8905

3-PHASE BRUSHLESS DC MOTOR CONTROLLER/DRIVER WITH BACK-EMF SENSING

The A8905CLB isw a three-phase brushless dc motor controller/ driver for use with CD-ROM or DVD drives. The three half-bridge outputs are low on-resistance n-channel DMOS devices capable of driving up to 1.25 A . The A8905CLB provides complete, reliable, self-contained back-EMF sensing motor startup and running algorithms. A programmable digital frequency-locked loop speed control circuit together with the linear current control circuitry provides precise motor speed regulation.

A serial port allows the user to program various features and modes of operation, such as the speed control parameters, startup current limit, sleep mode, diagnostic modes, and others.

APPLICATIONS

- CD-ROMs

■ DVDs

FEATURES

■ DMOS Outputs

- Low $\mathrm{r}_{\mathrm{DS}(\text { on })}$
- Startup Commutation Circuitry
- Back-EMF Commutation Circuitry
- Serial Port Interface
- Frequency-Locked Loop Speed Control
- Tachometer Signal Input
- Programmable Start-Up Current
- Diagnostics Mode
- Sleep Mode
- Linear Current Control
- Internal Current Sensing
- Dynamic Braking Through Serial Port
- Power-Down Dynamic Braking
- System Diagnostics Data Out
- Data Out Ported in Real Time
- Internal Thermal Shutdown Circuitry

FUNCTIONAL BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$

Characteristic	Symbol	Test Conditions	Limits			
			Min.	Typ.	Max.	Units
Logic Supply Voltage	$V_{D D}$	Operating	4.5	5.0	5.5	V
Logic Supply Current	$I_{\text {D }}$	Operating	-	7.5	10	mA
		Sleep Mode	-	-	1.5	mA
Load Supply Voltage	$V_{B B}$	Operating	4.5	-	14	V
Thermal Shutdown	T_{J}		-	165	-	${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hys.	$\Delta \mathrm{T}_{\mathrm{J}}$		-	20	-	${ }^{\circ} \mathrm{C}$

Output Drivers

Output Leakage Current	$\mathrm{I}_{\text {DSX }}$	$\mathrm{V}_{\mathrm{BB}}=14 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=14 \mathrm{~V}$	-	1.0	300	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{BB}}=14 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	-	-1.0	-300	$\mu \mathrm{A}$
Total Output ON Resistance Output Sustaining Voltage	$\begin{gathered} r_{\mathrm{DS}(\text { on })} \\ \mathrm{V}_{\mathrm{DS}(\text { sus })} \end{gathered}$	$\mathrm{I}_{\text {OUT }}=600 \mathrm{MA}$	-	1.1	1.4	Ω
		$\mathrm{V}_{\mathrm{BB}}=14 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=\mathrm{I}_{\text {OUT }}(\mathrm{MAX}), \mathrm{L}=3 \mathrm{mH}$	14	-	-	V
Clamp Diode Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~A}$	-	1.25	1.5	V

Control Logic

Logic Input Voltage	$\mathrm{V}_{\text {IN(0) }}$	INDEX, RESET, CLK,	-0.3	-	1.5	V
	$\mathrm{V}_{\mathrm{IN}(1)}$	CHIP SELECT, OSC, BRAKE	3.5	-	5.3	V
Logic Input Current	$\mathrm{I}_{\mathrm{N}(0)}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	-	-0.5	$\mu \mathrm{A}$
	$\mathrm{I}_{\operatorname{lN}(1)}$	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$	-	-	1.0	$\mu \mathrm{A}$
DATA Output Voltage	$\mathrm{V}_{\text {OUT(0) }}$	$\mathrm{I}_{\text {OUT }}=500 \mu \mathrm{~A}$	-	-	1.5	V
	$\mathrm{V}_{\text {OUT(1) }}$	$\mathrm{l}_{\text {OUT }}=-500 \mu \mathrm{~A}$	3.5	-	-	V
$\mathrm{C}_{\text {ST }}$ Current	$I_{\text {CST }}$	Charging	14	20	28	$\mu \mathrm{A}$
		Discharging	-14	-20	-28	$\mu \mathrm{A}$
$\mathrm{C}_{\text {St }}$ Threshold	$\mathrm{V}_{\text {CSTH }}$		2.1	2.5	2.9	V
	$\mathrm{V}_{\text {CStL }}$		-	500	-	mV
Filter Current	$\mathrm{I}_{\text {FILTER }}$	Charging	7.0	10	15	$\mu \mathrm{A}$
		Discharging	-7.0	-10	-15	$\mu \mathrm{A}$
		Leakage, $\mathrm{V}_{\text {FILTER }}=2.5 \mathrm{~V}$	-	5.0	-	nA
C_{D} Current	$I_{C D}$	Charging	14	22	28	$\mu \mathrm{A}$
		Discharging	-26	-35	-66	$\mu \mathrm{A}$
C_{D} Current Matching	-	$\mathrm{I}_{\text {CD(DISCHRG) }} / \mathrm{I}_{\text {CD(CHRG })}$	1.7	2.2	2.3	-
C_{D} Threshold	V_{CD}		-	2.5	-	V
$\mathrm{C}_{\text {WD }}$ Current	ICWD	Charging	14	22	28	$\mu \mathrm{A}$

8905
 3-PEASE BRUSHLESS DC
 MOTOR CONTROLLERIDRIVER

ELECTRICAL CHARACTERISTICS continued

Characteristic	Symbol	Test Conditions	Limits			
			Min.	Typ.	Max.	Units
C WD Threshold Voltage	V_{TL}		0.80	0.85	0.95	V
			2.4	2.75	3.0	V
Max. FLL Oscillator Frequency	fosc	$\mathrm{V}_{\mathrm{DD}}=5.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	20	-	-	MHz
		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	-	10	-	MHz
Iout(MAX) Accuracy	-	lout $=1 \mathrm{~A}$	-	± 20	-	\%
BRAKE Threshold	$\mathrm{V}_{\text {BRK }}$		1.4	1.7	2.0	V
Transconductance Gain	gm_{m}		0.26	0.35	0.50	A/V
Centertap Resistors	R_{CT}		5.0	10	13	$\mathrm{k} \Omega$
Back-EMF Hysteresis	-	$\mathrm{V}_{\text {bemf }}-\mathrm{V}_{\text {Ctap }}$ at	15	25	40	mV
		FCOM Transition	-15	-25	-40	mV

SERIAL PORT TIMING CONDITIONS

Dwg. WP-019
A. Minimum CHIP SELECT setup time before CLOCK rising edge 100 ns
B. Minimum CHIP SELECT hold time after CLOCK rising edge 150 ns
C. Minimum DATA setup time before CLOCK rising edge 150 ns
D. Minimum DATA hold time after CLOCK rising edge 150 ns
E. Minimum CLOCK low time before CHIP SELECT 50 ns
F. Maximum CLOCK frequency .. 3.3 MHz

TERMINAL FUNCTIONS

Term.	Terminal Name	Function
1	LOAD SUPPLY	V_{BB}; the 5 V or 12 V motor supply.
2	$\mathrm{C}_{\mathrm{D} 2}$	One of two capacitors used to generate the ideal commutation points from the back-EMF zero-crossing points.
3	$\mathrm{C}_{\text {WD }}$	Timing capacitor used by the watchdog circuit to disable the back-EMF comparators during commutation transients, and to detect incorrect motor position.
4	$\mathrm{C}_{\text {ST }}$	Startup oscillator timing capacitor.
5	$\mathrm{OUT}_{\text {A }}$	Power amplifier output A to motor.
6-7	GROUND	Power and logic ground and thermal heat sink.
8	$\mathrm{OUT}_{\text {B }}$	Power amplifier output B to motor.
9	$\mathrm{OUT}_{\mathrm{C}}$	Power amplifier output C to motor.
10	CENTERTAP	Motor centertap connection for back-EMF detection circuitry.
11	$\overline{\text { BRAKE }}$	Active low turns ON all three sink drivers shorting the motor windings to ground. External capacitor and resistor at Brake provide brake delay. The brake function can also be controlled via the serial port.
12	$\mathrm{C}_{\text {RES }}$	External reservoir capacitor used to hold charge to drive the source drivers' gates. Also provides power for brake circuit.
13	FILTER	Analog voltage input to control motor current. Also, compensation node for internal speed control loop.
14	INDEX	External tachometer input.
15	LOGIC SUPPLY	V_{DD}; the 5 V logic supply.
16	OSCILLATOR	Clock input for the speed reference counter. Typical max. frequency is 10 MHz .
17	DATA OUT	Thermal shutdown indicator, FCOM, TACH, or SYNC signals available in real time, controlled by 2-bit multiplexer in serial port.
18-19	GROUND	Power and logic ground and thermal heat sink.
20	RESET	When pulled low forces the chip into sleep mode; clears all serial port bits.
21	$\overline{\text { CHIP SELECT }}$	Strobe input (active low) for data word.
22	CLOCK	Clock input for serial port.
23	DATA IN	Sequential data input for the serial port.
24	$\mathrm{C}_{\mathrm{D} 1}$	One of two capacitors used to generate the ideal commutation points from the back-EMF zero-crossing points.

8905

FUNCTIONAL DESCRIPTION

Power Outputs. The power outputs of the A8905CLB are n -channel DMOS transistors with a total source plus sink $\mathrm{r}_{\mathrm{DS}(\mathrm{on)})}$ of typically 1.1Ω. Internal charge pump boost circuitry provides voltage above supply for driving the high-side DMOS gates. Intrinsic ground clamp and flyback diodes provide protection when switching inductive loads and may be used to rectify motor backEMF in power-down conditions. An external Schottky power diode or pass FET is required in series with the load supply to allow motor backEMF rectification in power-down conditions.

Back-EMF Sensing Motor Startup and

 Running Algorithm. The A8905CLB provides a complete self-contained back-EMF sensing startup and running commutation scheme. The three halfbridge outputs are controlled by a state machine. There are six possible combinations. In each state, one output is high (sourcing current), one low (sinking current), and one is OFF (high impedance or 'Z'). Motor back EMF is sensed at the OFF output. The truth table for the output drivers sequencing is:| Sequencer
 State | OUT $_{\mathbf{A}}$ | OUT $_{\mathbf{B}}$ | $\mathbf{O U T}_{\mathbf{C}}$ |
| :---: | :---: | :---: | :---: |
| 1 | High | Low | Z |
| 2 | Z | Low | High |
| 3 | Low | Z | High |
| 4 | Low | High | Z |
| 5 | Z | High | Low |
| 6 | High | Z | Low |

At startup, the outputs are enabled in one of the sequencer states shown. The back EMF is examined at the OFF output by comparing the output voltage to the motor centertap voltage at CENTERTAP. The motor will then either step forward, step backward, or remain stationary (if in a null-torque position). If the motor moves, the back-EMF detection circuit waits for the correct polarity back-EMF zero crossing (output crossing through centertap). True back-EMF zero crossings are used by the adaptive commutation delay circuit to advance the state sequencer (commutate) at the proper time to synchronously run the motor.

Back-EMF zero crossings are indicated by FCOM, an internal signal that toggles at every zero crossing. FCOM is available at the DATA OUT terminal via the programmable data out multiplexer.

Dwg. WP-016-1
Startup Oscillator. If the motor does not move at the initial startup state, then it is in a null-torque position. In this case, the outputs are commutated automatically by the startup oscillator after a period set by the external capacitor at C_{ST}.

Dwg. WP-020
where

$$
\mathrm{t}_{\mathrm{CST}}=\frac{4\left(\mathrm{~V}_{\mathrm{CSTH}}-\mathrm{V}_{\mathrm{CSTL}}\right) \times \mathrm{C}_{\mathrm{ST}}}{\mathrm{I}_{\mathrm{ST}(\text { charge })}+\mathrm{I}_{\mathrm{ST}(\text { discharge })}}
$$

In the next state, the motor will move, back EMF will be detected, and the motor will accelerate synchronously. Once normal synchronous back-EMF commutation occurs, the startup oscillator is defeated by pulses of pulldown current at C_{ST} at each commutation, which prevents C_{ST} from reaching its upper threshold and thus completing a cycle and commutating.

Adaptive Commutation Delay. The adaptive commutation delay circuit uses the back-EMF zero-crossing indicator signal (FCOM) to determine an optimal commutation time for efficient synchronous operation. This circuit commutates the outputs, delayed from the last zero crossing, using two external timing capacitors, $C_{D 1}$ and $C_{D 2}$, to measure the time between crossings.

where

$$
\mathrm{t}_{\mathrm{CD}}=\mathrm{t}_{\mathrm{FCOM}} \mathrm{X} \frac{\mathrm{I}_{\mathrm{CD}(\text { charge }),}}{\left[\mathrm{I}_{\mathrm{CD}(\text { discharge })}\right]}
$$

$\mathrm{C}_{\mathrm{D} 1}$ charges up with a fixed current from its 2.5 V reference while FCOM is high. When FCOM goes low at the next zero crossing, $C_{D 1}$ is discharged at approximately twice the charging current. When CD_{1} reaches the CD threshold, a commutation occurs. $C_{D 2}$ operates similarly except on the opposite phase of FCOM. Thus the commutations occur approximately halfway between zero crossings. The actual delay is slightly less than halfway to compensate for electrical delays in the motor, which improves efficiency.

Because the commutation-delay capacitors are adaptive in nature, the absolute value and tolerance is not critical. In choosing these
capacitors, the voltage excursion should be 1.5 V to 2.5 V at rated speed. Solving for C in the equation $\mathrm{I}=\mathrm{Cdv} / \mathrm{dt}$, where $\mathrm{dv}=2.5 \mathrm{~V}, \mathrm{I}=22 \mu \mathrm{~A}$, and

$$
\mathrm{dt}=\mathrm{t}_{\mathrm{FCOM}}=\frac{20 / \mathrm{RPM}}{\# \text { motor poles }}
$$

Use of a capacitor slightly greater than this value will ensure that the commutation delay capacitors never charge to the high rail.

Blanking and Watchdog Timing Functions. The blanking and watchdog timing functions are derived from one timing capacitor, C_{WD}.

$$
\begin{array}{ll}
\text { where } & \mathrm{t}_{\mathrm{BLANK}}=\frac{\mathrm{V}_{\mathrm{TL}} \times \mathrm{C}_{\mathrm{WD}}}{\mathrm{I}_{\mathrm{CWD}}} \\
\text { and } & \mathrm{t}_{\mathrm{WD}}=\frac{\mathrm{V}_{\mathrm{TH}} \times \mathrm{C}_{\mathrm{WD}}}{\mathrm{I}_{\mathrm{CWD}}}
\end{array}
$$

The CWD capacitor begins charging at each commutation, initiating the BLANK signal. BLANK is an internal signal that inhibits the back-EMF comparators during the commutation transients, preventing errors due to inductive recovery and voltage settling transients.


```
8905
3-PHASE BRUSHLESS DC
MOTOR CONTROLLERIDRIVER
```

The watchdog timing function allows time to detect correct motor position by checking the back-EMF polarity after each commutation. If the correct polarity is not observed between $\mathrm{t}_{\text {BLANK }}$ and t_{WD}, then the watchdog timer commutates the outputs to the next state to synchronize the motor. This function is useful in preventing excessive reverse rotation, and helps in resynchronizing (or starting) with a moving spindle.

Current Control. The A8905CLB provides linear current control via the FILTER terminal, an analog voltage input. Maximum current limit is also provided, and is controlled in four steps via the serial port. Output current is sensed via an internal sense resistor $\left(\mathrm{R}_{\mathrm{S}}\right)$. The voltage across the sense resistor is compared to one-tenth the voltage at the FILTER terminal less two diode drops, or to the maximum current limit reference, whichever is lower. This transconductance function is $\mathrm{I}_{\mathrm{OUT}}=\left(\mathrm{V}_{\text {FILTER }}-2 \mathrm{~V}_{\mathrm{D}}\right) / 10 \mathrm{R}_{\mathrm{S}}$, where R_{S} is nominally 0.3Ω and V_{D} is approximately 0.7 V .

Speed Control. The A8905CLB includes a frequency-locked loop speed control system. This system monitors motor speed via internal or external digital tachometer signals, generates a precision speed reference, determines the digital speed error, and corrects the motor current via an internal charge pump and external filtering components on the FILTER terminal.

A once-per-revolution TACH signal can be generated by counting cycles of FCOM (the number of motor poles must be selected via the serial port). TACH is then a jitter-free signal that toggles once per motor revolution. The rising edge of TACH triggers REF, a precision speed reference derived by a programmable counter. The duration of REF is set by programming the counter to count the desired number of OSC cycles

$$
\begin{aligned}
& \text { desired } \\
& \text { total count }
\end{aligned}=\frac{60 \times \mathrm{f}_{\mathrm{OSC}}}{\text { desired motor speed (rpm) }}
$$

where the total count (number of oscillator cycles) is equal to the sum of the selected (programmed low) count numbers corresponding to bits D5 through D18.

The speed error is detected as the difference in falling edges of TACH and REF. The speed error signals control the error-correcting charge pump on the FILTER terminal, which drive the external loop compensation components to correct the motor current.

Index. An external tachometer signal may be used to create the TACH signal, rather than the internally derived once around. To use this mode, the signal is input to the INDEX terminal, and the index mode must be enabled via the serial port. When Switching from the once-around mode to index mode, it is important to monitor the SYNC signal on DATA OUT, and switch modes only when SYNC is low. This ensures making the transition without disturbing the speed control loop. The speed reference counter should be reprogrammed at the same time.

Speed Loop Initialization (YANK). To improve the acquire time of the speed control loop, there is an automatic feature controlled by an internal YANK signal. The motor is started at the maximized programmed current by bypassing the FILTER terminal. The FILTER terminal is clamped to two diodes above ground, initializing it near the closed loop operating point. YANK is enabled at startup and stays high until the desired speed is reached. Once the first error-fast occurs, indicating the motor crossed through the desired speed, YANK goes low. This releases the clamp on the FILTER terminal and current control is returned to FILTER. This feature optimizes speed
acquire and minimizes settling. The Current Control Block Diagram illustrates the YANK signal and its effects.

Braking. A dynamic braking feature of the A8905CLB shorts the three motor windings to ground. This is accomplished by turning the three source drivers OFF and the three sink drivers ON. Activation of the brake can be implemented through the BRAKE input or through the D 2 bit in the serial port. The supply voltage for the brake circuitry is the $\mathrm{C}_{\text {RES }}$ voltage, allowing the brake function to remain active after power failure. Power-down braking with delay can be implemented by using an external RC and other components to control the brake terminal, as shown. Brake delay can be set using the equation below to ensure that voice-coil head retract occurs before the spindle motor brake is activated. Once the brake is activated, due to the inherent capacitive input, the three sink drivers will remain active until the device is reset.

$$
\mathrm{t}_{\mathrm{BRK}}=\mathrm{R}_{\mathrm{B}} \mathrm{C}_{\mathrm{B}}\left(1-1_{\mathrm{n}} \frac{\mathrm{~V}_{\mathrm{BRK}}}{\mathrm{~V}_{\mathrm{FAULT}}-\mathrm{V}_{\mathrm{D}}}\right)
$$

SERIAL PORT BIT DEFINITIONS

D0- \quad Sleep/Run Mode; LOW = Sleep, $\mathrm{HIGH}=$ Run This bit allows the device to be powered down when not in use.

D1- \quad Step Mode; LOW = Normal Operation, $\mathrm{HIGH}=$ Step Only When in the step-only mode the back-EMF commutation circuitry is disabled and the power outputs are commutated by the start-up oscillator. This mode is intended for device and system testing.

D2- Brake; LOW = Run, $\mathrm{HIGH}=$ Brake .
D3 and D4-These two bits set the output current limit:

D3	D4	Current Limit
0	0	Saturated
0	1	1 A
1	0	800 mA
1	1	600 mA

D5 thru D18-This 14-bit word (active low) programs the REF time to set desired motor speed.

Bit Number	Count Number
D5	16
D6	32
D7	64
D8	128
D9	256
D10	512
D11	1024
D12	2048
D13	4096
D14	8192
D15	16384
D16	32768
D17	65536
D18	131072

D19-Speed-control mode switch; LOW = internal once-around speed signal, HIGH = external index data.

D20 and D21-These bits program the number of motor poles for the once-around FCOM counter:

D20	D21	Motor Poles
0	0	8
0	1	-
1	0	16
1	1	12

D22 and D23-Control the multiplexer for DATA OUT:

D22	D23	Data Out
0	0	TACH (once around or index)
0	1	Thermal Shutdown
1	0	SYNC
1	1	FCOM

Dimensions in Inches

(for reference only)

Dimensions in Millimeters
(controlling dimensions)

NOTES: 1. Webbed lead frame. Leads $6,7,18$, and 19 are internally one piece.
2. Lead spacing tolerance is non-cumulative.
3. Exact body and lead configuration at vendor's option within limits shown.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of its products.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

