DATA SHEET

Part No.	AN44063A
Package Code No.	SSOP032-P-0300B

Contents

Overview 3
Features 3

- Applications 3
Package 3
Type 3
Block Diagram 4
Application Circuit Example 5
Pin Descriptions 6
Absolute Maximum Ratings 7
Operating Supply Voltage Range 7
Electrical Characteristics 8
- Technical Data 10

AN44063A

Driver IC for Stepping Motor

Overview

AN44063A is a two channels H-bridge driver IC.Bipolar stepping motor can be controlled by a single driver IC.
2-phase,1-2 (type 2) phase, W1-2 phase can be selected.

Features

- 4-phase input (W 1- and 2-phase excitation enabled; exclusive OR function incorporated for simultaneous-ON prevention)
- Built-in CR chopping (with frequency selected)
- Built-in thermal protection and low voltage detection circuit
- Built-in 5 V power supply

Applications

- IC for stepping motor drives

Package

- 32-pin plastic shrink small outline package (SSOP type)

Type

- Silicon monolithic Bi-CDMOS IC

Block Diagram

Application Circuit Example

Pin Descriptions

Pin No.	Pin name	Type	Description
1	VM1	Power supply	Motor power supply 1
2	N.C.	-	N.C.
3	BOUT2	Output	Phase B motor drive output 2
4	N.C.	-	N.C.
5	RCSB	Input / Output	Phase B current detection
6	N.C.	-	N.C.
7	BOUT1	Output	Phase B motor drive output 1
8	N.C.	-	N.C.
9	AOUT2	Output	Phase A motor drive output 2
10	N.C.	-	N.C.
11	RCSA	Input / Output	Phase A current detection
12	N.C.	-	N.C.
13	AOUT1	Output	Phase A motor drive output 1
14	N.C.	-	N.C.
15	VM2	Power supply	Motor power supply 2
16	VPUMP	Output	Charge Pump circuit output
17	BC2	Output	Charge Pump capacitor connection 2
18	BC1	Output	Charge Pump capacitor connection 1
19	VREFA	Input	Phase A torque reference voltage input
20	VREFB	Input	Phase B torque reference voltage input
21	VCC	Power supply	Signal power supply
22	S5 VOUT	Output	Internal reference voltage (5-V output)
23	GND	Ground	Signal ground
24	PWMSW	Input	PWM frequency selection input
25	PHA1	Input	Phase A phase selection input
26	PHB1	Input	Phase B phase selection input
27	IN0	Input	Phase A output torque control 1
28	IN1	Input	Phase A output torque control 2
29	IN2	Input	Phase B output torque control 1
30	IN3	Input	Phase B output torque control 2
31	ENABLEA	Input	Phase A/B Enable/Disable CTL
32	TJMON	Output	VBE monitor use

Absolute Maximum Ratings

A No.	Parameter	Symbol	Rating	Unit	Note
1	Supply voltage (pin 1, pin 15)	V_{M}	37	V	${ }^{\prime} 1$
2	Supply voltage2 (pin 21)	V_{CC}	-0.3 to +6	V	$* 1$
3	Power dissipation	P_{D}	0.427	W	$* 2$
4	Operating ambient temperature	$\mathrm{T}_{\text {opr }}$	-20 to +70	${ }^{\circ} \mathrm{C}$	$* 3$
5	Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$	$* 3$
6	Output pin voltage (pin 3, pin 7, pin 9, pin 13)	$\mathrm{V}_{\text {OUT }}$	37	V	$* 1$
7	Motor drive current (pin 3, pin 7, pin 9, pin 13)	$\mathrm{I}_{\text {OUT }}$	± 0.8	A	$* 1$
8	Flywheel diode current (pin 3, pin 7, pin 9, pin 13)	I_{f}	0.8	A	$* 1$

Note) *1: Do not apply current or voltage from outside to any pin not listed above.
In the circuit current, $(+)$ means the current flowing into IC and $(-)$ means the current flowing out of IC.
*2: The power dissipation is the value of a discrete IC package without a heat sink at $T_{a}=70^{\circ} \mathrm{C}$.
*3: Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$.

Operating Supply Voltage Range

Parameter	Symbol	Range	Unit	Note
Supply voltage range 1	V_{M}	16.0 to 34.0	V	$*$
Supply voltage range 2	V_{CC}	4.5 to 5.5	V	$*$

Note) *: The values are under the condition not exceeding the above absolute maximum ratings and the power dissipation.

Electrical Characteristics at $\mathrm{V}_{\mathrm{M}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
Note) $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ unless otherwise specified.

$\begin{gathered} \text { B } \\ \text { No. } \end{gathered}$	Parameter	Symbol	Test circuits	Conditions	Limits			Unit	Note
					Min	Typ	Max		
Output Drivers									
1	High-level output saturation voltage	V_{OH}	3	$\mathrm{I}=-0.5 \mathrm{~A}$	$\mathrm{V}_{\mathrm{M}}-0.47$	$\mathrm{V}_{\mathrm{M}}-0.31$	-	V	-
2	Low-level output saturation voltage	$\mathrm{V}_{\text {OL }}$	3	$\mathrm{I}=0.5 \mathrm{~A}$	-	0.47	0.71	V	-
3	Flywheel diode forward voltage	$\mathrm{V}_{\text {DI }}$	4	$\mathrm{I}=0.5 \mathrm{~A}$	0.5	1.0	1.5	V	-
4	Output leakage current 1	$\mathrm{I}_{\text {LEAK1 }}$	1	$\begin{aligned} & \mathrm{V}_{\mathrm{M}}=\mathrm{V}_{\mathrm{OUT}}=37 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{RCS}}=0 \mathrm{~V} \end{aligned}$	-	10	50	$\mu \mathrm{A}$	-
5	Supply current (with two circuits turned off)	I_{M}	1	ENABLEA $=5 \mathrm{~V}$	-	4	6	mA	-
I/O Block									
6	Supply current(with two circuits turned off)	$\mathrm{I}_{\text {CC }}$	1	ENABLEA $=5 \mathrm{~V}$	-	1.4	2.2	mA	-
7	High-level IN input voltage	$\mathrm{V}_{\text {INH }}$	1	-	2.2	-	V_{CC}	V	-
8	Low-level IN input voltage	$\mathrm{V}_{\text {INL }}$	1	-	0	-	0.6	V	-
9	High-level IN input current	$\mathrm{I}_{\text {INH }}$	1	$\mathrm{IN} 0=\mathrm{IN} 1=\mathrm{IN} 2=\mathrm{IN} 3=5 \mathrm{~V}$	-10	-	10	$\mu \mathrm{A}$	-
10	Low-level IN input current	$\mathrm{I}_{\text {INL }}$	1	$\mathrm{IN} 0=\mathrm{IN} 1=\mathrm{IN} 2=\mathrm{IN} 3=0 \mathrm{~V}$	-15	-	15	$\mu \mathrm{A}$	-
11	High-level PHA1/PHB1 input voltage	$\mathrm{V}_{\text {PHAH }}$ $\mathrm{V}_{\text {PHBH }}$	1	-	2.2	-	$\mathrm{V}_{\text {CC }}$	V	-
12	Low-level PHA1/PHB1 input voltage	$\mathrm{V}_{\text {PhaL }}$ $V_{\text {PHBL }}$	1	-	0	-	0.6	V	-
13	High-level PHA1/PHB1 input current	$\mathrm{I}_{\text {PHAH }}$ $\mathrm{I}_{\text {PHBH }}$	1	PHA $1=\mathrm{PHB} 1=5 \mathrm{~V}$	25	50	100	$\mu \mathrm{A}$	-
14	Low-level PHA1/PHB1 input current	$\mathrm{I}_{\text {PHAL }}$ $\mathrm{I}_{\text {PHBL }}$	1	PHA1 $=$ PHB1 $=0 \mathrm{~V}$	-15	-	15	$\mu \mathrm{A}$	-
15	High-level ENABLEA input voltage	$\mathrm{V}_{\text {Enableah }}$	1	-	2.2	-	V_{CC}	V	-
16	Low-level ENABLEA input voltage	$\mathrm{V}_{\text {Enableal }}$	1	-	0	-	0.6	V	-
17	High-level ENABLEA input current	$\mathrm{I}_{\text {Enableah }}$	1	ENABLEA $=5 \mathrm{~V}$	-10	-	10	$\mu \mathrm{A}$	-
18	Low-level ENABLEA input current	$\mathrm{I}_{\text {Enableal }}$	1	ENABLEA $=0 \mathrm{~V}$	-15	-	15	$\mu \mathrm{A}$	-
19	High-level PWMSW input voltage	$\mathrm{V}_{\text {PWMSWH }}$	2	-	2.2	-	V_{CC}	V	-
20	Low-level PWMSW input voltage	$\mathrm{V}_{\text {PWMSWL }}$	2	-	0	-	0.6	V	-
21	High-level PWMSW input current	$\mathrm{I}_{\text {PWMSWH }}$	1	$P W M S W=5 \mathrm{~V}$	25	50	100	$\mu \mathrm{A}$	-
22	Low-level PWMSW input current	$\mathrm{I}_{\text {PWMSWL }}$	1	PWMSW $=0 \mathrm{~V}$	-15	-	15	$\mu \mathrm{A}$	-

Panasonic

Electrical Characteristics at $\mathrm{V}_{\mathrm{M}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
Note) $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ unless otherwise specified.

$\begin{gathered} \text { B } \\ \text { No. } \end{gathered}$	Parameter	Symbol	Test circuits	Conditions	Limits			Unit	Note
					Min	Typ	Max		
Torque Control Block									
23	Input bias current	$\mathrm{I}_{\text {REFA }}$ $\mathrm{I}_{\text {Refb }}$	1	$\begin{aligned} & \mathrm{V}_{\mathrm{REFA}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{REFB}}=5 \mathrm{~V} \\ & \hline \end{aligned}$	70	100	130	$\mu \mathrm{A}$	-
24	PWM frequency1	$\mathrm{f}_{\text {PWM1 }}$	2	PWMSW $=0 \mathrm{~V}$	34	52	70	kHz	-
25	PWM frequency2	$\mathrm{f}_{\text {PWM2 }}$	2	PWMSW $=5 \mathrm{~V}$	17	26	35	kHz	-
26	Pulse blanking time	T_{B}	2	$\mathrm{V}_{\text {REFA }}=\mathrm{V}_{\text {REFB }}=0 \mathrm{~V}$	0.38	0.75	1.12	$\mu \mathrm{s}$	-
27	Cmp threshold H (100\%)	VT_{H}	1	$\begin{aligned} & \mathrm{IN} 0=\mathrm{IN} 1=0 \mathrm{~V} \\ & \mathrm{IN} 2=\mathrm{IN} 3=0 \mathrm{~V} \end{aligned}$	475	500	525	mV	-
28	Cmp threshold C (67\%)	VT_{C}	1	$\begin{aligned} & \mathrm{IN} 0=5 \mathrm{~V}, \mathrm{IN} 1=0 \mathrm{~V} \\ & \mathrm{IN} 2=5 \mathrm{~V}, \mathrm{IN} 3=0 \mathrm{~V} \end{aligned}$	308	333	359	mV	-
29	Cmp threshold L (33\%)	VT_{L}	1	$\begin{aligned} & \mathrm{IN} 0=0 \mathrm{~V}, \mathrm{IN} 1=5 \mathrm{~V} \\ & \mathrm{IN} 2=0 \mathrm{~V}, \mathrm{IN} 3=5 \mathrm{~V} \end{aligned}$	151	167	184	mV	-
Reference Voltage Block									
30	Reference voltage	$\mathrm{V}_{\text {S5 Vout }}$	1	$\mathrm{I}_{\text {S } \text { VOUT }}=-2.5 \mathrm{~mA}$	4.5	5.0	5.5	V	-
31	Output impedance	$\mathrm{Z}_{\text {S5 Vout }}$	1	$\mathrm{I}_{\text {S } ~ \text { vout }}=-5 \mathrm{~mA}$	-	18	27	Ω	-

Technical Data

- Control mode

Truth table

ENABLEA	PHA1/PHB1	AOUT1/BOUT1	AOUT2/BOUT2
"L"	"H"	"H"	"L"
"L"	"L"	"L"	"H"
"H"	-	OFF	OFF

INO/IN2	IN1/IN3	Output Current
"L"	"L"	$($ VREF $/ 10) \times(1 / \mathrm{Rs})=\mathrm{I}_{\text {OUT }}$
"H"	"L"	$($ VREF $/ 10) \times(1 / \mathrm{Rs}) \times(2 / 3)=\mathrm{I}_{\text {OUT }}$
"L"	"H"	$(\mathrm{VREF} / 10) \times(1 / \mathrm{Rs}) \times(1 / 3)=\mathrm{I}_{\text {OUT }}$
"H"	"H"	0

Note) 1. Rs: current detection region
2. When ENABLEA $=$ "H" or $\mathrm{IN} 0=\mathrm{IN} 1=$ "H"/IN2 $=\mathrm{IN} 3=$ "H", all output transistors switch off at the same time.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

(1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
(2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
(3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
(4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
(5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
(7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.

