TOSHIBA

TOSHIBA Original CMOS 8-Bit Microcontroller

TLCS-870/X Series

TMP88PU74FG

TOSHIBA CORPORATION

Semiconductor Company

Document Change Notification

The purpose of this notification is to inform customers about the launch of the Pb-free version of the device. The introduction of a Pb-free replacement affects the datasheet. Please understand that this notification is intended as a temporary substitute for a revision of the datasheet.

Changes to the datasheet may include the following, though not all of them may apply to this particular device.

1. Part number

Example: TMPxxxxxF TMPxxxxxFG

All references to the previous part number were left unchanged in body text. The new part number is indicated on the prelims pages (cover page and this notification).

2. Package code and package dimensions

Example: LQFP100-P-1414-0.50C LQFP100-P-1414-0.50F

All references to the previous package code and package dimensions were left unchanged in body text. The new ones are indicated on the prelims pages.

3. Addition of notes on lead solderability

Now that the device is Pb-free, notes on lead solderability have been added.

4. RESTRICTIONS ON PRODUCT USE

The previous (obsolete) provision might be left unchanged on page 1 of body text. A new replacement is included on the next page.

5. Publication date of the datasheet

The publication date at the lower right corner of the prelims pages applies to the new device.

1. Part number

2. Package code and dimensions

Previous Part Number (in Body Text)	Previous Package Code (in Body Text)	New Part Number	New Package Code	OTP
TMP88PU74F	P-QFP80-1420-0.80B	TMP88PU74FG	QFP80-P-1420-0.80B	_

*: For the dimensions of the new package, see the attached Package Dimensions diagram.

3. Addition of notes on lead solderability

The following solderability test is conducted on the new device.

Lead solderability of Pb-free devices (with the G suffix)

Test	Test Conditions	Remark
Solderability	 (1) Use of Lead (Pb) solder bath temperature = 230°C dipping time = 5 seconds the number of times = once use of R-type flux (2) Use of Lead (Pb)-Free solder bath temperature = 245°C dipping time = 5 seconds the number of times = once use of R-type flux 	Leads with over 95% solder coverage till lead forming are acceptable.

4. RESTRICTIONS ON PRODUCT USE

The following replaces the "RESTRICTIONS ON PRODUCT USE" on page 1 of body text.

RESTRICTIONS ON PRODUCT USE

20070701-EN

• The information contained herein is subject to change without notice.

 TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.

- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

5. Publication date of the datasheet

The publication date of this datasheet is printed at the lower right corner of this notification.

TMP88PU74

(Annex)

Package Dimensions

QFP80-P-1420-0.80B

Unit: mm

CMOS 8-Bit Microcontroller TMP88PU74F

The TMP88PU74 are the high-speed and high performance 8-bit single chip microcomputers which built in a program storage area (96 Kbytes) and the One-Time PROM of bector table storage area (256 bytes). The TMP88PU74 is pin compatible with the TMP88CU74. The operations possible with the TMP88PU74 can be performed by writing programs to PROM. The TMP88PU74 can write and verify in the same way as the TC571000 an EPROM programmer.

Product No.	OTP	RAM	Package	Adaptor Socket
TMP88PU74F	96 Kbytes + 256 bytes	2 Kbytes	P-QFP80-1420-0.80B	BM11131

070122EBP

- The information contained herein is subject to change without notice. 021023 D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of SUBA stress. It is products could cause loss of human life, bodily injury or damage to property.
- In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023 B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility
 is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from
 its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third
 parties. 070122_c
- The products described in this document are subject to foreign exchange and foreign trade control laws. 060925_E
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions. 030619_s

Pin Assignments (Top View)

P-QFP80-1420-0.80B

Pin Function

The TMP88PU74 has two modes: MCU and PROM.

(1) MCU mode

In this mode, the TMP88PU74 is pin compatible with the TMP88CU74 (fix the TEST pin at low level).

(2) PROM mode

Pin Name (PROM mode)	Input/ Output	Functions	Pin Name (MCU mode)			
A16			P60			
A15 to A8	Input	PROM address inputs	P05, P32 to 30, P53 to 50			
A7 to A0			P47 to P40			
D7 to D0	I/O	PROM data input/outputs	P17 to P10			
CE		Chip enable signal input (active low)	P03			
ŌĒ	Input	Output enable signal input (active low)	P04			
PGM		Program mode single input	P02			
VPP	Device	+12.75 V/5 V (Program supply voltage)	TEST			
VCC	Power	+6.25 V/5 V	VDD			
GND	supply	0 V	VSS			
P37 to P30						
P47 to P41		Pull-up with resistance for input processing				
P54 to P50						
P01	Input	PROM made patting nin. Be fixed at high lovel				
P21	input	PROM mode setting pin. Be fixed at high level.				
P07, P06, P00						
P22, P20		PROM mode setting pin. Be fixed at low level.				
RESET						
P67 to P61						
P77 to P70						
P87 to P80	Output	Open				
P97 to P90						
PD4 to PD0						
XIN	Input	Connect on 10 MHz assillator to stabilize the internal stat				
XOUT	Output		5.			
VAREF	Bower					
VASS	ruver					
VKK	Suppiy	Open				

Operational Description

The configuration and functions of the TMP88PU74 are the same as those of the TMP88CU74, except in that a one-time PROM is used instead of an on-chip mask ROM.

1. Operating Mode

The TMP88PU74 has two modes: MCU and PROM.

1.1 MCU Mode

The MCU mode is activated by fixing the TEST/VPP pin at low level.

In the MCU mode, operation is the same as with the TMP88CU74 (the TEST/VPP pin cannot be used open because it has no built-in pull-down resistance).

1.1.1 Program Memory

The TMP88PU74 has a 96 Kbytes (addresses 04000H to 1BFFFH in the MCU mode, addresses 00000H to 17FFFH in the PROM mode) of program storage area and 256 byte (addresses FFF00 to FFFFFH in the MCU mode, addresses 1FF00 to 1FFFFH in the PROM mode) one-time PROM of vector table storage area.

Figure 1.1.1 Program Storage Area

1.1.2 Data Memory

The TMP88PU74 has an on-chip 2-Kbyte data memory (static RAM).

1.1.3 Input/Output Circuitry

(1) Control pins

The control pins of the TMP88PU74 are the same as those of the TMP88CU74 except that the TEST pin has is no built-in pull-down resistance.

Figure 1.1.2 TEST Pin

(2) I/O ports

The I/O circuitries of TMP88PU74 I/O ports are the same as the I/O circuitries of the TMP88CU74.

1.2 PROM Mode

The PROM mode is activated by setting shown in Figure 1.2.1. The PROM mode is used to write and verify programs with a general-purpose PROM programmer. The high-speed programming mode can be used for program operation.

The TMP88PU74 is not supported an electric signature mode, so the ROM type must be set to TC571000.

Set the adaptor socket switch to "N".

Figure 1.2.1 Setting for PROM Mode

1.2.1 Programming Flowchart (High-speed programming)

The high-speed programming mode is achieved by applying the program voltage (+12.75 V) to the Vpp pin when Vcc = 6.25 V. After the address and input data are stable, the data is programmed by applying a single 0.1ms program pulse to the CE input. The programmed data is verified. If incorrect, another 0.1ms program pulse is applied and then the programmed data is verified. This process should be repeated (up to 25 times) until the program operates correctly. After that, change the address and input data, and program as before. When programming has been completed, the data in all addresses should be verified with Vcc = Vpp = 5 V.

1.2.2 Writing Method for General-purpose PROM Program

(1) Adapters

BM11131

(2) Adapter setting

Switch (SW1) is set to side N.

- (3) PROM programmer specifying
 - i) PROM type is specified to TC571000.

Writing voltage: 12.75 V (high-speed program)

ii) Data transfer (copy) (note 1)

In TMP88PU74, EPROM is within the addresses 00000H to 17FFFH and the addresses 1FF00H to 1FFFFH. Data is required to be transferred (copied) to the addresses where it is possible to write. The program area in MCU mode and PROM mode is referred to "Program memory area" in Figure 1.1.1.

Ex. In the block transfer (copy) mode, executed as below.

Program area: transferred addresses 04000H to 1BFFFH to addresses 00000 to 17FFFH

Vector area: transferred addresses FFF00H to FFFFFH to 1FF00 to 1FFFFH

iii) Writing address is specified. (note 1)

Start address:	00000H
End address:	1FFFFH

(4) Writing

Writing/Verifying is required to be executed in accordance with PROM programmer operating procedure.

- Note 1: The specifying method is referred to the PROM programmer description. Either write the data FFH to the unused area or set the PROM programmer to access only the program storage area.
- Note 2: When MCU is set to an adapter or the adapter is set to PROM programmer, a position of pin 1 must be adjusted. If the setting is reversed, MCU, the adapter and PROM program is damaged.
- Note 3: The TMP88PU74 does not support the electric signature mode (hereinafter referred to as "signature"). If the signature is used in PROM program, a device is damaged due to applying 12 V \pm 0.5 V to the address pin 9 (A9). The signature must not be used.

Electrical Characteristics

Parameter	Symbol	Pins	Ratings	Unit
Supply Voltage	V _{DD}		–0.3 to 6.5	
Program Voltage	V _{PP}	TEST/VPP	–0.3 to 13.0	
Input Voltage	VIN		-0.3 to V _{DD} + 0.3	V
Output Voltage	V _{OUT1}	P2, P3 (at open drain)	-0.3 to V _{DD} + 0.3	
Oulput vollage	V _{OUT2}	P6, P7, P8, P9, PD	$V_{DD}-40$ to $V_{DD}+0.3$	
Output Current	IOUT1	P0, P1, P2, P4, P5	3.2	
(Per 1 pin)	I _{OUT2}	P6, P7, P8, P9, PD	-25	
	ΣΙΟυτ1	P0, P1, P3, P4, P5	-40	mA
Output Current (Total)	ΣΙΟυτ2	P0, P1, P2, P3, P4, P5	120	
	ΣΙΟυτ3	P6, P7, P8, P9, PD	-160	
Power Dissipation	PD		1200	m)//
[Topr = 25°C]	(Note 2)		1200	TTIVV
Soldering Temperature (time)	Tsld		260 (10 s)	*0
Storage Temperature	Tstg		-55 to +125	°C
Operating Temperature	Topr		-30 to 70	

Absolute Maximum Ratings $(V_{SS} = 0 V)$

- Note 1: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.
- Note 2: Power Dissipation (PD); For PD, it is necessary to decrease 14.3 mW/°C. (Refernce to TMP88CU74)

Parameter	Symbol	Pins	Conditions			Min	Max	Unit
			fc = 12.5 MHz	NORMAL1, IDLE1, 2	2 modes modes	4.5	5.5	
Supply Voltage	V _{DD}		fs = 32.768 KHz	SLOW	modes modes	2.7		
				STOP	modes	2.0		
VII		Except hysteresis input				$V_{DD} imes 0.70$		V
Input High Voltage	V _{IH2}	Hysteresis input	VDD ≥ 4.3 V			$V_{DD} imes 0.75$	V _{DD}	
	V _{IH3}		V _{DD} < 4.5 V			$V_{DD} imes 0.90$		
	V _{IL1}	Except hysteresis input] ,				$V_{DD} imes 0.30$	
Input Low Voltage	V _{IL2}	Hysteresis input	V _{DD} ≥ 4.5 V			0	$V_{DD} imes 0.25$	
Í	V _{IL3}		V _{DD} < 4.5 V				$V_{DD} imes 0.10$	
	<i>f</i> a	XIN, XOUT	V _{DD} = 4	.5 to 5.5 V (Note 2)	8	12.5	MHz
Clock Frequency	TC	XTIN, XTOUT	V _{DI}	c = 2.7 to 5.	5 V	30.0	34.0	kHz

Recommended Operating Conditions $(V_{SS} = 0 \text{ V}, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$

- Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.
- Note 2: Clock frequency fc: Supply voltage range is specified in NORMAL 1/2 mode and IDLE 1/2 mode.

Parameter	Symbol	Pins	Pins Conditions		Тур.	Max	Unit
Hysteresis Voltage	V _{HS}	Hysteresis input		_	0.9	-	V
	l _{IN1}	TEST					
Input Current	I _{IN2}	Open drain ports, Tri-state ports	V _{DD} = 5.5 V V _{IN} = 5.5 V/0 V	-	-	±2	μA
	I _{IN3}	RESET, STOP					
Input Resistance	R _{IN3}	RESET	ESET		220	450	kO
Pull-down Resistance	R _K	Source open drain ports	urce open drain ports $V_{DD} = 5.5 \text{ V}, V_{KK} = -30 \text{ V}$		80	110	K52
	ILO1	Sink open drain ports	$V_{DD} = 5.5 \text{ V}, V_{OUT} = 5.5 \text{ V}$	-	-	2	
Output Leakage	I _{LO2}	Source open drain ports	$V_{DD} = 5.5 V,$ $V_{OUT} = -32 V$	-	-	-2	μA
Current	I _{LO3}	Tri-state ports	V _{DD} = 5.5 V, V _{OUT} = 5.5 V/ 0V	_	_	2	
Output High Voltage	V _{OH}	Tri-state ports	$V_{DD} = 4.5 V,$ $I_{OH} = -0.7 mA$	4.1	_	-	V
Output Low Voltage	V _{OL}	Except XOUT	$V_{DD} = 4.5 \text{ V}, I_{OL} = 1.6 \text{ mA}$	_	_	0.4	
Output High current	ЮН	P6, P7, P8, P9, PD port	$V_{DD} = 4.5 \text{ V}, V_{OH} = 2.4 \text{ V}$	-	-20	-	
Supply Current in NORMAL 1, 2 modes			V _{DD} = 5.5 V V _{IN} = 5.3 V/0.2 V	-	13.5	20	mA
Supply Current in IDLE 1, 2 modes			fc = 12.5 MHz fs = 32.768 kHz	_	5.5	8.5	
Supply Current in SLOW mode	I _{DD}		$V_{DD} = 3.0 V$	_	30	60	
Supply Current in SLEEP mode]		v _{IN} = 2.8 v/0.2 v fs = 32.768 kHz	_	15	30	μA
Supply Current in STOP mode			V _{DD} = 5.5 V V _{IN} = 5.3 V/0.2 V	_	0.5	10	

DC Characteristics (V_{SS} = 0 V, Topr = -30 to 70° C)

Note 1: Typical values show those at Topr = 25° C, VDD = 5 V.

Note 2: Input Current IIN3; The current through resistor is not included, when the input resistor (pull-up/pull-down) is contained.

AD Conversion Characteristics	$(V_{SS} = 0 \text{ V}, \text{ V}_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Analog Reference Voltage	VAREF		4.5	-	V _{DD}	
	VASS	VASS		V _{SS}		V
Analog Reference Voltage Range	V _{AIN}		V _{ASS}	_	V _{AREF}	v
Analog Input Voltage	I _{REF}	V _{AREF} = 5.5 V, V _{ASS} = 0.0 V	_	0.5	1.0	mA
Nonlinearity Error			-	-	±1	
Zero Point Error		$v_{DD} = 5.0 v, v_{SS} = 0.0 v$	_	-	±1	
Full Scale Error		$V_{AREF} = 5.000 V$	_	-	±1	LOB
Total Error		VASS = 0.000 V	_	_	±2	

Note: Quantizing error is not contained in those errors.

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Machine Cycle Time		In NORMAL1, 2 modes	0.22		0.5	μs
	tov	In IDLE1, 2 modes	0.32	_		
	icy	In SLOW mode	117.0	-	133.3	
		In SLEEP mode	117.0			
High Level Clock Pulse Width	twcн	For external clock operation	00.75			
Low Level Clock Pulse Width	twcL	(XIN input), fc = 12.5 MHz	33.75	-	-	ns
High Level Clock Pulse Width	twsH	For external clock operation	447			
Low Level Clock Pulse Width	t _{WSL}	(XTIN input), fs = 32.768 kHz	14.7	-	-	μs

Recommended Oscillating Conditions $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Oscillator	Oscillation Frequency	Recommended Oscillator	Recommended Constant	
				C ₁	C ₂
High-frequency Oscillation	Ceramic Resonator	12.5 MHz	Murata CSA12.5MTZ	30 pF	30 pF
		8 MHz	Murata CSA8.00MTZ	30 pF	30 pF
	Crystal Oscillator	12.5 MHz	NDK AT-51	10 pF	10 pF
Low-frequency Oscillation	Crystal Oscillator	32.768 KHz	NDK MX-38T	15 pF	15 pF

(1) High-frequency Oscillation

- (2) Low-frequency Oscillation
- Note 1: An electrical shield by metal shied plate on the IC package should be recommend able in order to prevent the device from the high electric fieldstress applied for continuous reliable operation.
- Note 2: The product numbers and specifications of the resonators by Murata Manufacturing Co., Ltd. are subject to change. For up-to-date information, please refer to the following URL;

http://www.murata.co.jp/search/index.html

DC/AC Characteristics (PROM mode) $(V_{SS} = 0 V)$

(1) Read operation (VDD = 5.0 ± 0.25 V, Topr = $25 \pm 5^{\circ}$ C)

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Input High Voltage (A0 to A16, \overline{CE} , \overline{OE} , \overline{PGM})	V _{IH4}		$V_{DD} imes 0.7$	-	V _{DD}	
Input Low Voltage (A0 to A16, CE , OE , PGM)	V _{IL4}		0	_	0.8	V
Program Power Supply Voltage	V _{PP}		4.75	5.0	5.25	
Address Access Time	tACC		-	1.5tcyc + 300	-	ns

		A 11/1		-		
Parameter	Symbol	Conditions	Min	lyp.	Max	Unit
Input High Voltage (D0 to D7, A0 to A16 \overline{CE} , \overline{OE} , \overline{PGM})	V _{IH4}		$V_{DD} imes 0.7$	-	V _{DD}	
Input Low Voltage (D0 to D7, A0 to A16, \overline{CE} , \overline{OE} , \overline{PGM})	V _{IL4}		0	_	0.8	V
Program Power Supply Voltage	V _{PP}		12.5	12.75	13.0	
Initial Program Pulse Width	t _{PW}	$V_{DD} = 6.0 V$	0.095	0.1	0.105	ms

(2) High-speed programming operation (Topr = $25 \pm 5^{\circ}$ C, VDD = 6.25 ± 0.25 V)

High-program

- Note 1: When V_{CC} power supply is turned on or after, V_{PP} must be increased. When V_{CC} power supply is turned off or before, V_{PP} must be decreased.
- Note 2: The device must not be set to the EPROM programmer or picked up from it under applying the program voltage (12.75 V \pm 0.5 V) to the V_{PP} pin as the device is damaged.
- Note 3: Be sure to execute the recommended programing mode with the recommended programing adaptor. If a mode or an adaptor except the above, the misoperation sometimes occurs.