
AN8473SA

Spindle motor driver IC for optical disk

Overview

The AN8473SA is an optical disk driver IC, featuring direct PWM drive, DMOS power drive, low ON resistance of output power MOS and 120° of duty-factor.

■ Pin Descriptions

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	VH	Hall bias pin	17	VM21	Motor supply voltage pin 2
2	H3L	Hall element-3 negative input pin	18	VM22	Motor supply voltage pin 2
3	НЗН	Hall element-3 positive input pin	19	CS	Current det. pin
4	H2L	Hall element-2 negative input pin	20	N.C.	N.C.
5	Н2Н	Hall element-2 positive input pin	21	A31	Drive output 3
6	H1L	Hall element-1 negative input pin	22	A32	Drive output 3
7	H1H	Hall element-1 positive input pin	23	PG2	Power current det. pin 2
8	EC	Torque command input pin	24	A21	Drive output 2
9	ECR	Torque command reference input pin	25	A22	Drive output 2
10	FG	FG signal output pin	26	PG1	Power current det. pin 1
11	Start	Start/stop changeover pin	27	A11	Drive output 1
12	VPUMP	Booster pin	28	A12	Drive output 1
13	BC1	Booster capacitor connection pin 1	29	N.C.	N.C.
14	BC2	Booster capacitor connection pin 2	30	PWMSW	PWM frequency changeover pin
15	GND	Ground pin	31	VM12	Motor supply voltage pin 1
16	V_{DD}	Supply voltage pin	32	VM11	Motor supply voltage pin 1

■ Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage *2	V_{DD}	IRL ISEMICE	V
	V _{M11, 12}		
	V _{M21, 22}	U iols	
Drive output voltage *5	$V_{(m)}$		V
Control signal input voltage *6	$V_{(n)}$	O to V _{DD}	V
Supply current	I _{DD}	30	mA
Drive output current *4	$I_{(o)}$	±1 200	mA
Hall bias current *7	$I_{HB(n)}$	30	mA
Power dissipation *3	PD	293	mW
Operating ambient temperature *100	Topr	-30 to +85	°C
Storage temperature *1	T_{stg}	-55 to +150	°C

Note) Do not apply external currents or voltages to any pins not specifically mentioned.

For circuit currents, '+' denotes current flowing into the IC, and '-' denotes current flowing out of the IC.

- *1: Except for the operating ambient temperature and storage temperature, all ratings are for $T_a = 25$ °C.
- *2: The voltage in the step-up voltage circuit exceeds the supply voltage.

 For the allowable value of the step-up voltage, refer to "■ Electrical Characteristics".
- *3: The power dissipation shown is the value of independent IC without a heat sink at $T_a = 70^{\circ}$ C. Refer to the $P_D T_a$ curves of the "Application Notes" for details.
- *4: o = 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32
- *5: m = 21, 22, 24, 25, 27, 28

*6: n = 2, 3, 4, 5, 6, 7, 8, 9, 11, 30

*7: n = 1

■ Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	V_{DD}	4.5 to 5.5	V
	V _{M11, 12}		
	V _{M21, 22}		

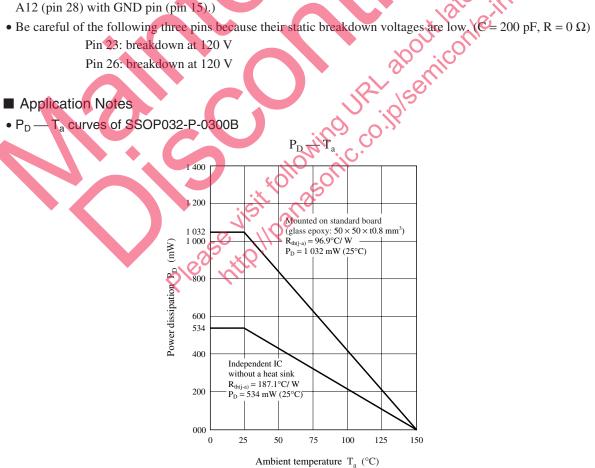
■ Electrical Characteristics at $T_a = 25$ °C

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Circuit current 2 I _{DD2} V _{DD} = 5 V including step-up circuit — 7 14 mA MA Start/stop Start voltage V _{START} at $V_{DD} = 5$ V and $1 \rightarrow H$ 2.7 — — V V Stop voltage V _{STOP} voltage with which a circuit operates at $V_{DD} = 5$ V and $1 \rightarrow H$ 2.7 — — V V Hall bias V _{STOP} voltage with which a circuit becomes aff at $V_{DD} = 5$ V and $1 \rightarrow H$ 0.7 V.2 V.6 V V Hall bias voltage V _{HB} V _{DD} = 5 V, I _{HB} = 20 mA 0.7 V.2 V.6 V V Hall amplifier Input bias current I _{BH} V _{DD} = 5 V 1 5 μA In-phase input voltage range V _{HBR} V _{DD} = 5 V, except for H2H, H2L V — 4.0 V Minimum input level V _{NH} V _{ND} = 5 V 60 — mVIp-pl Torque command In-phase input voltage range EC V _{DD} = 5 V 0.5 — 3.9 V Offset voltage EC O _F V _{DD} = 5 V 0 75 150 mV Dead zone EC D _D V _{DD} = 5 V 0 75 150 mV Input outrent EC D _D V _{DD} = 5 V, I _C = 500 mA — 0.15 0.30 V Low-level output saturation voltage V _{DD} = 5 V, I _C = 500 mA — 0.15 0.30 V Low-level output saturation voltage	Overall						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Circuit current 1	I_{DD1}	$V_{DD} = 5 \text{ V}$ in power save mode		0	0.2	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Circuit current 2	I_{DD2}	$V_{\rm DD} = 5 \text{ V}$ including step-up circuit	_	7	14	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Start/stop					P	
Hall bias Hall bias voltage VHB VDD = 5 V, IHB = 20 mA 0.7 V.2 V6 V Hall amplifier Input bias current Input bias current Input bias current VHBR VDD = 5 V, except for H2H, H21 VDD = 5 V Minimum input level VINH VDD = 5 V Offset voltage fange EC VDD = 5 V Offset voltage EC DD = 5 V DD = 5 V Offset voltage EC DD = 5 V DD =	Start voltage	V _{START}	V 2	2.7		_	V
Hall bias voltage	Stop voltage	V _{STOP}			_	0.70	V
Hall amplifier Input bias current I _{BH} V _{DD} = 5 V C 1 5 μA In-phase input voltage range V _{IBR} V _{DD} = 5 V, except for H2H, H2D C C C C C C C C C	Hall bias				'M'	, , (
Input bias current I_{BH}	Hall bias voltage	V_{HB}	$V_{DD} = 5 \text{ V}, I_{HB} = 20 \text{ mA}$	0.7	1.2	1.6	V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Hall amplifier			S	Se	7	
	Input bias current	I_{BH}	$V_{DD} = 5 V$		(1	5	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	In-phase input voltage range	V_{HBR}	$V_{DD} = 5 \text{ V}$, except for H2H, H2L	1.5		4.0	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Minimum input level	V _{INH}	$V_{DD} = 5 \text{ V}$	60		_	mV[p-p]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Torque command		ol a Mi				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	In-phase input voltage range	EC	$V_{DD} = 5 \text{ V}$	0.5		3.9	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Offset voltage	EC _{OF}	$V_{DD} = 5 \text{ V}$	-100	0	100	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dead zone	EC _{DZ}	$V_{DD} = 5 \text{ W}$	0	75	150	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input current	ECIN	$V_{DD} = 5 \text{ V}, EC = ECR = 2.5 \text{ V}$	-5	-1	_	μΑ
High-level output saturation voltage V_{OH} $V_{DD} = 5 \text{ V}$, $I_O = -500 \text{ mA}$ —0.150.30VLow-level output saturation voltage V_{OL} $V_{DD} = 5 \text{ V}$, $I_O = 500 \text{ mA}$ —0.150.30VTorque limit current I_{TL} $V_{DD} = 5 \text{ V}$, $R_{CS} = 0.33 \Omega$ 455570685mAFGFG output high-level FG_H $V_{DD} = 5 \text{ V}$, $I_{FG} = -0.01 \text{ mA}$ 3——VFG output low-level FG_L $V_{DD} = 5 \text{ V}$, $I_{FG} = 0.01 \text{ mA}$ ——0.5VIn-phase input voltage range V_{FGR} $V_{DD} = 5 \text{ V}$ 1.5—3.0VFG hysteresis width H_{FG} $V_{DD} = 5 \text{ V}$ 51020mVStep-up circuit	Input/output gain	A _{CS}	$V_{\rm DD} = 5 \text{ V. } R_{\rm CS} = 0.33 \Omega$	0.36	0.48	0.60	A/V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output	jie	all'e				
Torque limit current I_{TL} $V_{DD} = 5$ V, $R_{CS} = 0.33$ Ω 455 570 685 mA FG FG output high-level FG _H $V_{DD} = 5$ V, $I_{FG} = -0.01$ mA 3 — — V FG output low-level FG _L $V_{DD} = 5$ V, $I_{FG} = 0.01$ mA — — 0.5 V In-phase input voltage range V_{FGR} $V_{DD} = 5$ V 1.5 — 3.0 V FG hysteresis width H_{FG} $V_{DD} = 5$ V 5 10 20 mV Step-up circuit	High-level output saturation voltage	Vо́н	$V_{DD} = 5 \text{ V}, I_{O} = -500 \text{ mA}$		0.15	0.30	V
Torque limit current I_{TL} $V_{DD} = 5$ V, $R_{CS} = 0.33$ Ω 455 570 685 mA FG FG output high-level FG _H $V_{DD} = 5$ V, $I_{FG} = -0.01$ mA 3 — — V FG output low-level FG _L $V_{DD} = 5$ V, $I_{FG} = 0.01$ mA — — 0.5 V In-phase input voltage range V_{FGR} $V_{DD} = 5$ V 1.5 — 3.0 V FG hysteresis width H_{FG} $V_{DD} = 5$ V 5 10 20 mV Step-up circuit	Low-level output saturation voltage	VOL	$V_{DD} = 5 \text{ V}, I_{O} = 500 \text{ mA}$	_	0.15	0.30	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Torque limit current	I_{TL}	$V_{DD} = 5 \text{ V}, R_{CS} = 0.33 \Omega$	455	570	685	mA
FG output low-level FG _L $V_{DD} = 5 \text{ V}, I_{FG} = 0.01 \text{ mA}$ — 0.5 V In-phase input voltage range V_{FGR} $V_{DD} = 5 \text{ V}$ 1.5 — 3.0 V FG hysteresis width H_{FG} $V_{DD} = 5 \text{ V}$ 5 10 20 mV Step-up circuit	FG						
In-phase input voltage range V_{FGR} $V_{DD} = 5 \text{ V}$ $1.5 - 3.0 \text{ V}$ FG hysteresis width H_{FG} $V_{DD} = 5 \text{ V}$ $5 \cdot 10 \cdot 20 \cdot \text{mV}$ Step-up circuit	FG output high-level	FG_H	$V_{DD} = 5 \text{ V}, I_{FG} = -0.01 \text{ mA}$	3	_	_	V
FG hysteresis width H_{FG} $V_{DD} = 5 \text{ V}$ $5 10 20 \text{mV}$ Step-up circuit	FG output low-level	FG_L	$V_{DD} = 5 \text{ V}, I_{FG} = 0.01 \text{ mA}$	_	_	0.5	V
Step-up circuit	In-phase input voltage range	V _{FGR}	$V_{DD} = 5 \text{ V}$	1.5	_	3.0	V
	FG hysteresis width	H_{FG}	$V_{DD} = 5 \text{ V}$	5	10	20	mV
Step-up voltage $V_{PUMP} V_{DD} = 5 V$ 7 — 10 V	Step-up circuit						
1000	Step-up voltage	V _{PUMP}	$V_{DD} = 5 \text{ V}$	7	_	10	V

SDD00005CEB 3

■ Electrical Characteristics at T_a = 25°C (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
PWM oscillation changeover						
Input high-level	PWM _H	$V_{DD} = 5 \text{ V}$	4.5	_	_	V
Input low-level	PWM_L	$V_{DD} = 5 \text{ V}$	_		0.5	V

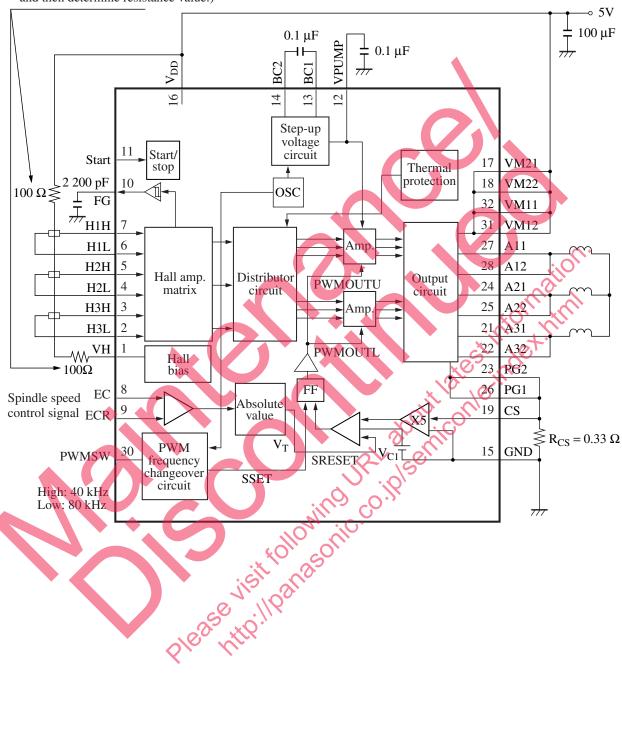

• Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max Unit
PWM oscillation changeover					
PWM frequency high-level	f_{PWMH}	$V_{DD} = 5 \text{ V}, \text{PWMSW} = \text{Low}$		80	— kHz
PWM frequency low-level	f_{PWML}	$V_{DD} = 5 \text{ V}, PWMSW = High}$		40	kHz
Thermal protection					
Thermal protection operating	T _{SDON}	$V_{\rm DD} = 5 \text{ V}$		150	— °C
temperature			1 K		% .
Thermal protection hysteresis width	ΔT_{SD}	$V_{DD} = 5 \text{ V}$	_	40	°C

■ Usage Notes

• Prevent this IC from being line-to-ground fault. (To be concrete, do not short-circuit any of A31 (pin 21), A32 (pin 22), A21 (pin 24), A22 (pin 25), A11 (pin 27) and A12 (pin 28) with GND pin (pin 15).)


- Application Notes (continued)
- Phase conditions between Hall input and output current

Phase of Hall pin			n		
	H1H	H2H	H3H		
A	Н	ML	ML		
В	MH	L	MH		
C	ML	ML	Н		
D	L	MH	MH		
Е	ML	Н	ML		
F	MH	MH	L		
Er Output curre	mit A1	H1	H3	H2 H	H2 H3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Output curre	nit		R 20	E F	

AN8473SA Panasonic

■ Application Circuit Example

(Check the stipulated value of electrical characteristics and then determine resistance value.)

6 SDD00005CEB

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances). Consult our sales staff in advance for information on the following applications:
 - · Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 - Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the clapsed time since first opening the packages.
- Please visit following Leading on the prior write please visit following the prior write visit following the prio (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.