Self-Protected Low Side Driver with Temperature and Current Limit

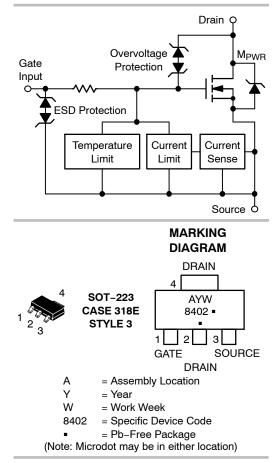
NCV8402 is a three terminal protected Low–Side Smart Discrete device. The protection features include overcurrent, overtemperature, ESD and integrated Drain–to–Gate clamping for overvoltage protection. This device offers protection and is suitable for harsh automotive environments. There is a fault feedback feature by monitoring the input current at the gate or voltage if a resistor is utilized.

Features

- Short-Circuit Protection
- Thermal Shutdown with Automatic Restart
- Overvoltage Protection
- Integrated Clamp for Inductive Switching
- ESD Protection
- dV/dt Robustness
- Analog Drive Capability (Logic Level Input)
- RoHs Compliant
- AEC-Q101 Qualified
- NCV Prefix for Automotive and Other Applications Requiring Site and Change Control
- These are Pb–Free Devices

Typical Applications

- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS} (Clamped)	R _{DS(ON)} TYP	I _D MAX
42 V	165 m Ω @ 10 V	2.0 A*

*Max current limit value is dependent on input condition.

ORDERING INFORMATION

Device	Package	Shipping [†]
NCV8402T1G	SOT-223 (Pb-Free)	1000/Tape & Reel
NCV8402T3G	SOT-223 (Pb-Free)	4000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

	Rating	Symbol	Value	Unit
Drain-to-Source Voltage Internally Clampo	ed	V _{DSS}	42	V
Drain-to-Gate Voltage Internally Clamped	(R _G = 1.0 MΩ)	V _{DGR}	42	V
Gate-to-Source Voltage			±14	V
Continuous Drain Current			Internally L	imited
Power Dissipation	@ T _A = 25°C (Note 1) @ T _A = 25°C (Note 2) @ T _T = 25°C (Note 3)	PD	1.1 1.7 8.9	W
Thermal Resistance	Junction-to-Ambient Steady State (Note 1) Junction-to-Ambient Steady State (Note 2) Junction-to-Tab Steady State (Note 3)	R _{θJA} R _{θJA} R _{θJT}	114 72 14	°C/W
Single Pulse Drain–to–Source Avalanche En (V_DD = 32 V, V_G = 5.0 V, I_{PK} = 1.0 A, L = 30 $$		E _{AS}	150	mJ
Load Dump Voltage (1	$V_{\rm GS}$ = 0 and 10 V, R _I = 2.0 Ω , R _L = 9.0 Ω , t _d = 400 ms)	V_{LD}	87	V
Operating Junction and Storage Temperation	ıre	T _J , T _{stg}	-55 to 150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Surface-mounted onto min pad FR4 PCB, (2 oz. Cu, 0.06" thick).
Surface-mounted onto 2" sq. FR4 board (1" sq., 1 oz. Cu, 0.06" thick).
Surface-mounted onto min pad FR4 PCB, (2 oz. Cu, 0.06" thick).

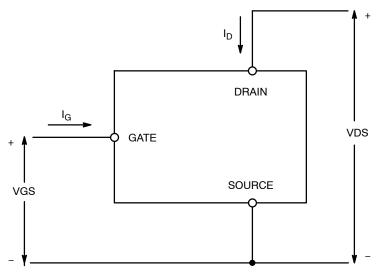


Figure 1. Voltage and Current Convention

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Test Condition	Test Condition Symbol Min Ty		Тур	Max	Unit		
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	V_{GS} = 0 V, I _D = 10 mA, T _J = 25°C	V _{(BR)DSS}	42	46	55	V		
(Note 4)	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 10 \text{ mA}, \text{ T}_{J} = 150^{\circ}\text{C}$ (Note 6)		40	45	55			
Zero Gate Voltage Drain Current	V_{GS} = 0 V, V_{DS} = 32 V, T_{J} = 25°C	I _{DSS}		0.25	4.0	μΑ		
	$V_{GS} = 0 V, V_{DS} = 32 V, T_{J} = 150^{\circ}C$ (Note 6)			1.1	20			
Gate Input Current	$V_{DS} = 0 V, V_{GS} = 5.0 V$	I _{GSSF}		50	100	μΑ		
ON CHARACTERISTICS (Note 4)								

Gate Threshold Voltage	V_{GS} = V_{DS} , I_D = 150 μ A	V _{GS(th)}	1.3	1.8	2.2	V
Gate Threshold Temperature Coefficient		V _{GS(th)} /T _J		4.0	6.0	−mV/°C
Static Drain-to-Source On-Resistance	V_{GS} = 10 V, I _D = 1.7 A, T _J = 25°C	R _{DS(on)}		165	200	mΩ
	V _{GS} = 10 V, I _D = 1.7 A, T _J = 150°C (Note 6)			305	400	
	V_{GS} = 5.0 V, I_D = 1.7 A, T_J = 25°C			195	230	
	V _{GS} = 5.0 V, I _D = 1.7 A, T _J = 150°C (Note 6)			360	460	
	V_{GS} = 5.0 V, I_D = 0.5 A, T_J = 25°C			190	230	
	V _{GS} = 5.0 V, I _D = 0.5 A, T _J = 150°C (Note 6)			350	460	
Source-Drain Forward On Voltage	V _{GS} = 0 V, I _S = 7.0 A	V _{SD}		1.0		V

SWITCHING CHARACTERISTICS (Note 6)

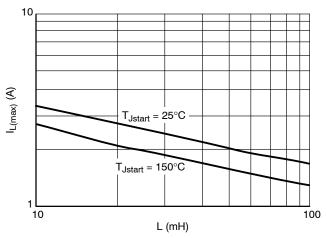
Turn–ON Time (10% V _{IN} to 90% I _D)	V _{GS} = 10 V, V _{DD} = 12 V	t _{ON}	25	μs
Turn–OFF Time (90% V _{IN} to 10% I _D)	I_D = 2.5 A, R_L = 4.7 Ω	t _{OFF}	120	
Slew-Rate ON (70% V_{DS} to 50% $V_{DS})$	V _{GS} = 10 V, V _{DD} = 12 V,	-dV _{DS} /dt _{ON}	0.8	V/µs
Slew-Rate OFF (50% V _{DS} to 70% V _{DS})	$R_L = 4.7 \ \Omega$	dV _{DS} /dt _{OFF}	0.3	

SELF PROTECTION CHARACTERISTICS (T_J = 25°C unless otherwise noted) (Note 5)

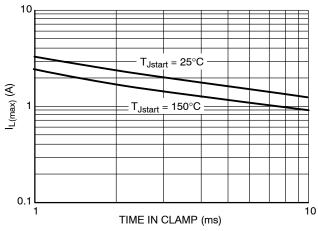
Current Limit	V_{DS} = 10 V, V_{GS} = 5.0 V, T_{J} = 25°C	I _{LIM}	3.7	4.3	5.0	A
	V _{DS} = 10 V, V _{GS} = 5.0 V, T _J = 150°C (Note 6)		2.3	3.0	3.7	
	V_{DS} = 10 V, V_{GS} = 10 V, T_{J} = 25°C		4.2	4.8	5.4	
	V _{DS} = 10 V, V _{GS} = 10 V, T _J = 150°C (Note 6)		2.7	3.6	4.5	
Temperature Limit (Turn-off)	V _{GS} = 5.0 V	T _{LIM(off)}	150	175	200	°C
Thermal Hysteresis	V _{GS} = 5.0 V	$\Delta T_{LIM(on)}$		15		
Temperature Limit (Turn-off)	V _{GS} = 10 V	T _{LIM(off)}	150	165	185	
Thermal Hysteresis	V _{GS} = 10 V	$\Delta T_{LIM(on)}$		15		

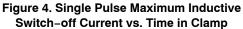
GATE INPUT AND FAULT DIAGNOSTICS CHARACTERISTICS (Note 6)

V _{GS} = 5 V I _D = 1.0 A	I _{GON}	50		μΑ
V _{GS} = 10 V I _D = 1.0 A]	400		
V _{GS} = 5 V, V _{DS} = 10 V	I _{GCL}	0.05		mA
V_{GS} = 10 V, V_{DS} = 10 V]	0.4		
V _{GS} = 5 V, V _{DS} = 10 V	I _{GTL}	0.15		mA
V _{GS} = 10 V, V _{DS} = 10 V]	0.7		
	$V_{GS} = 10 \text{ V } I_D = 1.0 \text{ A}$ $V_{GS} = 5 \text{ V}, V_{DS} = 10 \text{ V}$ $V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V}$ $V_{GS} = 5 \text{ V}, V_{DS} = 10 \text{ V}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} V_{GS} = 10 \ V \ I_D = 1.0 \ A \\ \hline V_{GS} = 5 \ V, \ V_{DS} = 10 \ V \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 10 \ V \\ \hline V_{GS} = 5 \ V, \ V_{DS} = 10 \ V \\ \hline \end{array} \begin{array}{c c} I_{GCL} \\ \hline 0.4 \\ \hline 0.4 \\ \hline 0.15 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $


ESD ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Electro-Static Discharge Capability	Human Body Model (HBM) ESD 40		4000		V
	Machine Model (MM)) 4			


Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
Fault conditions are viewed as beyond the normal operating range of the part.


6. Not subject to production testing.

TYPICAL PERFORMANCE CURVES

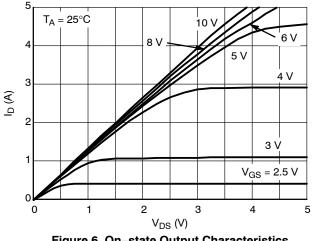


Figure 6. On-state Output Characteristics

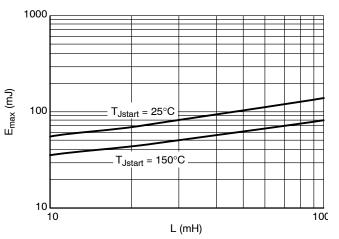


Figure 3. Single Pulse Maximum Switching Energy vs. Load Inductance

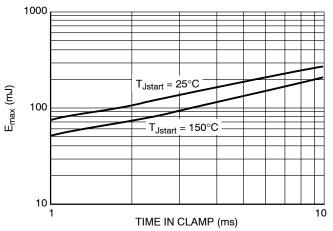
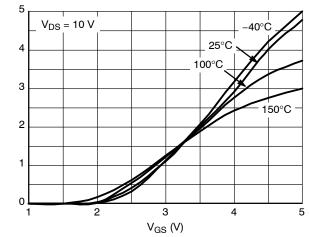
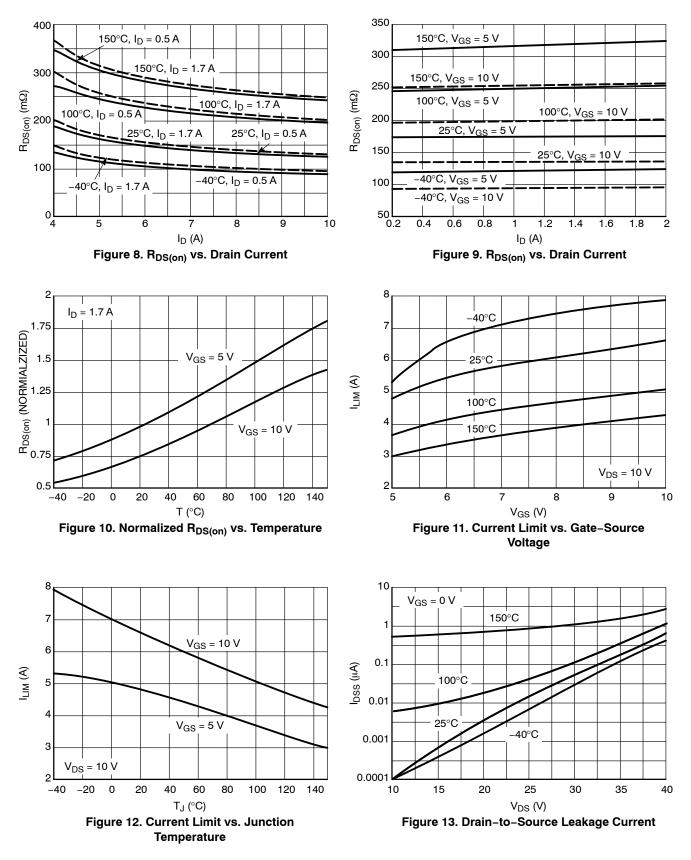
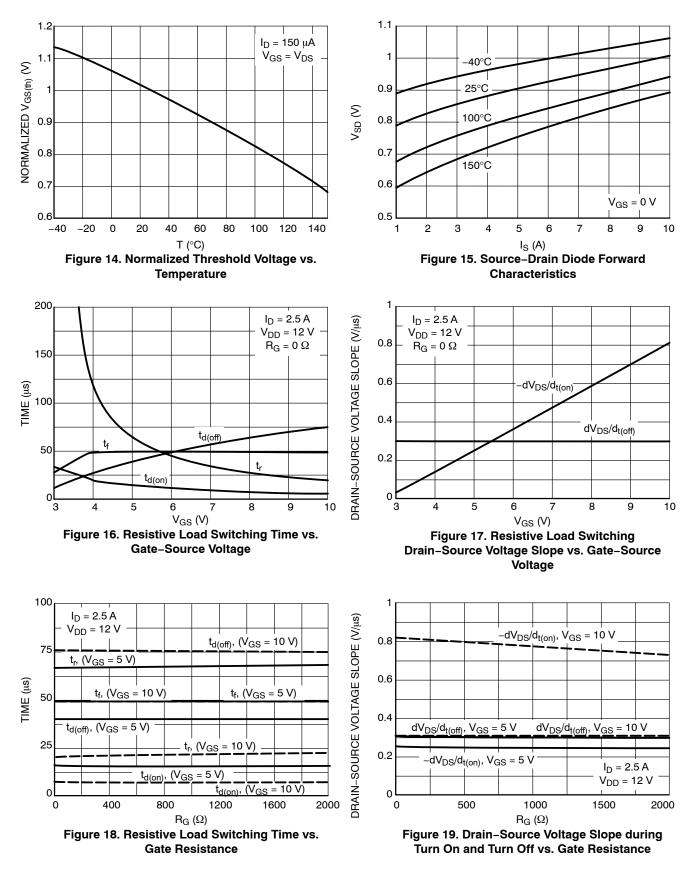


Figure 5. Single Pulse Maximum Inductive Switching Energy vs. Time in Clamp


Figure 7. Transfer Characteristics

I_D (A)

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

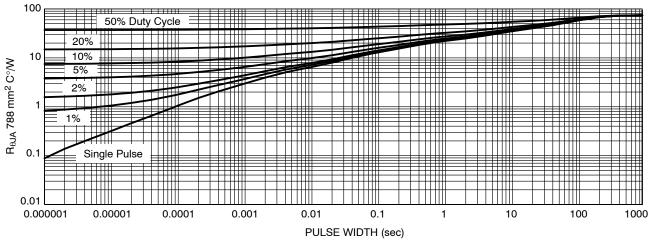


Figure 20. Transient Thermal Resistance

TEST CIRCUITS AND WAVEFORMS

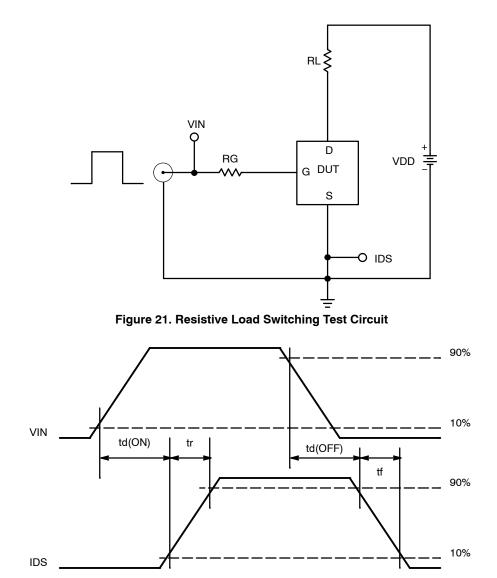


Figure 22. Resistive Load Switching Waveforms

TEST CIRCUITS AND WAVEFORMS

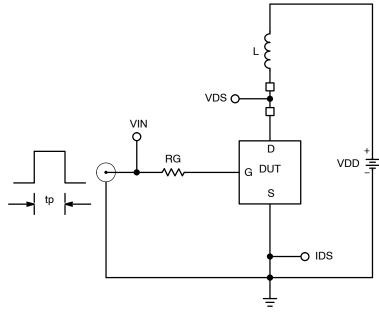


Figure 23. Inductive Load Switching Test Circuit

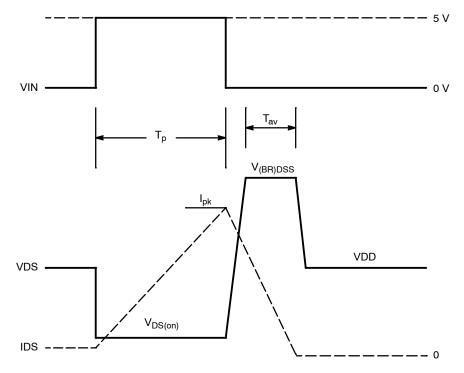


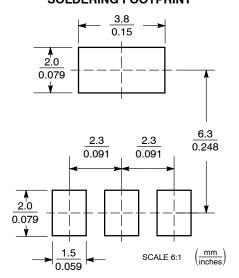

Figure 24. Inductive Load Switching Waveforms

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE M

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.


STYLE 3:

PIN 1. GATE 2. DRAIN

SOURCE
DRAIN

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.50	1.63	1.75	0.060	0.064	0.068	
A1	0.02	0.06	0.10	0.001	0.002	0.004	
b	0.60	0.75	0.89	0.024	0.030	0.035	
b1	2.90	3.06	3.20	0.115	0.121	0.126	
С	0.24	0.29	0.35	0.009	0.012	0.014	
D	6.30	6.50	6.70	0.249	0.256	0.263	
E	3.30	3.50	3.70	0.130	0.138	0.145	
е	2.20	2.30	2.40	0.087	0.091	0.094	
e1	0.85	0.94	1.05	0.033	0.037	0.041	
L1	1.50	1.75	2.00	0.060	0.069	0.078	
HE	6.70	7.00	7.30	0.264	0.276	0.287	
θ	0°	-	10°	0°	-	10°	

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

HDPlus is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and IIIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in the hed to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative