

40μA Micropower Instrumentation Amplifier in MSOP

Preliminary Technical Data

AD8236

FEATURES

Low Power
40 µA supply current
Low input currents
10 pA input bias current
5 pA input offset current
High CMRR
106 dB CMRR, G = 100
Space Saving
MSOP package

Versatile

Rail-to-rail output

Gain set with single resistor (G = 5 to 200)

APPLICATIONS

Medical instrumentation Low side current sense Portable Electronics

GENERAL DESCRIPTION

The AD8236 is the industry's lowest power instrumentation amplifier. It has rail to rail outputs and can operate on voltages as low as 1.8V. Its 40uA supply current makes it an excellent choice in battery powered applications.

The AD8236 is an excellent choice for signal conditioning. It's low input bias current of 10pA and high CMRR of 106dB (G=100) offer tremendous value for its size and low power. It has a wider common-mode voltage range than typical three op amp in-amps, making this a great solution for applications that operate on a single 1.8V or 3V supply.

It is available in an 8 lead MSOP package and is specified over the industrial temperature range of -40° to 125°C.

BLOCK DIAGRAM

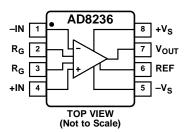


Figure 1.

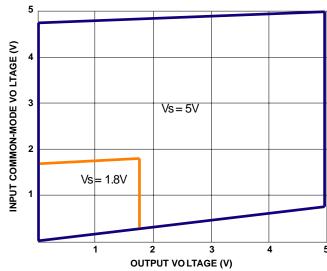


Figure 2. Wide Common Mode Voltage Range vs. Output Voltage, REF = midsupply

SPECIFICATIONS

 V_S + = 5 V, V_{S^-} = 0 V, V_{REF} = 2.5 V, T_A = +25°C, G = 5, R_L = 100 k Ω , unless otherwise noted.

Table 1.

	A Grade				
Parameter	Test Conditions	Min	Тур	Max	Unit
COMMON-MODE REJECTION					
RATIO (CMRR) CMRR DC with 1 k Ω Source					
Imbalance					
G = 5			80		dB
G = 10			86		dB
G = 100			106		dB
G = 200			120		dB
NOISE					
Voltage Noise, 1 kHz					
Spectral Density Noise. RTI	G=5		76		nV√Hz
					nV√Hz
RTI, 0.1 Hz to 10 Hz					
G = 5			5		μV р-р
G = 200			TBD		μV p-p
Current Noise			15		fA/√Hz
VOLTAGE OFFSET					
Input Offset, Vosi			5		mV
Average TC			10		μV/°C
Output Offset, Voso			1		μV
Average TC			TBD		μV/°C
Offset RTI vs. Supply (PSR)					
G = 5		100			dB
G = 10		110			dB
G = 100		110			dB
G = 200		110			dB
INPUT CURRENT					
Input Bias Current				10	рА
Over Temperature	-40C to +85C			100	рА
Over Temperature	-40C to +125C			600	рА
Input Offset Current				5	рА
Over Temperature	-40C to +85C			50	рА
Over Temperature	-40C to +125C			130	рА
DYNAMIC RESPONSE					
Small Signal Bandwidth –					
3 dB					1
G = 5			30		kHz
G = 10			15		kHz
G = 100			1.5		kHz
G = 200			0.2		kHz
Settling Time 0.01%					
G = 5					μs
G = 10					μs
G = 100					μs
G = 200					μs
Slew Rate					

	A Grade				
Parameter	Test Conditions	Min	Тур	Max	Unit
G = 5 to 100			12		mV/μs
GAIN					
Gain Range	$G = 5 + 420k\Omega/Rg$	5		200	V/V
Gain Error					
G = 5					%
G = 10					%
G = 100					%
G =200					%
Nonlinearity					
G = 5					ppm
G = 10					ppm
G = 100					ppm
G = 200					ppm
G = 5	10kΩ				ppm
G = 10	10kΩ				ppm
G = 100	10kΩ				ppm
Gain vs. Temperature					
G = 5	-40°C to +125°C				ppm/°C
G > 10	-40°C to +125°C				ppm/°C
INPUT					
Impedance			220 4		GΩ pF
Input Voltage Range		0		+Vs	V
Over Temperature					V
OUTPUT					
Output Voltage High, VOH	$RL = 100 \text{ k}\Omega \text{to GND}$	4.98	4.99		V
	40°C to +125°C	4.98			V
	RL = 10 kΩ•to GND	4.9	4.95		
	-40°C to +125°C				V
Output Voltage Low, VOL	RL = 100 kΩ•to VS		2	5	mV
	-40°C to +125°C			5	mV
	RL = 10 kΩ• to VS		10	25	mV
	-40°C to +125°C			30	mV
Short Circuit Limit, Isc			±45		mA
REFERENCE INPUT					
R _{IN}	-IN, $+IN = 0V$		210		kΩ
I _{IN}			1		μΑ
Voltage Range		-Vs		+Vs	V
Gain to Output			1		V/V
POWER SUPPLY					
Operating Range		1.8		5.5	V
Quiescent Current			40		μΑ
Over Temperature					μΑ
TEMPERATURE RANGE					
For Specified Performance		-40		125	°C

AD8236

 $V_{\text{S}} += 1.8 \text{ V}, V_{\text{S}} -= 0 \text{ V}, V_{\text{REF}} = 0.9 \text{ V}, T_{\text{A}} = +25 ^{\circ}\text{C}, G = 5, R_{\text{L}} = 100 \text{ k}\Omega, \text{unless otherwise noted}.$

Table 2.

_			A Grade		l
Parameter	Test Conditions	Min	Тур	Max	Unit
COMMON-MODE REJECTION					
RATIO (CMRR) CMRR DC with 1 kΩ Source					
Imbalance					
G = 5			75		dB
G = 10			80		dB
G = 100			100		dB
G = 200			110		dB
NOISE			110		GD.
Voltage Noise, 1 kHz	C 5		7.0		>/ /! !
Spectral Density Noise. RTI	G=5		76		nV√H:
DTI 0.111 (. 1011					nV√H
RTI, 0.1 Hz to 10 Hz			_		١.,
G = 5			5		μV p-r
G = 200			TBD		μV p-r
Current Noise			15		fA/√H
VOLTAGE OFFSET			_		.,
Input Offset, Vosi			5		mV
Average TC			10		μV/°C
Output Offset, Voso			1		μV
Average TC			TBD		μV/°C
Offset RTI vs. Supply (PSR)					
G = 5		100			dB
G = 10		110			dB
G = 100		110			dB
G = 200		110			dB
INPUT CURRENT					-
Input Bias Current				10	рА
Over Temperature	-40C to +85C			100	pΑ
Over Temperature Over Temperature	-40C to +125C			600	pA
Input Offset Current	-40C to +125C			5	1 '
Over Temperature	-40C to +85C			5 50	pA nA
Over Temperature	-40C to +125C			130	pA pA
DYNAMIC RESPONSE	-40C to +125C			130	PΑ
Small Signal Bandwidth – 3 dB					
G = 5			30		kHz
G = 10			15		kHz
G = 100			1.5		kHz
G = 100 G = 200			0.2		kHz
Settling Time 0.01%			٥.٤		13.12
G = 5					lic.
G = 3 G = 10					μs
					μs
G = 100					μs
G = 200					μs
Slew Rate					
G = 5 to 100			12		mV/μ
GAIN					
Gain Range	$G = 5 + 420k\Omega/Rg$	5		200	V/V
		Rev Pr	A Page 4 of 7		

Rev. PrA | Page 4 of 7

	A Grade				
Parameter	Test Conditions	Min	Тур	Max	Unit
Gain Error					
G = 5					%
G = 10					%
G = 100					%
G =200					%
Nonlinearity					
G = 5					ppm
G = 10					ppm
G = 100					ppm
G = 200					ppm
G = 5	10kΩ				ppm
G = 10	10kΩ				ppm
G = 100	10kΩ				ppm
Gain vs. Temperature					
G = 5	-40°C to +125°C				ppm/°C
G > 10	-40°C to +125°C				ppm/°C
INPUT					
Impedance			220 4		GΩ pF
Input Voltage Range		0		+Vs	V
Over Temperature					V
OUTPUT					
Output Voltage High, VOH	RL = 100 kΩ•to GND	1.78	1.79		V
	40°C to +125°C	1.78			V
	RL = 10 kΩ•to GND	1.65	1.75		
	-40°C to +125°C	1.65			V
Output Voltage Low, VOL	RL = 100 kΩ•to VS		2	5	mV
	-40°C to +125°C				mV
	RL = 10 kΩ• to VS		12	25	mV
	-40°C to +125°C			25	mV
Short Circuit Limit, Isc			±4.5		mA
REFERENCE INPUT					
R _{IN}	-IN, +IN = 0V		210		kΩ
I _{IN}			1		μΑ
Voltage Range		-Vs		+Vs	v
Gain to Output			1		V/V
POWER SUPPLY					
Operating Range		1.8		5.5	V
Quiescent Current			40		μA
Over Temperature					μΑ
TEMPERATURE RANGE					L.,
LIVITORE IVITOE		-40			°C

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

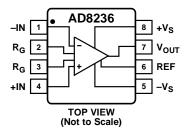
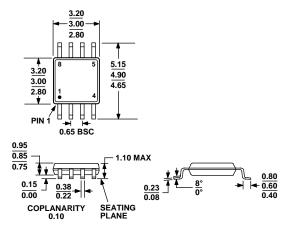



Figure 2. Pin Configuration (Top View)

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description			
1	-IN	Negative Input Terminal (True Differential Input)			
2, 3	R _G	Gain Setting Terminals (Place Resistor Across the R _G Pins)			
4	+IN	Positive Input Terminal (True Differential Input)			
5	-Vs	Negative Power Supply Terminal			
6	REF	Reference Voltage Terminal (Drive This Terminal with a Low Impedance Voltage Source to Level-Shift the Output)			
7	V _{OUT}	Output Terminal			
8	+V _S	Positive Power Supply Terminal			

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-AA

Figure 3. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
AD8236ARMZ	-40°C to +85°C	8-Lead MSOP	RM-8	

www.analog.com