10	
			T _J = 25°C		5	10	
		VIN_3.3 VAUX	T _J = 100°C		20	50	
, (1)	Reverse Leakage current	V	T _J = 25°C		10	15	
I _{LEAK} (1)	(current measured from output pins / input grounded)	V IN_1.5V	T _J = 100°C		30	50	μΑ
		V	T _J = 25°C		10	15	
		V IN_3.3V	T _J = 100°C		30	50	

^{1.} All high side switches are in Hi-Z state, $V_O(AUX) = V_O(3.3V) = 3.3V$, $V_O(1.5V) = 1.5V$, T_J -40°C,100°C

STMEC001 Electrical characteristics

Table 8. Undervoltage lockout (UVLO)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
UVLO	VIN_3.3 UVLO	VIN_3.3 level, below which VIN_3.3 and VIN_1.5 switches are off	2.6		2.9	V
	VIN_1.5 UVLO	VIN_1.5 level, below which VIN_3.3 and VIN_1.5 switches are off	1		1.25	V
	VIN_3.3VAUX UVLO	VIN_3.3VAUX level, below which sets the device into OFF state	2.6		2.9	٧
	UVLO Hysteresis			100		mV

Logic characteristics STMEC001

5 Logic characteristics

Table 9. Logic states

Logic transition	Conditions	Min.	Тур.	Max.	Unit
Logic input valtage	High level	2.0			V
Logic input voltage	Low level			0.8	V
	3.3V Output falling	2.7		3.0	
PERST# assertion threshold of output voltage	AUX Output falling	2.7		3.0	V
voltago	1.5V Output falling	1.2		1.35	
PERST# assertion delay from output voltage invalid	Output falling below threshold			500	ns
PERST# de-assertion from output voltage valid	Output rising above threshold	4	10	20	ms
PERST# assertion delay from SYSRST#	STSRST asserted or de-asserted			500	ns
RCLKEN assertion delay from output voltage valid	Output rising above threshold			100	μS
OC# Output low voltage	I _{OC} = 2mA			0.4	V
OC# leakage current	V _{OC} = 3.6V			1	μА
OC# deglitch	Falling into or out of an overcurrent condition	6		20	μS

Table 10. ESD protections

Pin	Conditions	ESD Tolerance	Unit
V _{OUT} (3.3V, 1.5V, AUX)	Versus GND & supply	6	
All other pins (except RCLKEN)	Versus GND & supply	2	kV
RCLKEN	Versus GND	2	ΚV
RCLKEN	Versus supply	1	

57

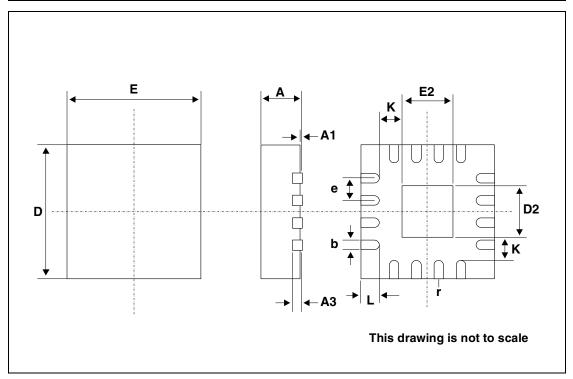
STMEC001 Switching times

6 Switching times

Table 11. Switching characteristics

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit	
t _R	Output rise time	VIN_3.3V to VO_3.3V	$C_{L(3.3V)} = 0.1 \mu F, I_{o(3.3V)} = 0A$	0.1		3		
		VIN_3.3V _{AUX} to VO_V _{AUX}	$C_{L(AUX)} = 0.1 \mu F, I_{O(AUX)} = 0A$	0.1		3		
		VIN_1.5V to VO_1.5V	$C_{L(1.5V)} = 0.1 \mu F, I_{o(1.5V)} = 0A$	0.1 3		3	1	
		VIN_3.3V to VO_3.3V	$C_{L(3.3V)}$ =100 μ F R_L = VO_3.3V / 1.0A	0.1		6	ms	
		VIN_3.3V _{AUX} to VO_V _{AUX}	$C_{L(3.3V)} = 100\mu F$ $R_L = VO_V_{AUX} / 0.25A$	0.1		6		
		VIN_1.5V to VO_1.5V	$C_{L(3.3V)} = 100\mu F$ $R_L = VO_1.5V / 0.5A$	0.1		6	1	
	Output fall time (/ CPUSB and / CPPE Inactive)	VIN_3.3V to VO_3.3V	$C_{L(3.3V)} = 0.1 \mu F, I_{o(3.3V)} = 0A$	10		150		
		VIN_3.3V _{AUX} to VO_V _{AUX}	$C_{L(AUX)} = 0.1 \mu F, I_{O(AUX)} = 0A$	10		150	μS	
t _F		VIN_1.5V to VO_1.5V	$C_{L(1.5V)} = 0.1 \mu F, I_{o(1.5V)} = 0A$	10		150		
		VIN_3.3V to VO_3.3V	$C_{L(3.3V)} = 20 \mu F$, no load	2.0		30.0	ms	
		VIN_3.3V _{AUX} to VO_V _{AUX}	$C_{L(AUX)} = 20\mu F$, no load	2.0		30.0		
		VIN_1.5V to VO_1.5V	$C_{L(1.5V)} = 20\mu F$, no load	2.0		30.0		
	Output fall time (/SHDN active)	VIN_3.3V to VO_3.3V	$C_{L(3.3V)} = 0.1 \mu F, I_{o(3.3V)} = 0A$	10		80	μs	
		VIN_3.3V _{AUX} to VO_V _{AUX}	$C_{L(AUX)} = 0.1 \mu F, I_{O(AUX)} = 0A$	10		80		
		VIN_1.5V to VO_1.5V	$C_{L(1.5V)} = 0.1 \mu F, I_{o(1.5V)} = 0A$	10		80		
t _{SHDN}		VIN_3.3V to VO_3.3V	C _{L(3.3V)} =100μF R _L = VO_3.3V / 1.0A	0.1		5.0		
		VIN_3.3V _{AUX} to VO_V _{AUX}	$C_{L(3.3V)} = 100\mu F$ $R_L = VO_V_{AUX} / 0.25A$	0.1		5.0	ms	
		VIN_1.5V to VO_1.5V	$C_{L(3.3V)} = 100 \mu F$ $R_L = VO_1.5V / 0.5A$	0.1		5.0		
	Propagation delay	VIN_3.3V to VO_3.3V	$C_{L(3.3V)} = 0.1 \mu F, I_{o(3.3V)} = 0A$	0.02		1.0		
^t PD		VIN_3.3V _{AUX} to VO_V _{AUX}	$C_{L(AUX)} = 0.1 \mu F, I_{O(AUX)} = 0A$	0.02		1.0		
		VIN_1.5V to VO_1.5V	$C_{L(1.5V)} = 0.1 \mu F, I_{o(1.5V)} = 0A$	0.02		1.0	1.0 ms	
		VIN_3.3V to VO_3.3V	$C_{L(3.3V)}$ =100 μ F R_L = VO_3.3V / 1.0A	0.05		1.0		
		VIN_3.3V _{AUX} to VO_V _{AUX}	$C_{L(3.3V)} = 100 \mu F$ $R_L = VO_V_{AUX} / 0.25 A$	0.05		1.0		
		VIN_1.5V to VO_1.5V	$C_{L(3.3V)} = 100 \mu F$ $R_L = VO_1.5V / 0.5A$	0.05		1.0		

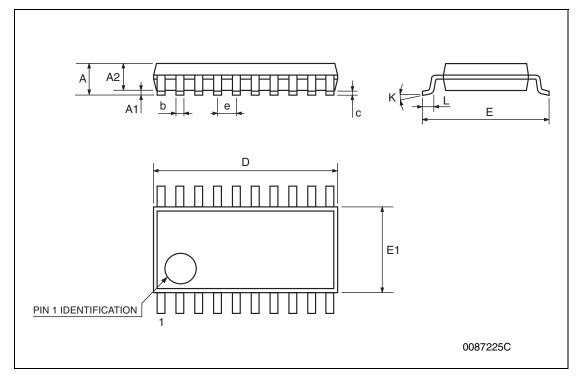
Package mechanical data STMEC001


7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

QFN16 (3mmx3mm) MECHANICAL DATA

DIM	mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	0.80	0.90	1.00	0.032	0.035	0.039
A1		0.02	0.05		0.001	0.002
A3		0.20			0.008	
b	0.18	0.25	0.30	0.007	0.010	0.012
D		3.00			0.118	
D2	1.55	1.70	1.80	0.061	0.067	0.071
Е		3.00			0.118	
E2	1.55	1.70	1.80	0.061	0.067	0.071
е		0.50			0.020	
К		0.20			0.008	
L	0.30	0.40	0.50	0.012	0.016	0.020
r	0.09			0.006		



Package mechanical data STMEC001

TSSOP20 MECHANICAL DATA

DIM	mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α			1.2			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.8	1	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0079	
D	6.4	6.5	6.6	0.252	0.256	0.260	
E	6.2	6.4	6.6	0.244	0.252	0.260	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
К	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	

8 Revision history

Table 12. Revision history

Date	Revision	Change		
02-Aug-2006	1	First release		
08-Feb-2007 2		Replaced TSSOP24 package information with QFN16		

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

57