Product Preview

Self-Protected Low Side Driver with Temperature and Current Limit

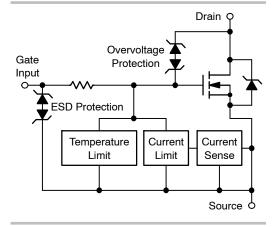
42 V, 14 A, Single N-Channel, SOT-223

NCV8403 is a three terminal protected Low-Side Smart Discrete device. The protection features include overcurrent, overtemperature, ESD and integrated Drain-to-Gate clamping for overvoltage protection. This device offers protection and is suitable for harsh automotive environments. There is a fault feedback feature by monitoring the input current at the gate or voltage if a resistor is utilized.

Features

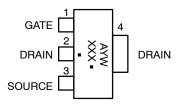
- Short Circuit Protection
- Thermal Shutdown with Automatic Restart
- Over Voltage Protection
- Integrated Clamp for Inductive Switching
- ESD Protection
- dV/dt Robustness
- Analog Drive Capability (Logic Level Input)
- RoHs Compliant
- AEC-Q101 Qualified
- NCV Prefix for Automotive and Other Applications Requiring Site and Change Control
- This is a Pb-Free Device

Typical Applications


- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial

ON Semiconductor®

http://onsemi.com


V _{DSS} (Clamped)	R _{DS(on)} TYP	I _D MAX (Limited)
42 V	53 mΩ @ 10 V	15 A

SOT-223 CASE 318E STYLE 3

MARKING DIAGRAM

A = Assembly Location

Y = Year W = Work Week

XXX = Specific Device Code = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit	
Drain-to-Source Voltage Internally Clamped	V_{DSS}	42	Vdc	
Gate-to-Source Voltage	V_{GS}	±14	Vdc	
Drain Current Continuous	I _D	Internally Limited		
Total Power Dissipation @ T _A = 25°C (Note 1) @ T _A = 25°C (Note 2)	P _D	1.25 1.9	W	
Thermal Resistance Junction-to-Case Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	$egin{array}{l} R_{ hetaJC} \ R_{ hetaJA} \ R_{ hetaJA} \end{array}$	12 100 65	°C/W	
Single Pulse Drain-to–Source Avalanche Energy (V_{DD} = 25 Vdc, V_{GS} = 5.0 Vdc, I_L = 7.0 Apk, L = 9.5 mH, R_G = 25 Ω)	E _{AS}	233	mJ	
Operating and Storage Temperature Range (Note 3)	T _J , T _{stg}	-55 to 150	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Surface mounted onto minimum pad size (0.412" square) FR4 PCB, 1 oz cu.
 Mounted onto 1" square pad size (1.127" square) FR4 PCB, 1 oz cu.
 Normal pre-fault operating range. See thermal limit range conditions.

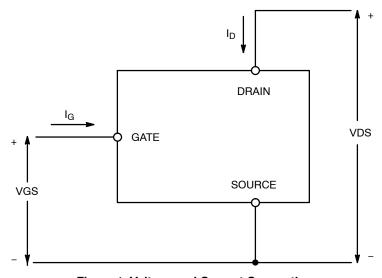


Figure 1. Voltage and Current Convention

$\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$

Characte	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Drain-to-Source Clamped Breakdown Voltage ($V_{GS}=0$ Vdc, $I_D=250$ μ Adc) ($V_{GS}=0$ Vdc, $I_D=250$ μ Adc, $T_J=-40$ °C to 150°C) (Note 4)		V _{(BR)DSS}	42 40	46 45	51 51	Vdc Vdc
Zero Gate Voltage Drain Current ($V_{DS} = 32 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}$) ($V_{DS} = 32 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_{J} = 150^{\circ}\text{C}$) (Note 4)		I _{DSS}	_ _	0.6 2.5	5.0 -	μAdc
Gate Input Current (V _{GS} = 5.0 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	-	50	125	μAdc
ON CHARACTERISTICS						
Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 1.2 mAdc) Threshold Temperature Coefficient (Ne	V _{GS(th)}	1.0	1.7 5.0	2.2	Vdc mV/°C	
Static Drain-to-Source On-Resistance (N $(V_{GS} = 10 \text{ Vdc}, I_D = 3.0 \text{ Adc}, T_J @ 25^{\circ} (V_{GS} = 10 \text{ Vdc}, I_D = 3.0 \text{ Adc}, T_J @ 150^{\circ})$	R _{DS(on)}	- -	53 95	68 123	mΩ	
Static Drain-to-Source On-Resistance (N $(V_{GS} = 5.0 \text{ Vdc}, I_D = 3.0 \text{ Adc}, T_J @ 25^{\circ})$ $(V_{GS} = 5.0 \text{ Vdc}, I_D = 3.0 \text{ Adc}, T_J @ 150^{\circ})$	R _{DS(on)}	- -	63 105	76 135	mΩ	
Source-Drain Forward On Voltage (I _S = 7.0 A, V _{GS} = 0 V)	V _{SD}	-	0.95	1.1	V	
SWITCHING CHARACTERISTICS (Note 4	1)	•		•	•	
Turn-ON Time (10% V _{IN} to 90% I _D)	V _{IN} = 0 V to 5 V, V _{DD} = 25 V	t _{ON}		44		μs
Turn-OFF Time (90% V _{IN} to 10% I _D)	$I_D = 1.0 \text{ A, Ext R}_G = 2.5 \Omega$	t _{OFF}		84		
Turn-ON Time (10% V _{IN} to 90% I _D)	V _{IN} = 0 V to 10 V, V _{DD} = 25 V	t _{ON}		15		
Turn-OFF Time (90% V _{IN} to 10% I _D)	$I_D = 1.0 \text{ A, Ext R}_G = 2.5 \Omega$	t _{OFF}		116		
Slew-Rate ON (20% V_{DS} to 50% V_{DS})	V _{in} = 0 to 10 V, V _{DD} = 12 V,	$-dV_{DS}/dt_{ON}$		2.43		V/µs
Slew-Rate OFF (80% V _{DS} to 50% V _{DS})	$R_L = 4.7 \overline{\Omega}$	dV _{DS} /dt _{OFF}		0.83		
SELF PROTECTION CHARACTERISTICS	$(T_J = 25^{\circ}C \text{ unless otherwise noted})$ (N	lote 6)				
Current Limit	V _{GS} = 5.0 V, V _{DS} = 10 V V _{GS} = 5.0 V, T _J = 150°C (Note 4)	I _{LIM}	10 5.0	15 10	20 15	Adc
Current Limit	$V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V}$ $V_{GS} = 10 \text{ V}, T_J = 150^{\circ}\text{C (Note 4)}$	I _{LIM}	12 8.0	17 13	22 18	Adc
Temperature Limit (Turn-off)	V _{GS} = 5.0 Vdc	$T_{LIM(off)}$	150	175	200	°C
Thermal Hysteresis	V _{GS} = 5.0 Vdc	$\Delta T_{LIM(on)}$	-	15	_	°C
Temperature Limit (Turn-off)	V _{GS} = 10 Vdc	T _{LIM(off)}	150	165	185	°C
Thermal Hysteresis	V _{GS} = 10 Vdc	$\Delta T_{LIM(on)}$	_	15	-	°C
GATE INPUT AND FAULT DIAGNOSTICS	S CHARACTERISTICS (Note 4)					
Device ON Gate Input Current	$V_{GS} = 5 \text{ V I}_{D} = 1.0 \text{ A}$	I _{GON}		50		μΑ
	V _{GS} = 10 V I _D = 1.0 A			400		
Current Limit Gate Input Current	V _{GS} = 5 V, V _{DS} = 10 V	I _{GCL}		0.1		mA
	V _{GS} = 10 V, V _{DS} = 10 V			0.6		
Thermal Limit Fault Gate Input Current	$V_{GS} = 5 \text{ V}, V_{DS} = 10 \text{ V}$	I _{GTL}		0.45		mA
	V _{GS} = 10 V, V _{DS} = 10 V			1.5		
ESD ELECTRICAL CHARACTERISTICS	(T _J = 25°C unless otherwise noted)					
Electro-Static Discharge Capability Human Body Model (HBM)		E0D	4000			1/
Electro-Static Discharge Capability	Human Body Model (HBM)	ESD	4000	-	-	V

- Not subject to production testing.
 Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.
 Fault conditions are viewed as beyond the normal operating range of the part.

TYPICAL PERFORMANCE CURVES

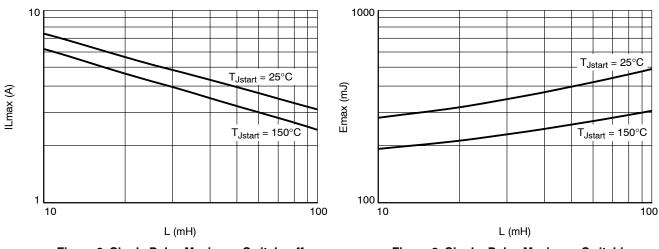


Figure 2. Single Pulse Maximum Switch-off Current vs. Load Inductance

Figure 3. Single-Pulse Maximum Switching Energy vs. Load Inductance

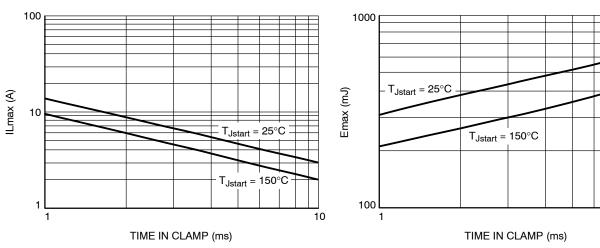


Figure 4. Single Pulse Maximum Inductive Switch-off Current vs. Time in Clamp

Figure 5. Single-Pulse Maximum Inductive Switching Energy vs. Time in Clamp

10

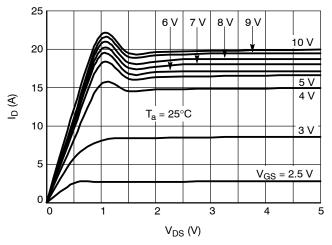


Figure 6. On-state Output Characteristics

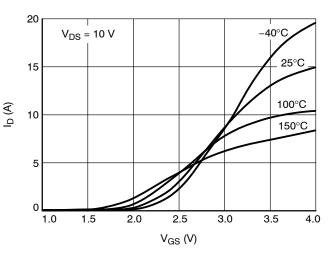


Figure 7. Transfer Characteristics

TYPICAL PERFORMANCE CURVES

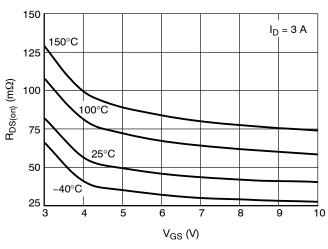


Figure 8. R_{DS(on)} vs. Gate-Source Voltage

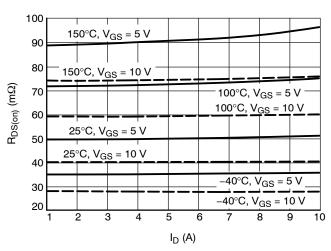


Figure 9. R_{DS(on)} vs. Drain Current

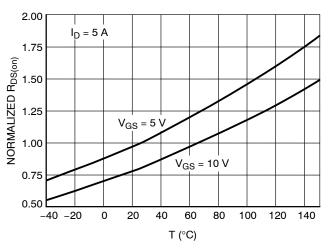


Figure 10. Normalized R_{DS(on)} vs. Temperature

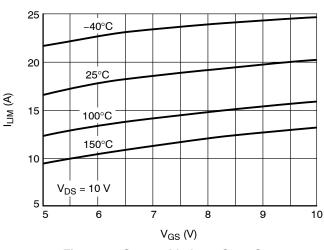


Figure 11. Current Limit vs. Gate-Source Voltage

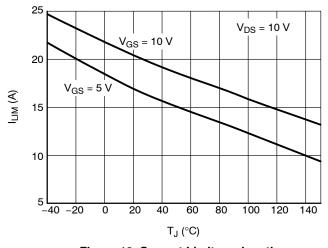


Figure 12. Current Limit vs. Junction Temperature

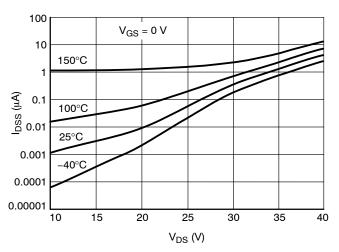


Figure 13. Drain-to-Source Leakage Current

TYPICAL PERFORMANCE CURVES

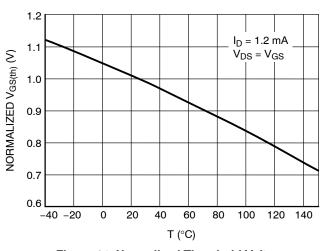


Figure 14. Normalized Threshold Voltage vs. Temperature

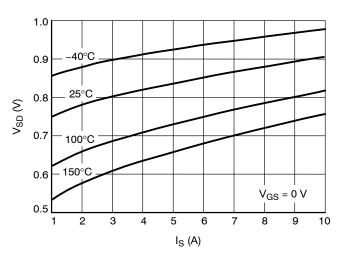


Figure 15. Source-Drain Diode Forward Characteristics

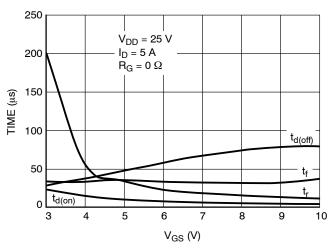


Figure 16. Resistive Load Switching Time vs.
Gate-Source Voltage

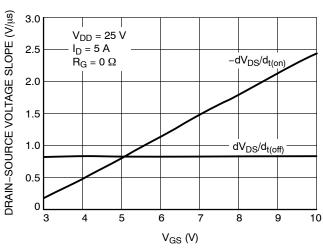


Figure 17. Resistive Load Switching
Drain-Source Voltage Slope vs. Gate-Source
Voltage

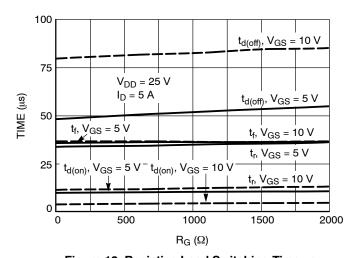


Figure 18. Resistive Load Switching Time vs.

Gate Resistance

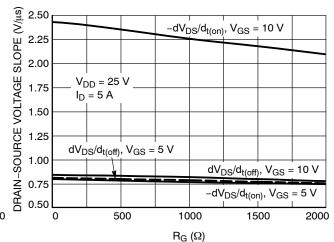


Figure 19. Drain-Source Voltage Slope during Turn On and Turn Off vs. Gate Resistance

TYPICAL PERFORMANCE CURVES

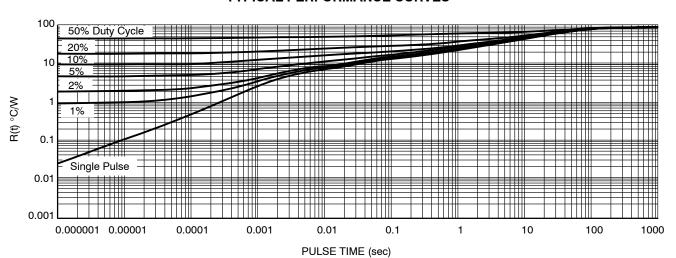


Figure 20. Transient Thermal Resistance

TEST CIRCUITS AND WAVEFORMS

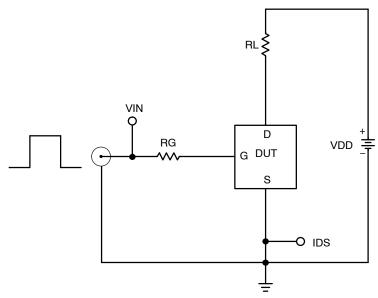


Figure 21. Resistive Load Switching Test Circuit

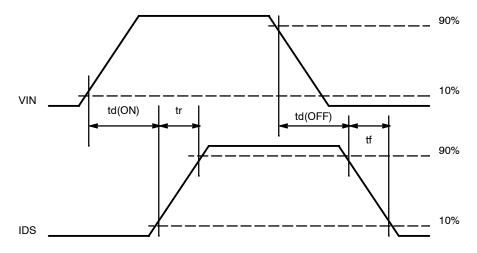


Figure 22. Resistive Load Switching Waveforms

TEST CIRCUITS AND WAVEFORMS

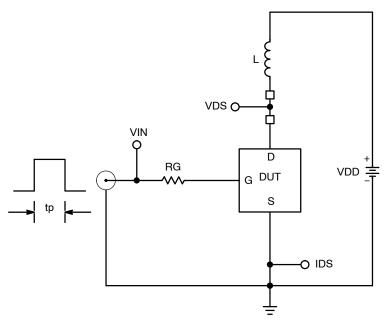


Figure 23. Inductive Load Switching Test Circuit

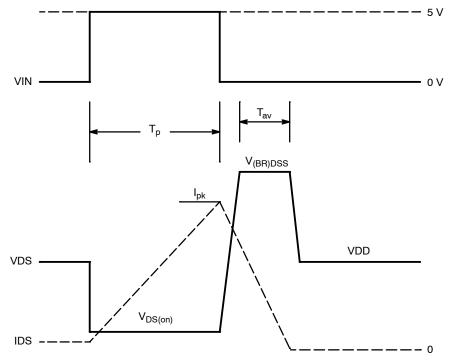
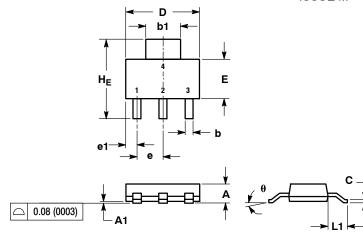


Figure 24. Inductive Load Switching Waveforms

ORDERING INFORMATION


Device	Package	Shipping [†]
NCV8403	SOT-223 (Pb-Free)	1000 / Tape & Reel

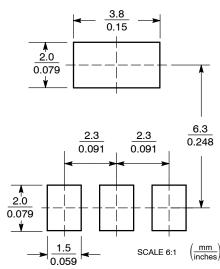
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04

ISSUE M

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	М	MILLIMETERS INCHES				
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
С	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
E	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	_	10°	0°	_	10°

STYLE 3: PIN 1. GATE

2. DRAIN 3. SOURCE 4 DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

HDPlus is a trademark of Semiconductor Components Industries, LLC (SCILLC)

ON Semiconductor and was registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlitt@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NCV8403/D