High Frequency Power Supply Controller

GENERAL DESCRIPTION

The ML4810 and ML4811 High Frequency PW M Controllers are optimized for use in Switch Mode Power Supply designs running at frequencies to 1 MHz . The ML4810/11 contain a unique overload protection circuit which helps to limit stress on the output devices and reliably performs a soft-start reset. These controllers are designed to work in either voltage or current mode and provide for input voltage feed forward.

A 1.1V threshold current limit comparator provides a cycle-by-cycle current limit. An integrating circuit "counts" the number of times the 1.1V limit was reached. A soft-start cycle is initiated if the cycle-by-cycle current limit is repeatedly activated. A reset delay function is provided on the ML4811.

These controllers are similar to the UC1825 controller, however these controllers include many features not found on the 1825. These features are set in Italics.

FEATURES

- Integrating Soft Start Reset
- High current (2A peak) dual totem pole outputs
- Practical operation to 1 MHz (fosc)
- $5.1 \mathrm{~V} \pm 2 \%$ trimmed bandgap reference
- Under voltage lockout with 7V hysteresis
- Soft Start Reset Delay (ML4811)
- O scillator synchronization function (ML4811)
- Soft Start latch ensures full soft start cycle
- O utputs pull low for undervoltage lockout
- Accurately controlled oscillator ramp discharge current
- All timing currents "slaved" to R_{T} for precise control
* This part is End of Life as of August 1, 2000 ** This part is O bsolete

BLOCK DIAGRAM (Pin numbers shown are for ML4811)

PIN CONFIGURATION

ML4811
20-Pin DIP (P20)
20-Pin SOIC (S20)

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	INV	Inverting input to error amp.
2	NI	N on-inverting input to error amp.
3	E/A OUT	O utput of error amplifier and input to main comparator.
4	RC $_{\text {RESET }}$	Timing elements for Integrating Soft Start reset.
5	CLOCK	O scillator output.
6	RT 7	Timing resistor for oscillator - sets charging current for oscillator timing capacitor (pin 6).
8	RAM P	Timing capacitor for oscillator.
9	SO FT START inverting input to main	
comparator. Connected to C_{T} for		
voltage mode operation or to current		
sense resistor for current mode.		

PIN	NAME	FUNCTION
11	OVP	Exceeding 2.5V terminates the PW M cycle and inhibits the outputs.
12	ILIM/S.D.	Current limit sense pin. N ormally connected to current sense resistor.
13	GND	Analog signal ground.
14	OUTA	High current totem pole output. This output is the first one energized after power on reset.
16	PWR GND	Return for the high current totem pole outputs.
17	OUTB	Positive supply for the high current totem pole outputs.
18	Vigh current totem pole output.	

ABSOLUTE MAXIMUM RATINGS
Absolute maximum ratings are those values beyond whichthe device could be permanently damaged. Absolutemaximum ratings are stress ratings only and functionaldevice operation is not implied.
Supply Voltage (Pins 18, 16). 25 V
O utput Current, Source or Sink (Pins 14, 17) DC 0.5A
Pulse $(0.5 \mu \mathrm{~s})$ 2.0A
Analog Inputs
(Pins IN V, NI, SO FT START) -0.3 V to 7 V
(Pins 9, 10, 11, 12, 20) -0.3 V to 6 V
Clock O utput Current (Pins 5) $-5 \mathrm{~mA}$
Error Amplifier O utput Current (Pin 3) 5 mA
Junction Temperature $150^{\circ} \mathrm{C}$
Storage Temperature Range $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec.) $260^{\circ} \mathrm{C}$
Thermal Resistance ($\theta_{j \mathrm{~A}}$) Plastic DIP $65^{\circ} \mathrm{C} / \mathrm{W}$
Plastic SOIC $65^{\circ} \mathrm{C} / \mathrm{W}$
OPERATING CONDITIONS
Temperature Range
ML4810, ML4811 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=3.65 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=0$ perating Temperature Range. (N ote 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
OSCILLATOR	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	360	400	440	kHz
Initial Accuracy	$10 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$		0.2	4	$\%$
Voltage Stability			5		$\%$
Temperature Stability	line, temperature	340		460	kHz
Total Variation		3.9	4.5		V
Clock O ut High			2.3	2.9	V
Clock O ut Low			2.8		V
Ramp Peak		1.6		1.0	V
Ramp Valley		0.8	1.0	1.4	V
Ramp Valley to Peak			2.3	V	
Sync Input Threshold	SYNC $=4 \mathrm{~V}$		$\mu \mathrm{~A}$		
Sync Input Current					

REFERENCE

O utput Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	5.00	5.10	5.20	V
Line Regulation	$10 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$		2	20	mV
Load Regulation	$1 \mathrm{~mA}<\mathrm{I}_{\mathrm{O}}<10 \mathrm{~mA}$		5	20	mV
Temperature Stability	$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<150^{\circ} \mathrm{C}$		0.2	0.4	$\%$
Total Variation	line, Ioad, temperature	4.95		5.25	V
Output Noise Voltage	10 Hz to 10 kHz		50	mV	
Long Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000 \mathrm{hrs}$		5	25	mV
Short Circuit Current	$\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$	-15	-50	-100	mA

UNDERVOLTAGE LOCKOUT

Start Threshold		15	16	17	V
UVLO Hysteresis		6.5	7	7.5	V

ERROR AMPLIFIER

Input O ffset Voltage				
Input Bias Current				
Input O ffset Current		0.6	3	
Open Loop Gain	$1<\mathrm{V}_{0}<4 \mathrm{~V}$	$\mu \mathrm{~A}$		

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ERROR AMPLIFIER (Continued)					
CMRR	$1.5<\mathrm{V}_{\mathrm{CM}}<5.5 \mathrm{~V}$	65	95		dB
PSRR	$10<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V}$	75	90		dB
O utput Sink Current	$\mathrm{V}_{\text {PIN } 3}=1 \mathrm{~V}$	1	2.5		mA
O utput Source Current	$\mathrm{V}_{\text {PIN } 3}=4 \mathrm{~V}$	-0.5	-1.3		mA
O utput High Voltage	$\mathrm{I}_{\text {PIN } 3}=-0.5 \mathrm{~mA}$	4.0	4.7	5.0	V
O utput Low Voltage	$\mathrm{IPIN} 3=1 \mathrm{~mA}$	0	0.5	1.0	V
Unity Gain Bandwidth		3	5.5		M Hz
Slew Rate		6	12		$\mathrm{V} / \mathrm{\mu s}$

PWM COMPARATOR

Pin 8 Bias Current	VPIN 8 = OV		-1	-5	$\mu \mathrm{~A}$
Duty Cycle Range		0		75	$\%$
Pin 3 Zero DC Threshold		1.1	1.25		V
Delay to O utput			50	80	ns

SOFT-START

Charge Current (Pin 9)	ML4811	$V_{\text {PIN } 9}=1 \mathrm{~V}, \mathrm{~V}_{\text {PIN 4, } 12}=0$	-35	-55	-75
Discharge Current (Pin 9)	$V_{\text {PIN } 9}=3 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 4}>2.5$	1	5		mA
	$V_{\text {PIN } 9}=3 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 12}>1.65, \mathrm{~V}_{\text {PIN } 4}<2$	1	5		mA
Charge Current (Pin 20)	$V_{\text {PIN } 20}=1 \mathrm{~V}$	1	5	mA	
Discharge Current (Pin 20)	Requires external discharge resistor		0	$\mu \mathrm{~A}$	

CURRENT LIMIT/SHUTDOWN

Pin 12 Bias Current		$0 \mathrm{~V}<\mathrm{V}_{\text {PIN } 12}<4 \mathrm{~V}$			+15	$\mu \mathrm{A}$
Current Limit Threshold	M L4810		1.2	1.3	1.4	V
	M L4811		0.95	1.1	1.3	V
Reset Threshold (Pin 12)	ML4810	$\mathrm{V}_{\text {PIN } 4}<2 \mathrm{~V}$	1.60	1.75	1.90	V
	M L4811	$\mathrm{V}_{\text {PIN } 4}<2 \mathrm{~V}$	1.4	1.50	1.8	V
Delay to Output				40	70	ns
Pin 4 Charging Current		$\mathrm{V}_{\text {PIN } 12}=2 \mathrm{~V}$	120	150	180	$\mu \mathrm{A}$
Restart Threshold (Pin 4)			2	2.45	3	V
OVP Shutdown Threshold (Pin 11)			2.4	2.7	2.8	V
OVP Input Current		$\mathrm{V}_{\text {PIN } 11}=3 \mathrm{~V}$	40	50	60	$\mu \mathrm{A}$
Charge Current (Pin 8)	M L4810	$\mathrm{V}_{\text {PIN } 8}=1 \mathrm{~V}, \mathrm{~V}_{\text {PIN 4,9 }}=0$	-40	-50	-60	$\mu \mathrm{A}$

OUTPUT

Output Low Level	$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}$		0.25	0.4	V
	$\mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}$		1.2	2.2	V
Output High Level	$\mathrm{I}_{\text {OUT }}=-20 \mathrm{~mA}$	13.0	13.5		V
	$\mathrm{IOUT}=-200 \mathrm{~mA}$	12.0	13.0		V
Collector Leakage	$\mathrm{V}_{\mathrm{C}}=30 \mathrm{~V}$		100	500	$\mu \mathrm{~A}$
Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		30	60	ns

SUPPLY

Start Up Current	ML4810	$\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}$		2.0	3.5	mA
	ML4811	$\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}$	2.5	4.0	mA	
I_{CC}	ML4810	$\mathrm{V}_{\text {PIN } 1,7,9}=0 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 2}=1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		32	46	mA
	ML4811	$\mathrm{V}_{\text {PIN } 1,7,9}=0 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 2}=1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		38	55	mA

Note 1: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.

FUNCTIONAL DESCRIPTION

SOFT START AND CURRENT LIMIT

The M L4810/11 offers a unique system of fault detection and reset. M ost PW M controllers use a two threshold method which relies on the buildup of current in the output inductor during a fault. This buildup occurs because:

1. Inductor di/dt is a small number when the switch is off under load fault (short circuit) conditions, since VL is small.
2. Some energy is delivered to the inductor since the IC must first detect the over-current because there is a finite delay before the output switch can turn off.

Figure 1. Current Waveforms for Slow Turn-Off System with Load Fault

This scheme was adequate for controllers with longer comparator propagation delays and turn-off delays than is desirable in a high frequency system. For systems with low propagation delays, very little energy will be delivered to the inductor and the current "ratcheting" described above will not occur. This results in the controller never detecting the load fault and continuing to pump full current to the load indefinitely, causing heating in the output rectifiers and inductor.

Figure 2. Current Waveforms for High Speed System with Load Fault

A method of circumventing this problem involves "counting" the number of times the controller terminates the PWM cycle due to the cycle by cycle current limit.

W hen the switch current crosses the 1.1V threshold A1 signals the F1 to terminate the cycle and sets F3, which is reset at the beginning of the PW M cycle. The output of F3 turns on a current source to charge C2. W hen, after several cycles, C2 has charged to $2.45 \mathrm{~V}, \mathrm{~A} 5$ turns on F2 to discharge soft start capacitor C1. Charge is short lived (for instance a disk drive start-up or a board being plugged into a live rack) the control can "ride out" the surge with the switch protected by the cycle by cycle limit. R1 and C1 can be selected to track diode heating, or to ride out various system surge requirements as required.

If the high current demand is caused by a short circuit, the duty cycle will be short and the output diodes will carry the current for the majority of PW M cycle. C2 charges fastest for low duty cycles (since F3 will be on for a longer time) providing for quicker shutdown during short-circuit when the output diodes are being maximally stressed.

Figure 3. Integrating Soft Start Reset

OSCILLATOR

The M L4811 oscillator charges the external capacitor (C_{T}) with a current ($l_{\text {SET }}$) equal to $3 / R_{T}$. W hen the capacitor voltage reaches the upper threshold (Ramp Peak), the comparator changes state and the capacitor discharges to the lower threshold (Ramp Valley) through Q 1. W hile the capacitor is discharging, Q2 provides a high pulse. A discharge of the oscillator con be initiated by applying a high level to the Sync pin. A short pulse of a frequency higher than the oscillator's free running frequency can be used to synchronize the ML4811 to an external clock. The pulse can be equal to the desired deadtime (T_{D}) or the deadtime can be determined by $\mathrm{I}_{\mathrm{DIS}}$ and C_{T}, whichever is greater.
(1)

V(1)

Figure 4. Switching Current and Pin 4 Voltage - Normal

Figure 5. Switching Current and Pin 4 Voltage - Load Fault

Figure 7. Oscillator Timing Resistance vs Frequency

The oscillator period can be described by the following relationship:

$$
t_{\text {OSC }}=t_{\text {RAMP }}+t_{\text {DEADTIME }}
$$

where:

$$
t_{\text {RAM }}=\frac{C \text { (Ramp Valley to Peak) }}{I_{\text {SET }}}
$$

and:

$$
\mathrm{t}_{\mathrm{DEADTIME}}=\frac{\mathrm{C} \text { (Ramp Valley to Peak) }}{\mathrm{I}_{\mathrm{Q} 1}}
$$

Figure 6. Simplified Oscilator Block Diagram and Timing

Figure 8. Oscillator Deadtime vs Frequency

ERROR AMPLIFIER

The M L4811 error amplifier is a 5.5 M Hz bandwidth $12 \mathrm{~V} / \mu \mathrm{sec}$ slew rate op-amp with provision for limiting the positive output voltage swing (O utput Inhibit line) for ease in implementing the soft start function.

OUTPUT DRIVER STAGE

The M L4811 O utput Driver is a 2A peak output high speed totem pole circuit designed to quickly switch the gates of capacitive loads, such as power M O SFET transistors.

Figure 9. Oscillator Deadtime vs $C_{T}\left(3 k \Omega \leq R_{T} \leq 100 k \Omega\right)$

Figure 11. Open Loop Frequency Response

Figure 10. Unity Gain Slew Rate

Figure 12. Simplified Schematic

Figure 13. Saturation Curves

Figure 15. Rise/Fall Time ($\left.C_{L}=10,000 \mathrm{pF}\right)$

Figure 14. Rise/Fall Time ($\left.\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}\right)$

Figure16. Supply Current vs. Temperature

PHYSICAL DIMENSIONS inches (millimeters)

PHYSICAL DIMENSIONS inches (millimeters) (Continued)

Package: S20
20-Pin SOIC

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4810CP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16-Pin PDIP (P16) (End O f Life)
M L4810CS	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 -Pin Wide SO IC (S16W) (O bsolete)
ML4811CP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	20-Pin PDIP (P20) (O bsolete)
ML4811CS	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$20-$-in SO IC (S20)(O bsolete)

[^0] $5,546,017 ; 5,559,470 ; 5,565,761 ; 5,592,128 ; 5,594,376 ; J a p a n: 2598946 ; 2619299$. Other patents are pending.

Micro Linear reserves the right to make changes to any product herein to improve reliability, function or design. Micro Linear does not assume any liability arising out of the application or use of any product described herein, neither does it convey any license under its patent right nor the rights of others. The circuits contained in this data sheet are offered as possible applications only. Micro Linear makes no warranties or representations as to whether the illustrated circuits infringe any intellectual property rights of others, and will accept no responsibility or liability for use of any application herein. The customer is urged to consult with appropriate legal counsel before deciding on a particular application.

[^0]: © Micro Linear 199 ${ }^{\text {© }}$ Licro Linear is a registered trademark of Micro Linear Corporation

