Self-Protected High Side Driver with Temperature and Current Limit

The NCV8450 is a fully protected High–Side Smart Discrete device with a typical $R_{DS(on)}$ of 1.0 Ω and an internal current limit of 0.8 A typical. The device can switch a wide variety of resistive, inductive, and capacitive loads.

Features

- Short Circuit Protection
- Thermal Shutdown with Automatic Restart
- Overvoltage Protection
- Integrated Clamp for Inductive Switching
- Loss of Ground Protection
- ESD Protection
- Slew Rate Control for Low EMI
- Very Low Standby Current
- AEC-Q100/101 qualified
- This is a Pb–Free Device

Typical Applications

- Automotive
- Industrial

PRODUCT SUMMARY

Symbol	Characteristics	Value	Unit
V _{IN_CL}	Overvoltage Protection	54	V
V _{D(on)}	Operation Voltage	4.5 – 45	V
R _{on}	On-State Resistance	1.0	Ω

ON Semiconductor®

http://onsemi.com

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

Figure 1. Block Diagram

PACKAGE PIN DESCRIPTION

Pin #	Symbol	Description		
1	IN	Control Input, Active Low		
2	VD	Supply Voltage		
3	OUT	Output		
4	V _D	Supply Voltage		

MAXIMUM RATINGS

Rating	Symbol	Min	Мах	Unit
DC Supply Voltage (Note 1)	V _D	-16	45	V
Peak Transient Input Voltage (Note 2) (Load Dump 67.5 V, $V_D = 24$ V, ISO7637–2 Pulse 5)	V _{peak}		TBD	V
Input Current	l _{in}	-15	15	mA
Output Current (Note 1)	l _{out}		Internally Limited	А
Power Dissipation Tc=25°C (Note 2)	P _{tot}		W	
Electrostatic Discharge (Note 2) (Human Body Model (HBM) 100 pF/1500 Ω) Input All other			1 5	kV
Single Pulse Inductive Load Switching Energy (Note 2) $(V_{DD} = 13.5 \text{ V}, I_L = 465 \text{ mApk}, L = 200 \text{ mH}, T_{JStart} = 150^{\circ}\text{C}$	E _{AS}		29	mJ
Operating Junction Temperature	TJ	-40	+150	°C
Storage Temperature	T _{storage}	-55	+150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.1. Reverse Output current has to be limited by the load to stay within absolute maximum ratings and thermal performance.

2. Not subjected to production testing.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max Value	Unit
Thermal Resistance (Note 3) Junction-to-Ambient (Minimum Pad) Junction-to-Ambient (1 in square pad size, FR-4, 1 oz Cu)	R _{thJL} R _{thJA}	110 78.3	K/W

3. Not subjected to production testing.

Figure 2. Applications Test Circuit

ELECTRICAL CHARACTERISTICS (6 \leq V_D \leq 45 V; -40°C <T_J < 150°C unless otherwise specified)

				Value			
Rating	Symbol	Conditions	Min	Тур	Max	Unit	
OUTPUT CHARACTERISTICS							
Operating Supply Voltage	V _{SUPPLY}		4.5	-	45	V	
On Resistance (Pin 1 Connected to GND)	R _{ON}	$\begin{array}{l} T_{\rm J} = 25^{\circ}{\rm C} \ , \ I_{\rm OUT} = 150 \ \text{mA}, \ V_{\rm D} = 7 \ \text{V} - 45 \ \text{V} \\ T_{\rm J} = 150^{\circ}{\rm C}, \ I_{\rm OUT} = 150 \ \text{mA}, \ V_{\rm D} = 7 \ \text{V} - 45 \ \text{V} \\ (\text{Note } 4) \\ T_{\rm J} = 25^{\circ}{\rm C} \ , \ I_{\rm OUT} = 150 \ \text{mA}, \ V_{\rm D} = 6 \ \text{V} \end{array}$		1.0 1.4 1.1	2 3 2.1	Ω	
Standby Current (Pin 1 Open)	Ι _D	$V_{D} \le 20 \text{ V}$ $V_{D} > 20 \text{ V}$		0.6	10 100	μΑ	
INPUT CHARACTERISTICS		-					
Input Current – Off State	I _{IN_OFF}	$V_{OUT} \le 0.1 \text{ V}, \text{ R}_{L} = 270 \Omega, \text{ T}_{J} = 25^{\circ}\text{C}$ $V_{OUT} \le 0.1 \text{V}, \text{ R}_{L} = 270 \Omega, \text{ T}_{J} = 150^{\circ}\text{C}$ (Note 4)	-50 -40			μΑ	
Input Current – On State (Pin 1 Grounded)	I _{IN_ON}			1.5	3	mA	
Input Resistance (Note 4)	R _{IN}			1		kΩ	
SWITCHING CHARACTERISTICS							
Turn–On Time (Note 5) ($V_{IN} = V_D$ to 0 V) to 90% V_{OUT}	t _{ON}	R_L = 270 Ω (Note 4) V_D = 13.5 V, R_L = 270 $\Omega,~T_J$ = 25°C		30	125 100	μs	
Turn–Off Time (Note 5) $(V_{IN} = 0 \text{ V to } V_D)$ to 10% V_{OUT}	tOFF	R _L = 270 Ω (Note 4) V _D = 13.5 V, R _L = 270 Ω, T _J = 25°C		60	175 150	μs	
Slew Rate On (Note 5) ($V_{IN} = V_D$ to 0V) 10% to 30% V_{OUT}	dV/dt _{ON}	$\label{eq:VD} \begin{array}{l} R_L = 270 \ \Omega \ (\text{Note 4}) \\ V_D = 13.5 \ V, \ R_L = 270 \ \Omega, \ T_J = 25^\circ\text{C} \end{array}$		0.7	4 4	V/µs	
Slew Rate Off (Note 5) $(V_{IN} = 0 \text{ V to } V_D) 70\% \text{ to } 40\% V_{OUT}$	dV/dt _{OFF}	R_L = 270 Ω (Note 4) V_D = 13.5 V, R_L = 270 $\Omega,~T_J$ = 25°C		0.9	4 4	V/µs	
OUTPUT DIODE CHARACTERIST	TICS (Note 4)				L		
Drain-Source Diode Voltage	V _F	I _{OUT} = -0.2 A		0.6		V	
Continuous Reverse Drain Current	۱ _S	T _J = 25°C			0.2	A	
PROTECTION FUNCTIONS (Note	6)						
Temperature Shutdown (Note 4)	T _{SD}		150	175	_	°C	
Temperature Shutdown Hysteresis (Note 4)	T _{SD_HYST}			5		°C	
Output Current Limit	I _{LIM}	$ \begin{array}{l} T_J = -40^\circ C, \ V_D = 13.5 \ V, \ t_m = 100 \ \mu s \ (Note \ 4) \\ T_J = 25 \ ^\circ C, \ V_D = 13.5 \ V, \ t_m = 100 \ \mu s \\ T_J = 150 \ ^\circ C \ , \ V_D = 13.5 \ V, \ t_m = 100 \ \mu s \ (Note \ 4) \end{array} $		0.8	1.5	A	
Output Clamp Voltage (Inductive Load Switch Off) At $V_{OUT} = V_D - V_{CLAMP}$	V _{CLAMP}	I _{OUT} = 4 mA		52		V	
Overvoltage Protection	V _{IN_CL}	I _{CLAMP} = 4 mA	50	54		V	

Not subjected to production testing
Only valid with high input slew rates
Protection functions are not designed for continuous repetitive operation and are considered outside normal operating range

TYPICAL CHARACTERISTIC CURVES

TYPICAL CHARACTERISTIC CURVES

TYPICAL CHARACTERISTIC CURVES

ORDERING INFORMATION

Device	Package	Shipping [†]
NCV8450	SOT-223 (Pb-Free)	TBD

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE M

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
c	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
Е	3.30	3.50	3.70	0.130	0.138	0.145
e	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L1	1.50	1.75	2.00	0.060	0.069	0.078
ΗE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	-	10°	0°	_	10°

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for sugical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative