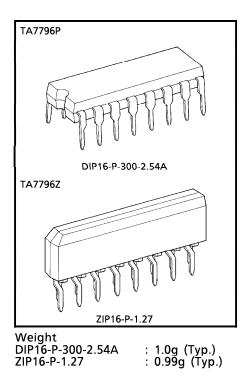
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

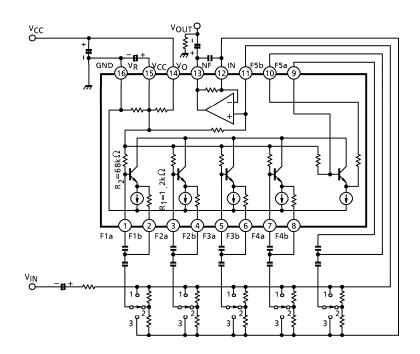

TA7796P, TA7796Z

5 BAND GRAPHIC EQUALIZER

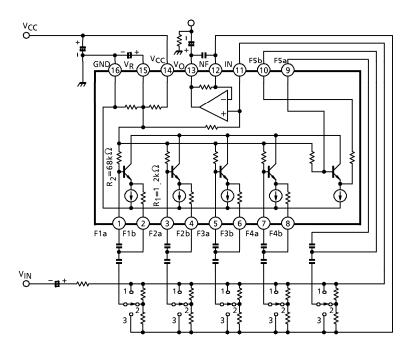
TA7796P, TA7796Z are 5-Band graphic equalizer IC, which have 5 resonance circuit and an output buffer amplifier. 5 band graphic equalizer for one channel can be formed easily by externally connecting capacitors and variable resistors which fix fo (resonance frequency). Dual inline package 16pin TA7796P Zig-Zag inline package 16pin TA7796Z

FEATURES

- Few External Parts
- Low Distortion : THD = 0.007% (Typ.) $(V_{O} = 0.245 V \text{rms} (-10 \text{dBm}), \text{ f} = 1.1 \text{kHz} \text{ BW} = 20 \sim 20 \text{kHz},$ FLAT)
- Low Noise : $V_{no} = 3.0/2 V_{rms}$ (Typ.) $(R_{q} = 620\Omega, V_{in} = 0, BW = 20 \sim 20 kHz, FLAT)$
- Wide Operating Supply Voltage Range : V_{CC} = 4.0~16V (Ta = 25°C)



961001FBA2


- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of to third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

BLOCK DIAGRAM

TA7796P

TA7796Z

MAXIMUM RATINGS (Ta = 25°C)

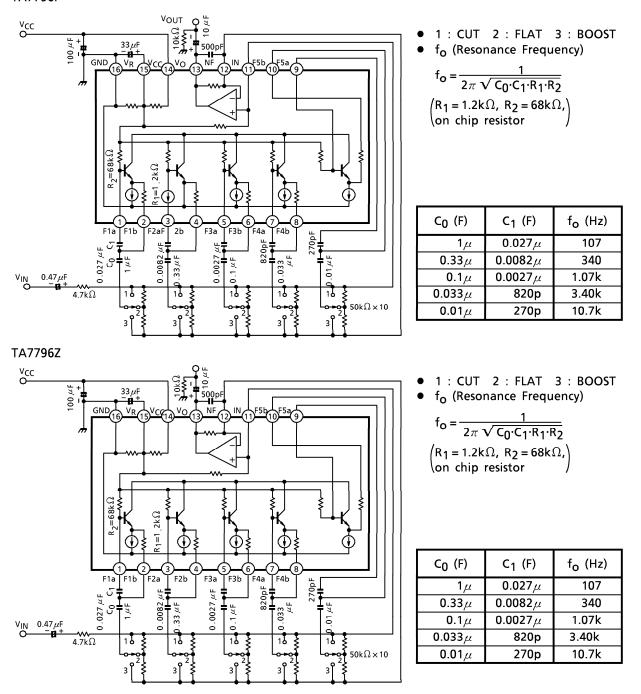
CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	16	V
Power Dissipation	P _D (Note)	750	mW
Operating Temperature	T _{opr}	- 30~75	°C
Storage Temperature	T _{stg}	- 55~150	°C

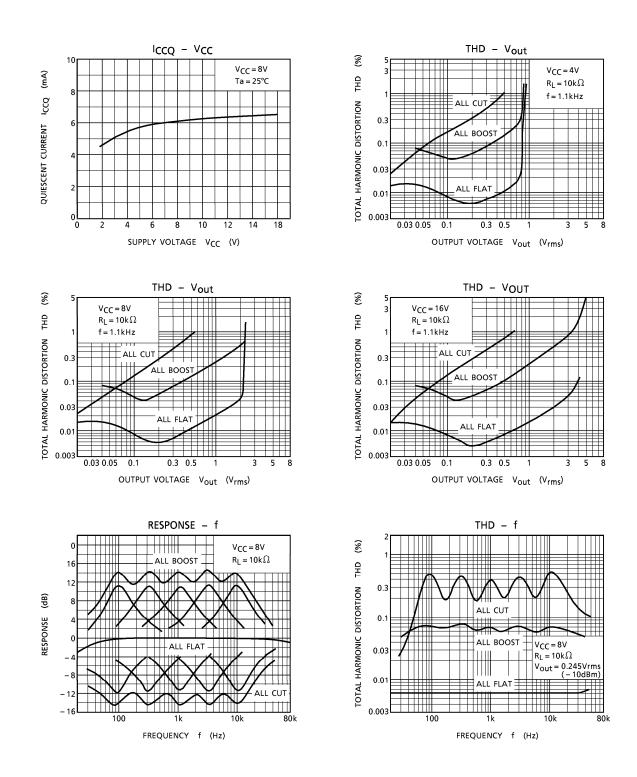
(Note) Derated above $Ta = 25^{\circ}C$ in the proportion of $6mW/^{\circ}C$ for TA7796P, TA7796Z.

ELECTRICAL CHARACTERISTIC	S (Unless otherwise	specified, $V_{CC} = 8V$,	f = 1.1kHz, RL =	= 10Ω, Ta = 25°C)
---------------------------	---------------------	----------------------------	------------------	-------------------

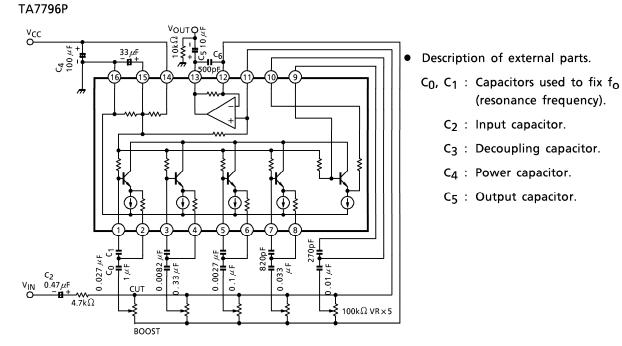
				_							
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT				
Quiescent Current	lccq	_	V _{in} = 0	3.5	6.1	9.3	mA				
	G _V (FLT)		V _{out} = 0.775V _{rms} (0dBm)	- 2.5	- 0.5	1.5					
			V _{out} = 0.775V _{rms} (0dBm), f = 110Hz	10.0	11.5	14.0					
		I	$V_{out} = 0.775 V_{rms}$ (0dBm), f = 340Hz	10.0	11.5	14.0					
Voltage Gain	G _V (BST)	l	V _{out} = 0.775V _{rms} (0dBm), f = 1.1kHz	10.0	11.5	14.0					
			$V_{out} = 0.775 V_{rms}$ (0dBm), f = 3.4kHz	11.5	14.0						
		_	$V_{out} = 0.775 V_{rms}$ (0dBm), f = 11kHz	10.0	11.5	14.0	dB				
			V _{out} = 0.775V _{rms} (0dBm), f = 110Hz	– 14.0	- 11.5	- 10.0					
			V _{out} = 0.775V _{rms} (0dBm), f = 340Hz	- 14.0	– 11.5	- 10.0					
	G _V (CUT)	I	V _{out} = 0.775V _{rms} (0dBm), f = 1.1kHz	– 14.0	– 11.5	- 10.0					
		I	$V_{Out} = 0.775 V_{rms}$ (0dBm), f = 3.4kHz	– 14.0	– 11.5	- 10.0					
			$V_{out} = 0.775 V_{rms}$ (0dBm), f = 11kHz	– 14.0	- 11.5	- 10.0					
Total Harmonic Distortion	THD (FLT)	_	V _{out} = 0.245V _{rms} (– 10dBm)	_	0.007	0.10	%				
Output Noise Voltage	V _{no} (FLT)		$R_g = 620\Omega$, $V_{in} = 0$, BW = 20~20kHz	_	3.0	8.0	μV_{rms}				

TYP. DC VOLTAGE OF EACH TERMINAL

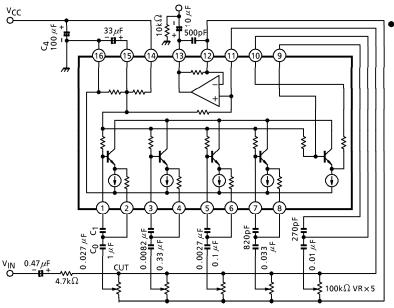

TA7796P ($V_{CC} = 8V$, Ta = 25°C)


TERMINAL No.	1	2	3	4	5	6	7	8
DC-VOLTAGE (V)	4.70	3.35	4.70	3.35	4.70	3.35	4.70	3.35
TERMINAL No.	9	10	11	12	13	14	15	16
DC-VOLTAGE (V)	4.70	3.35	4.00	4.00	4.00	8.00	4.70	0

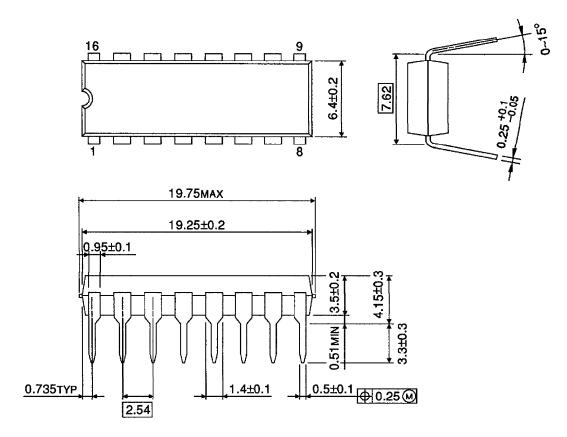
TA7796Z ($V_{CC} = 8V$, Ta = 25°C)


TERMINAL No.	1	2	3	4	5	6	7	8
DC-VOLTAGE (V)	4.70	3.35	4.00	4.00	4.00	8.00	4.70	0
TERMINAL No.	9	10	11	12	13	14	15	16
DC-VOLTAGE (V)	4.70	3.35	4.70	3.35	4.70	3.35	4.70	3.35

TEST CIRCUIT TA7796P



APPLICATION



- Description of external parts.
 - C₀, C₁ : Capacitors used to fix f₀ (resonance frequency).
 - C₂ : Input capacitor.
 - C₃ : Decoupling capacitor.
 - C₄ : Power capacitor.
 - C₅ : Output capacitor.

OUTLINE DRAWING DIP16-P-300-2.54A

Unit : mm

Weight : 1.0g (Typ.)

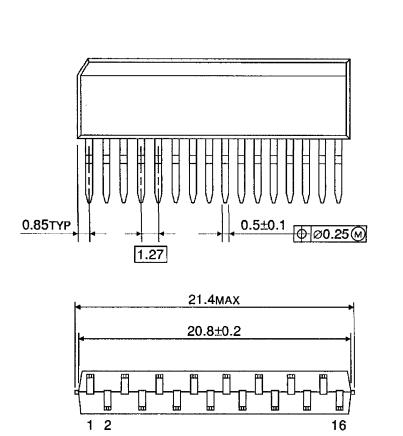
OUTLINE DRAWING

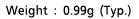
ZIP16-P-1.27

Unit : mm

8.6MAX

3.0±0.3


6.2±0.2


2.0±0.2

0.25^{+0.1} -0.05

3.2±0.2

3.0

