

Preliminary Data Sheet No. PD60083-K

(NOTE: For new designs, we recommend the IR53H(D)420-P)

IR51H(D)224 IR51H(D)320 IR51H(D)420

SELF-OSCILLATING HALF BRIDGE

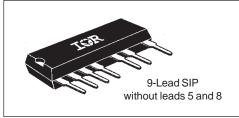
Features

- Output Power MOSFETs in half-bridge configuration
- High side gate drive designed for bootstrap operation
- Bootstrap diode integrated into package (HD type)
- Accurate timing control for both Power MOSFETs Matched delay to get 50% duty cycle Matched deadtime of 1.2us
- Internal oscillator with programmable frequency

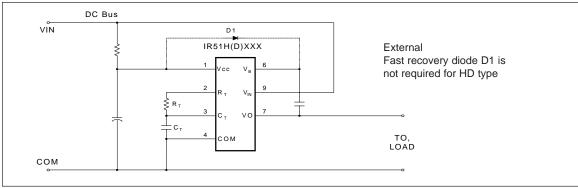
$$f = \frac{1}{1.4 \times (\mathsf{R}\mathsf{T} + 75\Omega) \times \mathsf{C}\mathsf{T}}$$

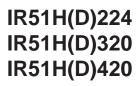
- 15.6V Zener clamped Vcc for offline operation
- Half-bridge output is out of phase with RT
- Micropower startup

Description


The IR51H(D)XXX are complete high voltage, high speed, selfoscillating half-bridge circuits. Proprietary HVIC and latch immune CMOS technologies, along with the HEXFET[®] power MOSFET technology, enable ruggedized single package construction. The front-end features a programmable oscillator which functions similar to the CMOS 555 timer. The supply to the control circuit has a zener clamp to simplify offline operation. The output features two HEXFETs in a half-bridge configuration with an internally set deadtime designed for minimum cross-conduction in the half-bridge. Propagation delays for the high and low side

Typical Connection


Product Summary


VIN (max)	250V (IR51H(D)224) 400V (IR51H(D)320) 500V (IR51H(D)420)
Duty Cycle	50%
Deadtime	1.2µs
R _{ds(on)}	1.1Ω (IR51H(D)224) 3.0Ω (IR51H(D)320) 3.6Ω (IR51H(D)420)
$P_D(T_A=2)$	5oC) 2.0W

Package

power MOSFETs are matched to simplify use in 50% duty cycle applications. The device can operate up to 500 volts.

International

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Minimum	Maximum	Units
V _{IN}	High voltage supply	-224	- 0.3	250	
		-320	- 0.3	400	
		-420	- 0.3	500]
VB	High side floating supply		Vo - 0.3	Vo +2.5	V
Vo	Half-bridge output		-0.3	V _{IN} + 0.3	
V _{RT}	R _T voltage		- 0.3	V _{cc} + 0.3	
V _{CT}	C _T voltage		- 0.3	V _{cc} + 0.3	
I _{cc}	Supply current (note 1)		—	25	mA
I _{RT}	R _T output current		- 5	5	
dV/dt	Peak diode recovery		—	3.5	V/ns
PD	Package power dissipation @ T _A ≤ +25°C		—	2.00	W
Rth _{JA}	Thermal resistance, junction to ambient		—	60	°C/W
TJ	Junction temperature		-55	150	
Ts	Storage temperature		-55	150	°C
TL	Lead temperature (soldering, 10 seconds)		—	300	Ţ

NOTE 1:

This IC contains a zener clamp structure between V_{CC} and COM which has a nominal breakdown voltage of 15.6V. Please note that this supply pin should not be driven by a DC, low impedance power source greater than the V_{CLAMP} specified in the Electrical Characteristics Section

IR51H(D)224 IR51H(D)320 IR51H(D)420

Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation, the device should be used within the recommended conditions.

Symbol	Definition		Minimum	Maximum	Units
VB	High side floating supply absolute voltage	V ₀ + 10			
V _{IN}	High voltage supply	-224	—	Vo + Vclamp 250	
		-320	_	400	V
		-420	—	500	
Vo	Half-bridge output voltage		-3.0 (note 2)	V _{IN}	
I _D	Continuous drain current (T _A = 25°C)	-224		1.1	
		-320	—	0.9	
		-420	_	0.7	А
	(T _A = 85°C)	-224	_	0.7	
		-320		0.6	
		-420		0.5	
I _{CC}	Supply current		(note 3)	5	mA
T _A	Ambient temperature		-40	125	°C

NOTE 2:

Care should be taken to avoid switching conditions where the VS node flies inductively below ground by more than 5V.

NOTE 3:

Enough current should be supplied to the V_{CC} lead of the IC to keep the internal 15.6V zener diode clamping the voltage at this lead.

Dynamic Electrical Characteristics

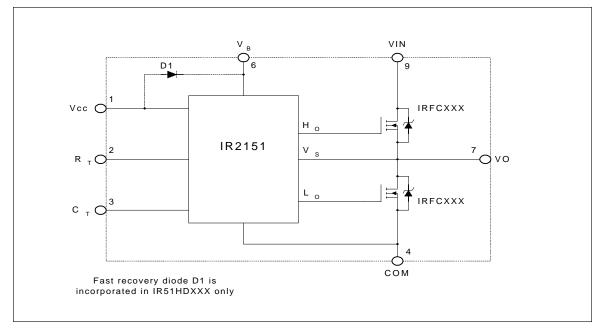
 V_{BIAS} (V_{CC}, V_{BS}) = 12V, T_A = 25°C unless otherwise specified.

Symbol	Definition		Min.	Тур.	Max.	Units	Test Con	ditions
t _{rr}	Reverse recovery time (MOSFET body diode)	-224	_	200	_		I _F =1.1A	
	_	-320	—	270	—	ns	IF=900mA	di/dt
	_	-420	_	240	—		I _{F=700mA}	
Qrr	Reverse recovery charge (MOSFET body diode)	-224	—	0.7	_		I _F =1.1A	=100
	_	-320	_	0.6	—	μC	I _F =900mA	A/μs
	-	-420	—	0.5	—		I _F =700mA	
D	R _T duty cycle		—	50	—	%	fosc = 20	kHz

IR51H(D)224 IR51H(D)320 IR51H(D)420

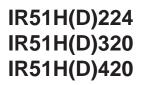
(NOTE: For new designs, we recommend the IR53H(D)420-P)

International **TOR** Rectifier

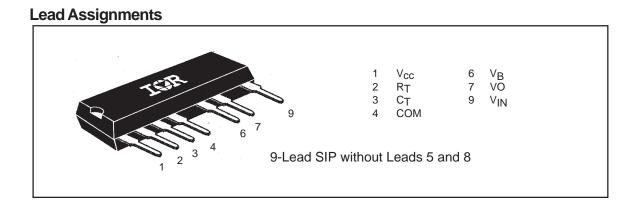

Static Electrical Characteristics

 V_{BIAS} (V_{CC}, V_B) = 12V, T_A = 25°C unless otherwise specified.

Symbol	Definition		Min.	Тур.	Max.	Units	Test Cond	ditions
V _{CCUV+}	V _{cc} supply undervoltage positive going			8.4		V		
	threshold							
VCCUV-	V _{CC} supply undervoltage negative going			8.0	<u> </u>	V		
	threshold							
lqcc	Quiescent V _{CC} supply current			300	—	μA	$V_{CC} > V_{CC}$	UV
VCLAMP	V _{CC} zener shunt clamp voltage		_	15.6		V	$I_{CC} = 5mA$	
I _{QBS}	Quiescent V _{BS} supply current		—	30	_			
los	Offset supply leakage current		—	—	50	μA	$V_B = V_{IN} =$	500V
fosc	Oscillator frequency		—	20	-		R _T = 35.7 l	kΩ
						kHz	$C_T = 1 nF$	
			—	100	-		$R_{T} = 7.04$	
							$C_T = 1 nF$	2
ICT	C _T input current			0.001	1.0	μA		
Vстиv	C _T undervoltage lockout		_	100			Note 2	
V _{RT+}	R_T high level output voltage, V_{CC} - R_T		—	20	-		I _{RT} = 100μ	
				200	<u> </u>	mV	$I_{RT} = -1mA$	
V _{RT-}	R _T low level output voltage		-	20	-		I _{RT} = 100μ	
				200		1	$I_{RT} = -1mA$	i.
V _{RTUV}	R _T undervoltage lockout, V _{CC} - R _T		<u> </u>	100			I _{RT} = 100μ	A
V _{CT+}	2/3 V _{CC} threshold			8.0		kHz		
V _{CT-}	1/3 V _{CC} threshold		—	4.0	-	KI IZ		
Rds(on)	Static-drain-to-source on-resistance	-224	-	1.1	_		I _F =1.1A	
		-320	_	1.8	_	Ω	I _{F=900mA}	di/dt
		-420	—	3.0	_	1	I _{F=700mA}	400
VSD	Diode forward voltage	-224	—	0.85	_		I _F =1.1A	=100
		-320	_	0.7		V	IF=900mA	A/μs
		-420	_	0.8	_		I _F =700mA	


IR51H(D)224 IR51H(D)320 IR51H(D)420

Functional Block Diagram



Lead Definitions

Symbol	Lead Description
V _{cc}	Logic and internal gate drive supply voltage. An internal zener clamp diode at 15.6 V norminal is included to allow the V_{CC} to be current fed directly from VIN typically by means of a high value resistor.
R _T	Oscillator timing resistor output; a resistor is connected from R_T to C_T . RT is out of phase with the half- bridge output (VO).
C _T	Oscillator timing capacitor input; a capacitor is connected from C_T to COM in order to program the oscillator frequency according to the following equation: $f = \frac{1}{1}$
	$f = \frac{1}{1.4 \times (RT + 75\Omega) \times CT}$
	C_T PIN also invokes shutdown function (see note 2) where 75 Ω is the effective impedence of the R_T output stage.
V _B	High side gate drive floating supply. For bootstrap operation a high voltage fast recovery diode is needed to feed from V_{CC} to V_{B} . (HD type circuits incorporate this diode).
V _{IN}	High voltage supply
VO	Half Bridge output
СОМ	Logic and low side of half bridge return

International **TOR** Rectifier

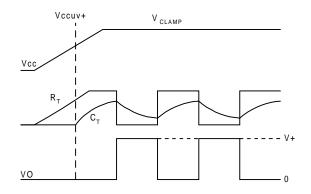
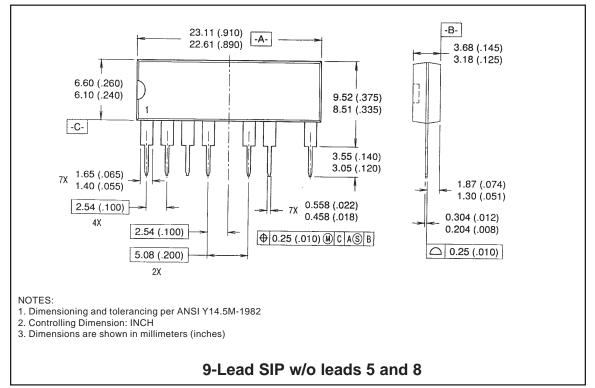



Figure 1. Input/Output Timing Diagram

IR51H(D)224 IR51H(D)320 IR51H(D)420

Case outline

International WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 http://www.irf.com/ Data and specifications subject to change without notice. 5/14/2001