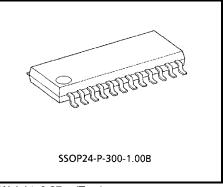
TOSHIBA BI-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC


TB6526AF/AFG

CHOPPER-TYPE BIPOLAR STEPPING MOTOR CONTROL DRIVER IC

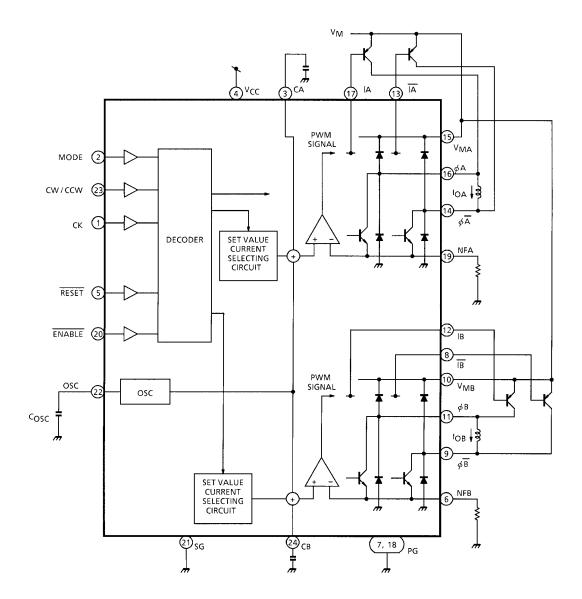
The TB6526AF/AFG is a PWM chopper–type sinusoidal micro–step bipolar stepping motor driver IC. It is capable of 1–2 and 2W1–2 phase excitation modes and forward and reverse rotation modes, low–vibration, low–torque ripple, and high–efficiency driving.

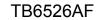
FEATURES

- Forward and reverse rotations are available.
- 1-2, 2W1-2 phase driving is available.
- Structured by Bi-CMOS process.
- Package: SSOP24-P-300-1.00B
- Externally equipped with PNP output transistor.
- Reset and enable pins are attached.

Weight: 0.27 g (Typ.)

TB6526AFG:

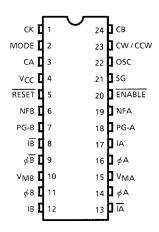

The TB6526AFG is a Pb-free product.


The following conditions apply to solderability:

*Solderability

- 1. Use of Sn-37Pb solder bath
 - *solder bath temperature = 230°C
 - *dipping time = 5 seconds
 - *number of times = once
 - *use of R-type flux
- $2. \quad Use of Sn\hbox{-}3.0 Ag\hbox{-}0.5 Cu solder bath \\$
 - *solder bath temperature = 245°C
 - *dipping time = 5 seconds
 - *the number of times = once
 - *use of R-type flux

BLOCK DIAGRAM



PIN FUNCTION

TOSHIBA

PIN No.	SYMBOL	FUNCTIONAL DESCRIPTION	
1	CK	CLOCK Signal Input	Truth table A
2	MODE	Excitation Mode Setting terminal	Truth table B
3	CA	Noise reduction condenser outer terminal	
4	V _{CC}	Power voltage supply terminal for Logic	
5	RESET	RESET Signal Input terminal	Truth table A
6	NFB	B Channel current detective terminal	
7	PG-B	Power GND B terminal	
8	ΙΒ	Upper PNP Transistor Base terminal (B phase)	
9	φĒ	B output	
10	V _{MB}	Power voltage supply terminal for Motor B	
11	φВ	Output B terminal	
12	IB	Upper PNP Transistor Base terminal (B phase)	
13	ΙĀ	Upper PNP Transistor Base terminal (A phase)	
14	φĀ	Output A terminal	
15	V _{MA}	Power voltage supply terminal for Motor A	
16	φΑ	Output A terminal	
17	IA	Upper side PNP transistor Base terminal (A phase)	
18	PG-A	Power GND A terminal	
19	NFA	A Channel current detection terminal	
20	ENABLE	ENABLE Signal input terminal	Truth table A
21	SG	Signal GND terminal	
22	OSC	Internal Oscillation frequency detective terminal with external condenser	
23	CW / CCW	Forward rotation / Reverse rotation signal input	Truth table A
24	СВ	Noise reduction condenser outside terminal	

PIN CONNECTION

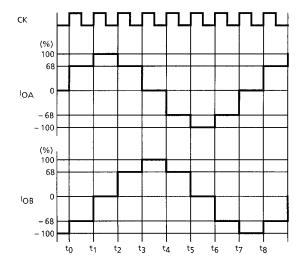
TRUTH TABLE A

		II	NPUT		MODE
Ck	(1	CW / CCW	RESET	ENABLE	MODE
_	ſ	L	Н	L	CW
1	_	Н	Н	L	CCW
Х	(X	L	L	INITIAL MODE
X	(X	Х	Н	Z

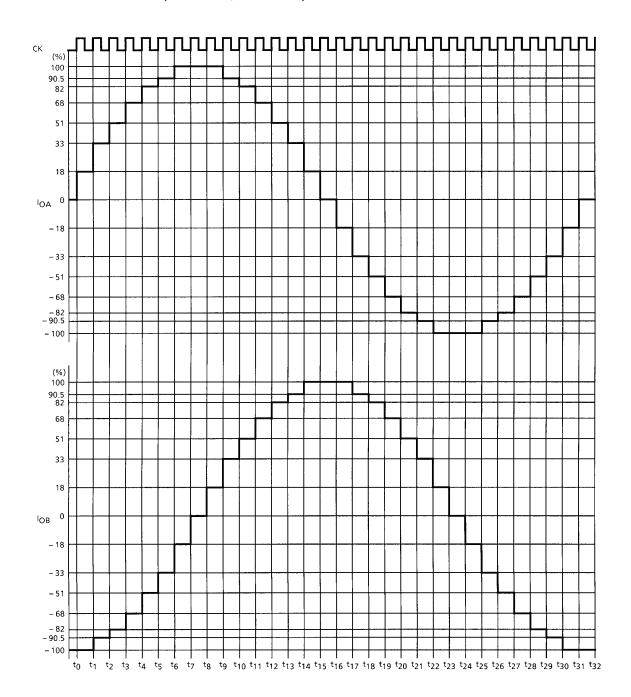
Z : High impedance

X : Don't care

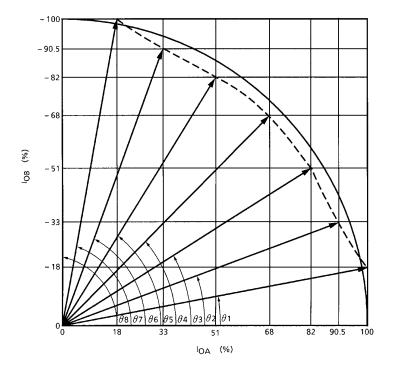
Note: Do not use INHIBIT mode.


TRUTH TABLE B

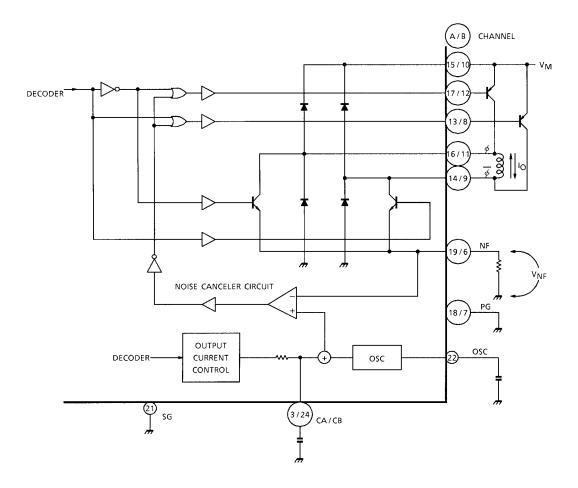
INPUT	MODE
MODE	(EXCITATION)
L	1-2 phase
Н	2W1-2 phase


INITIAL MODE

MODE EXCITATION	A-PHASE CURRENT	B-PHASE CURRENT
1-2 phase	100%	0%
2W1-2 phase	100%	0%

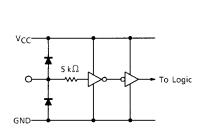

1-2 PHASE EXCITATION (MODE : L, CW mode)

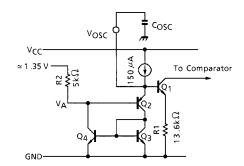
2W1-2 EXCITATION (MODE: H, CW mode)



OUTPUT CURRENT VECTOR OR BIT (Normalize to 90 deg for each one step)

0	ROTAT	ION ANGLE	VEC	TOR LENGTH
θ	IDEAL	TB6526AF/AFG	IDEAL	TB6526AF/AFG
θ0	0°	0°	100	100.00
θ1	11.25°	10.20°	100	101.65
θ2	22.5°	20.03°	100	96.35
θ3	33.75°	31.88°	100	96.56
θ4	45°	45°	100	96.17
θ5	56.25°	58.12°	100	96.57
θ6	67.5°	69.97°	100	96.33
θ7	78.75°	79.80°	100	101.61
θ8	90°	90°	90° 100 100.00	
		1-2	2W1-2, Phase	


OUTPUT CIRCUIT



INPUT CIRCUIT

CK,CW / CCW, RESET, ENABLE, MODE Terminals

OSC : Terminals

OSC frequency calculation

 $V_{\rm OSC}$ is increased by $C_{\rm OSC}$ charging through the constant current source (150 μA). $V_{\rm OSC}$ is calculated by following equation.

$$V_{OSC} = \frac{150 \times 10^{-6} \times t}{C_{OSC}}$$

 Q_2 is turned "off" when VoSC is less than the voltage of 1.35 V + VBE (Q_2) approximately equal to 2.05 V.

Q3 and Q4 are turned "on" when $V_{\mbox{\scriptsize OSC}}$ becomes 2.05 V.

$$V_{OSC}(H) = V_{BE}(Q_2) + 1.35$$

$$\approx 2.05\; V$$

Lower level of V (22) pin is equal to VBE (Q2) + VCE (SAT) (Q4) approximately equal to 1.0 V.

$$V_{OSC(L)} = V_{BE(Q2)} + V_{CE(SAT)(Q4)}$$

$$\approx 1.0 \; V$$

Assuming that Vosc = 1.0 V (t = t₁) and = 2.05 V (t = t₂), OSC frequency is calculated as follows.

$$t_1 = \frac{1.0 \ \times C_{OSC}}{150 \ \times \ 10^{-6}}$$

$$t_2 = \frac{2.05 \, \times C_{OSC}}{150 \, \times \, 10^{-6}}$$

$$f_{OSC} \!=\! \frac{1}{t_2 \!-\! t_1} \, = \! \frac{150 \, \times 10^{-6}}{C_{OSC} \, \, (2.05 \!-\! 1.0)}$$

$$=\!\frac{0.143}{C_{OSC}}(kHz)\;(C_{OSC}\;unit\!=\!\mu F\,)$$

ENABLE AND RESET FUNCTION AND MO SIGNAL

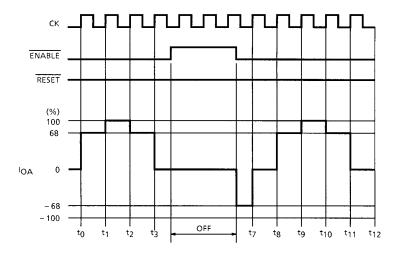


Fig.1. 1-2 phase drive mode (MODE: L)

ENABLE signal disables only Output signal. Internal logic functions are proceeded by CK signal without regard to ENABLE signal.

Therefore, Output Current is initiated from the proceeded timing point of internal logic circuit, after release of disable mode.

Fig.1 shows the ENABLE functions, when the system is selected in 1-2 phase drive mode.

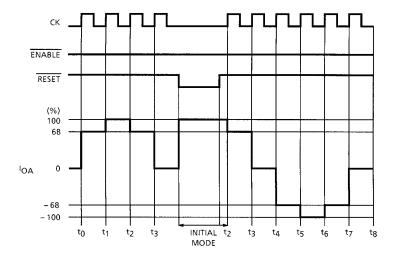


Fig.2. 1-2 phase drive mode (MODE: L)

As RESET is low, the decoder is initialized. (Output Current: A-Phase 100%, B-Phase 0%)

After RESET is high, the motion is resumed from next clock as show in Fig.2.

MO (Monitor Output) signals is used as rotation and initial signal for stable. rotation checking.

ABSOLUTE MAXIMUM RATING (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V _{CC}	5.5	V
Output Voltage	V _{M (opr.)}	3.5~8.0	V
Output voltage	V _{M (MAX.)}	10.0	V
Output Current	I _{O (MAX.)}	120	mA
Input Voltage	V_{IN}	~V _{CC} + 0.5	V
Power Dissipation	Pn	0.83 (Note 1)	W
Fower Dissipation	FD	1.04 (Note 2)	VV
Operating Temperature	T _{opr}	-30~85	°C
Storage Temperature	T _{stg}	-55~150	°C
Feed Back Voltage	VI	1.0	V

Note 1: No heat sink

Note 2: When mounted on substrate ($50 \times 50 \times 1.6 \text{ mm}$ Cu 10%)

RECOMMENDED OPERATING CONDITIONS (Ta = -30-85°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
Control Power Supply Voltage	V _{CC (opr.)}		2.7	3.0	5.5	V
Motor Power Supply Voltage	V _{M (opr.)}		3.5	_	8.0	V
Output Current	I _{OUT}		_	_	100	mA
Input Voltage	V _{IN}		-0.4	_	V _{CC} + 0.4	V
Clock Frequency	fclock		_	_	5	kHz
OSC Frequency	fosc		15	_	80	kHz

ELECTRICAL CHARACTERISTICS

Unless otherwise specified (Ta = 25°C, V_{CC} = 3 V, V_{M} = 5 V, load inductance : L = 8 mH / R = 50 Ω , with outer PNP)

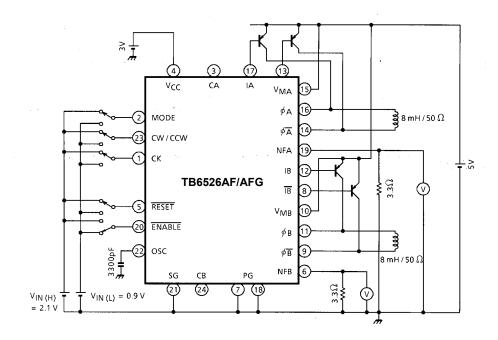
CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT	
Input Voltage	High	V _{IN (H)}	1	MODE, CW / CCW, ENABLE	V _{CC} × 0.7	_	V _{CC} + 0.4	V	
	Low	V _{IN (L)}	'	1 CK, RESET		ı	V _{CC} × 0.3	V	
Input Current		I _{IN} (H)	2	V _{IN} = 3.0 V		_	100	nA	
input Current		I _{IN (L)}		V _{IN} = 0 V	1	_	100	ш	
Current Consumption V _{CC} Pin		I _{CC1}		Output open, RESET: H, ENABLE: L, (1-2 phase excitation)	1	7	9		
		I _{CC2}	3	Output open, RESET: H, ENABLE: L, (2W1-2 phase excitation)	l	7	9	mA	
	I _{CC3}		RESET : L, ENABLE : H	_	1.3	_			
		I _{CC4}		RESET : H, ENABLE : H	-	1.3	_	_	
		V _{NF1}	9	C _A , C _B	0.245	0.275	0.305	٧	
Comparator Reference	Voltage Level	V _{NF2}	4	$R_{NF} = 3.3 \Omega, C_{OSC} = 3300 pF$	175	195	220	mV	
		V _{NF3}	4	R_{NF} = 2.2 Ω , C_{OSC} = 3300 pF	150	172	190	mV	
Output Inter-channel Differential		ΔV _O	4	(V _{NFA} -V _{NFB}) / V _{NFA} , C _{OSC} = 3300 pF, R _{NF} = 3.3 Ω	-10	_	10	%	
Maximum OSC Frequency		fosc (MAX.)	_		100			kHz	
Minimum OSC Frequency		fosc (MIN.)	_		_		10	kHz	
OSC Frequency		fosc	5	C _{OSC} = 3300 pF	31	44	70	kHz	

ELECTRICAL CHARACTERISTICS

Unless otherwise specified (Ta = 25°C, V_{CC} = 3 V, V_{M} = 5 V, load inductance : L = 8 mH / R = 50 Ω , with outer PNP)

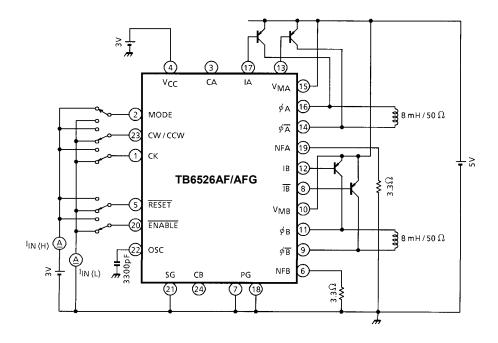
OUTPUT SECTION

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TES	T CONDITION	MIN	TYP.	MAX	UNIT	
Upper S	ide Driving Cu			_	1.5	1.6	mA			
Lower C	ido Caturation	Voltago	V _{SAT L1}	7	I _{OUT} = 0.06	6 A	_	0.10	_	V
Lower 5	ide Saturation	vollage	V _{SAT L2}	,	I _{OUT} = 0.12	2 A	_	0.16	0.43	V
Diode Fo	orward	Upper Side	V _{F U}	- 8	J = 0.11	2.4	_	1.24	1.8	V
Voltage		Lower Side	V _{F L}	0	I _{OUT} = 0.12	2 A	_	0.95	1.6	V
Output D	Dark Current		I _{M1}		ENABLE : RESET : ' Output ope	'L" level	_	_	50	μΑ
(A + B cl	(A + B channel)		I _{M2}	3	ENABLE: "L" level RESET: "H" level Output open ENABLE: "L" level RESET: "H" level Output open		_	17	28	- mA
	NF Dark Current (1 channel)		I _{NF}	-			1	2.5	7	
	2W1-2 phase excitation	e 1-2 phase excitation			θ = 0	R _{NF} = 3.3 Ω	_	100	_	
~	2W1-2 phase excitation	е			θ = 1 / 8		_	100	_	
nt (Note	2W1-2 phase excitation	е			θ = 2 / 8		85.5	90.5	95.5	
Currer	2W1-2 phas excitation	е	Vector	4	θ = 3 / 8		77	82	87	
pp- per	2W1-2 phas excitation	e 1-2 phase excitation	Vector	4	θ = 4 / 8	C _{OSC} = 3300 pF V _{NF}	64	69	74	
A-B Chop- per Current (Note)	2W1-2 phas excitation	e			θ = 5 / 8	-	48	53	58	
<	2W1-2 phas excitation	e			θ = 6 / 8		31	36	41	
	2W1-2 phas excitation	e			θ = 7 / 8		16	21	26	

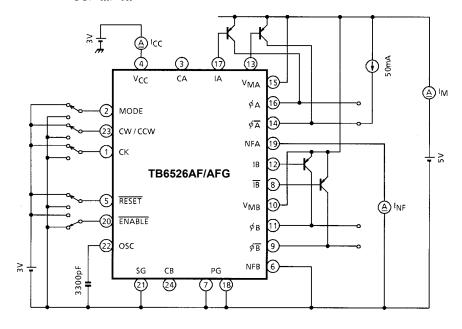

Note: Maximum current $\theta = 0$ is set at 100.

ELECTRICAL CHARACTERISTICS

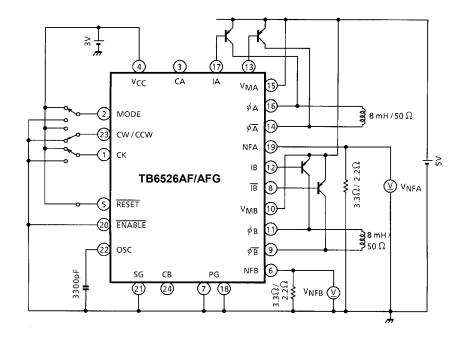
Unless otherwise specified (Ta = 25°C, V_{CC} = 3 V, V_{M} = 5 V, load inductance : L = 8 mH / R = 50 Ω , with outer PNP)


CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST COM	NDITION	MIN	TYP.	MAX	UNIT
			Δθ = 0 / 8-1 / 8		_	0	_	
			Δθ = 1 / 8-2 / 8		10	17	35	
			Δθ = 2 / 8-3 / 8		5	16	30	
Reference Voltage	ΔV_{NF}	9	Δθ = 3 / 8-4 / 8	Measured by CA and CB	16.25	21	41.25	mV
			Δθ = 4 / 8-5 / 8		25	32	50	
			Δθ = 5 / 8-6 / 8		26.25	31	51.25	
			Δθ = 6 / 8-7 / 8		15	28	45	
	t _r		$R_L = 2 \Omega$, $V_{NF} = 0 V$, $C_L = 15 pF$		_	0.3	_	
	t _f				_	2.2	_	
	t _{pLH}		CK~output		_	1.5	_	
	tpHL					2.7	_	
Output Tr Switching	t _{pLH}	12	OSC~output		_	5.4	_	
Output 11 Switching	tpHL	12	O3C output			6.3	_	μs
	t _{pLH}		RESET ~ output		_	2.0	_	
	tpHL				_	2.5	_	
	t _{pLH}		ENABLE ~ output		_	5.0	_	
	t _{pHL}					6.0		
Output Leakage Current	l _{OL}	10	V _M = 10 V			_	50	μA
V _{MA} / V _{MB} Off Current	l _{off}	11	V _{CC} = 0, V _M = 5 \	/	_	_	1	μA

TEST CIRCUIT 1 : $V_{IN\ (H)}$, $V_{IN\ (L)}$

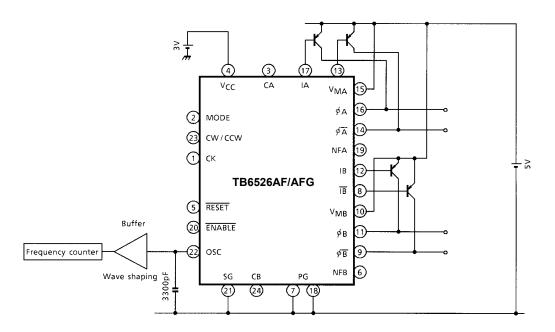


Note: When input voltage V_{IN (H)}, V_{IN (L)} is applied, verify the output function (NF voltage measurement).

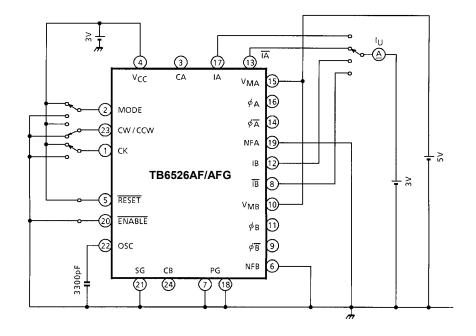

TEST CIRCUIT 2 : $I_{IN\ (H)}$, $I_{IN\ (L)}$

TEST CIRCUIT 3 : I_{CC} , I_{M} , I_{NF}

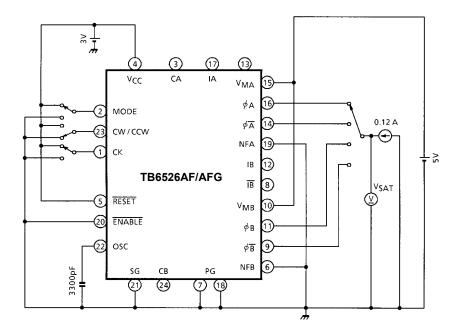
TEST CIRCUIT 4: V_{NF2} , V_{NF3} , ΔV_O

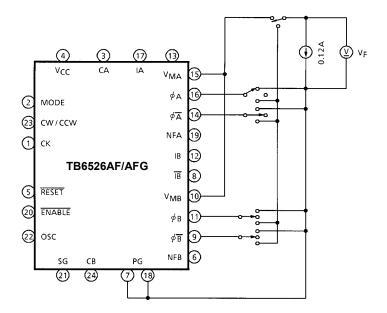


Note: V_{NF2} : V_{NFA} (100%), V_{NFB} (100%) when R_{NF} = 3.3 Ω

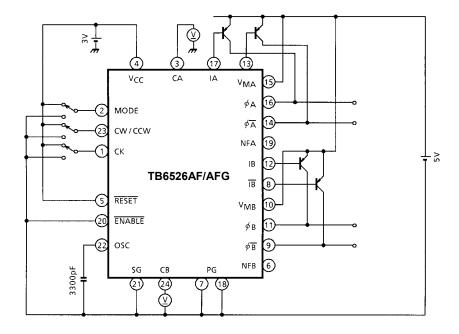

 V_{NF3} : V_{NFA} (100%), V_{NFB} (100%) when R_{NF} = 2.2 Ω

2006-3-6

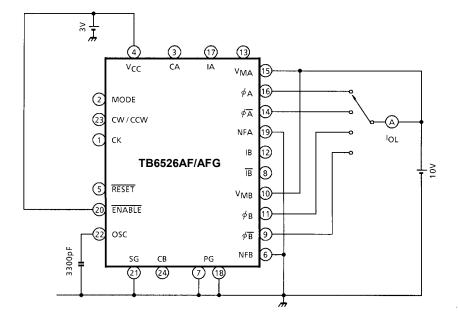

TEST CIRCUIT 5: fosc


TEST CIRCUIT 6: IU

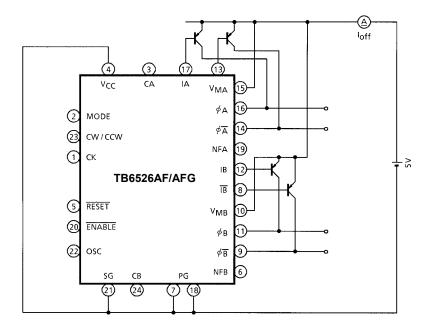
TEST CIRCUIT 7: VSAT



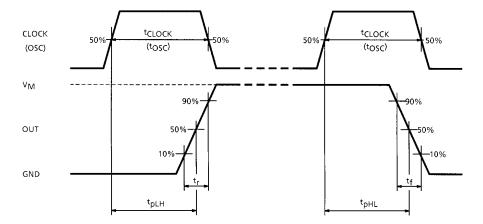
TEST CIRCUIT 8: V_{F-U}, V_{F-L}

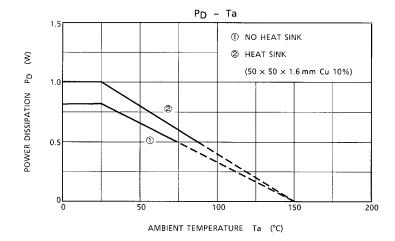


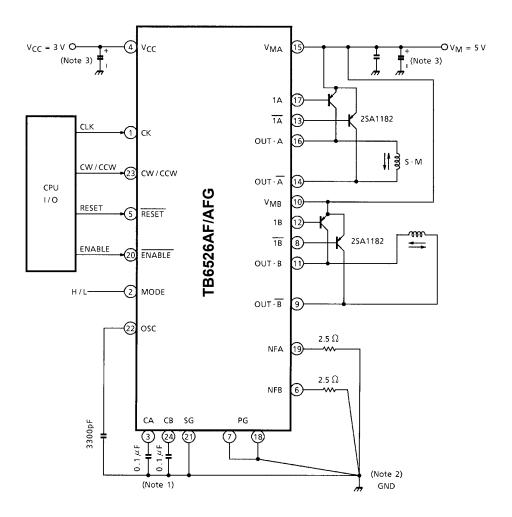
Note: Not to take GND with any non-connecting pins.


TEST CIRCUIT 9 : V_{NF1} , ΔV_{NF}

TEST CIRCUIT 10: IOL

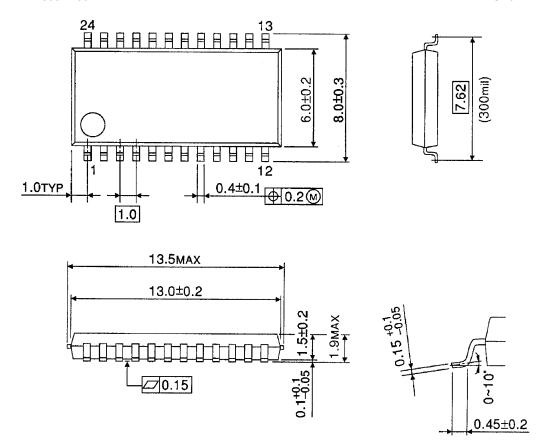



TEST CIRCUIT 11


AC ELECTRICAL CHARACTERISTICS, TEST CIRCUIT 12 CK (OSC) - OUT

CK (OSC) - OUT

APPLICATION CIRCUIT



- Note 1: A change in a step at the time of the micro-step can be improved smoothly with the capacitor of CA, CB.
- Note 2: GND pattern to be laid out at one point in order to prevent common impedance.
- Note 3: Capacitor for noise suppression to be connected between the Power Supply (V_{CC}, V_M) and GND to stabilize the operation.
- Note 4: Utmost care is necessary in the design of the output, V_{CC}, V_M, and GND lines since the IC may be destroyed by short-circuiting between outputs, air contamination faults, or faults due to improper grounding, or by short-circuiting between contiguous pins.

PACKAGE DIMENSIONS

SSOP24-P-300-1.00B

Unit: mm

Weight: 0.27 g (Typ.)

Notes on Contents

1. Block Diagrams

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

2. Equivalent Circuits

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

3. Timing Charts

Timing charts may be simplified for explanatory purposes.

4. Application Circuits

The application circuits shown in this document are provided for reference purposes only. Thorough evaluation is required, especially at the mass production design stage.

Toshiba does not grant any license to any industrial property rights by providing these examples of application circuits.

5. Test Circuits

Components in the test circuits are used only to obtain and confirm the device characteristics. These components and circuits are not guaranteed to prevent malfunction or failure from occurring in the application equipment.

IC Usage Considerations Notes on handling of ICs

- [1] The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings.

 Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
- [2] Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of over current and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are required.
- [3] If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON or the negative current resulting from the back electromotive force at power OFF. IC breakdown may cause injury, smoke or ignition.

 Use a stable power supply with ICs with built-in protection functions. If the power supply is
 - unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or ignition.
- [4] Do not insert devices in the wrong orientation or incorrectly.
 - Make sure that the positive and negative terminals of power supplies are connected properly.
 - Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
 - In addition, do not use any device that is applied the current with inserting in the wrong orientation or incorrectly even just one time.

Points to remember on handling of ICs

(1) Heat Radiation Design

In using an IC with large current flow such as power amp, regulator or driver, please design the device so that heat is appropriately radiated, not to exceed the specified junction temperature (T_J) at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into considerate the effect of IC heat radiation with peripheral components.

(2) Back-EMF

When a motor rotates in the reverse direction, stops or slows down abruptly, a current flow back to the motor's power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the device's motor power supply and output pins might be exposed to conditions beyond maximum ratings. To avoid this problem, take the effect of back-EMF into consideration in system design.

RESTRICTIONS ON PRODUCT USE

060116EBA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
 in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
 TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk, 021023 B
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E