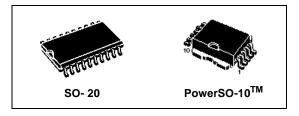


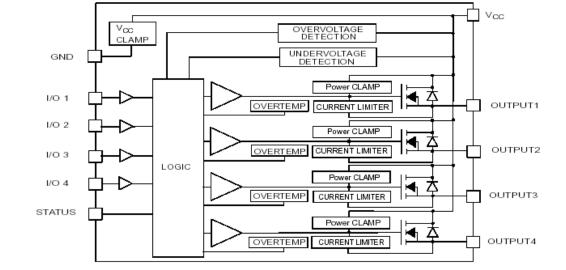
VNQ860-E VNQ860SP-E

QUAD CHANNEL HIGH SIDE DRIVER


General Features

Туре	R _{DS(ON)} ⁽¹⁾	l _{out}	v _{cc}
VNQ860-E VNQ860SP-E	$270 m\Omega$	0.25A	36V

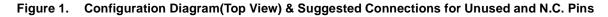
Note: 1 Per each channel.

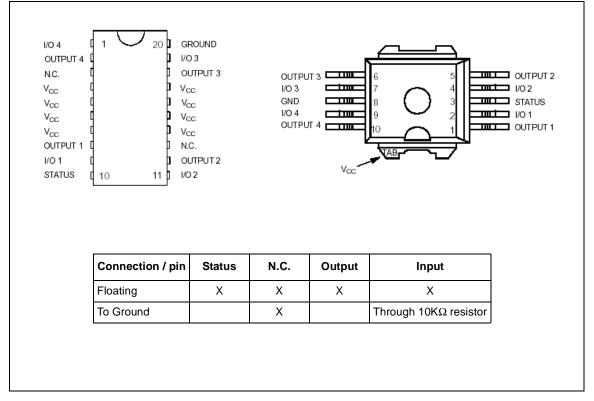

- CMOS COMPATIBLE I/Os
- UNDERVOLTAGE & OVERVOLTAGE SHUT-DOWN
- SHORTED LOAD PROTECTION
- THERMAL SHUT-DOWN
- VERY LOW STAND-BY CURRENT
- PROTECTION AGAINST LOSS OF GROUND

Block Diagram

Description

The VNQ860-E, VNQ860SP-E are monolithic devices made using STMicroelectronics VIPower M0-3 Technology, intended for driving any kind load with one side connected to ground. Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. Device automatically turns OFF in case of ground pin disconnection. This device is especially suitable for industrial applications in norms conformity with IEC 61131, (Programmable Controllers International Standard).


Order Codes


Package	Tube	Tape and Reel
SO-20	VNQ860 VNQ86013TR-E	
PowerSO-10 TM	VNQ860SP	VNQ860SP13TR-E

November 2005

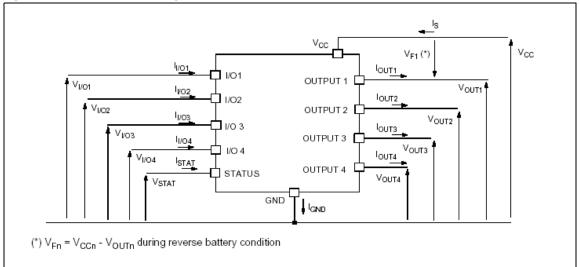

Symbol	Parameter	Va	lue	Unit
Symbol	Falameter	SO-20	PowerSO-10	Unit
V _{CC}	DC supply voltage	4	1	V
-V _{CC}	Reverse DC supply voltage	-().3	V
-I _{GND}	DC reverse ground pin	-2	00	mA
I _{OUT}	DC output current	Internal	ly limited	А
-I _{OUT}	Reverse DC output current	-	2	А
I _{IN}	DC Input current	±	10	mA
V _{IN}	Input voltage range	-3/+	-V _{CC}	V
I _{STAT}	DC Status voltage	+ \	/ _{cc}	V
V _{ESD}	Electrostatic discharge (R = 1.5KW; C = 100pF)	20	000	V
P _{tot}	Power dissipation at T _c <= 25°C	16	90	W
ТJ	Junction operating temperature	Internal	ly limited	°C
Т _с	Case operating temperature	-40 t	o 150	°C
T _{stg}	Storage Temperature	-55 t	o 150	°C

Table 1. Absolute Maximum Rating

Figure 2. Current and Voltage Conventions

Table 2. Thermal data

Symbol	Parameter		Max	Value	Unit
Symbol	Faranielei		SO-20	PowerSO-10	Unit
R _{thj-pin}	Thermal resistance junction-pins	Max	8	-	°C/W
R _{thJA}	Thermal resistance junction-ambient	Мах	58	52 Note 1	°C/W
'`thJA		IVIAN	50	37 Note 2	0/10
R _{thJC}	Thermal resistance junction-case	Max	-	1.4	°C/W

1. When mounted on FR4 printed circuit board with 0.5cm^2 of copper area (at least 35μ thick) connected to all V_{CC} pins. 2. When mounted on FR4 printed circuit board with 6cm^2 of copper area (at least 35μ thick) connected to all V_{CC} pins.

Electrical Characteristics (8V < V_{CC} < 36V; -40°C < T_J < 150°C; unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		5.5		36	V
V _{USD}	Undervoltage shut-down		3	4	5.5	V
V _{OV}	Overvoltage shut-down		36	42	48	V
R _{ON}	On state resistance (per channel)	I _{OUT} = 0.25A; T _J = 25°C; I _{OUT} = 0.25A;			270 540	mΩ
۱ _S	Supply current	OFF state; $V_{CC} = 24V$; $T_C = 25^{\circ}C$ ON state (all channels ON)		70 5	120 10	μA mA
I _{LGND}	Output current	$V_{CC} - V_{STAT} = V_{IN} = V_{GND} = 24V;$ $V_{OUT} = 0V$			1	mA
I _{L(OFF)}	OFF state output current	$V_{IN} = V_{OUT} = 0V$	0		10	μΑ
I _{OUTleak}	OFF state output leakage current	$V_{IN} = V_{GND} = 0V; V_{CC} = V_{OUT} = 24V;$ $T_{amb} = 25^{\circ}C$			240	μΑ
I _{OUTleak}	OFF state output leakage current	$V_{IN} = V_{GND} = 0V; V_{CC} = 24V;$ $V_{OUT} = 10V; T_{amb} = 25^{\circ}C$			100	μΑ

Table 3.Power Section

Table 4.Switching ($V_{CC} = 24V$)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _(ON)	Turn-on delay time of Output current	$R_L = 96$ from V_{IN} rising edge to $V_{OUT} = 2.4V$		10		μs
t _(OFF)	Turn-off delay time of Output current	R_L = 96 from V _{IN} rising edge to V _{OUT} = 21.6V		40		μs
(dV _{OUT} /dt) _{on}	Turn-on voltage slope	$R_L = 96$ from $V_{OUT} = 2.4V$ to 19.2V		0.75		V/µs
(dV _{OUT} /dt) _{off}	Turn-off voltage slope	$R_L = 96$ from $V_{OUT} = 21.6V$ to 2.4V		0.25		V/µs

Table 5. Protections (Per channel)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{lim}	Current limitation		0.35	0.7	1.1	А
T _(hyst)	Thermal hysteresis		7	15		°C
T _{TSD}	Thermal shut-down temperature		150	175	200	°C
T _R	Reset temperature		135			°C
V _{demag}	Turn-off output clamp voltage	I _{OUT} = 0.25A, V _{CC} = 24V	V _{CC} -59	V _{CC} -52	V _{CC} -47	V

VNQ860-E / VNQ860SP-E

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{IL}	Low level input voltage				1.25	V
۱ _{IL}	Low level input current	V _{IN} = 1.25V	1			μΑ
V _{IH}	High level input voltage .		3.25			V
I _{IH}	High level input current.	V _{IN} = 3.25V			10	μΑ
V _{I(HYST)}	Input hysteresis voltage		0.5			V
I _{IN}	Input current	$V_{IN} = V_{CC} = 36V$			200	μΑ
V _{OL}	I/O Output votage	I _{IN} = 5mA (Fault condition)			1	V

Table 6. Logical Input (Per channel)

Table 7. Status Pin

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{STAT}	Status low output voltage	I _{STAT} = 5mA (Fault condition)			1	V
ILSTAT	Status leakage current	Normal operation; $V_{STAT} = V_{CC} = 36V$			10	μΑ
CSTAT	Status pin input capacitance	Normal operation; V _{STAT} = 5V			100	pF

Table 8.V_{CC} - Output Diode

ſ	Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	V _F	Forwardon Voltage	-I _{OUT} = 0.3A; T _J = 150°C			1	V

Table 9. Truth Table

Conditions	MCOUTn	l/On	OUTPUTn	STATUS
Normal operation	L H	L H	L H	H H
Current limitation	L H	L H	L X	н
Overtemperature	L H	L Driven low	L	X X
Undervoltage	L H	L H	L	X X
Overvoltage	L H	L H	L	H H

Figure 3. Switching Characteristics

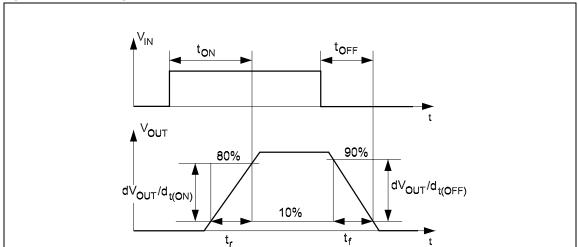
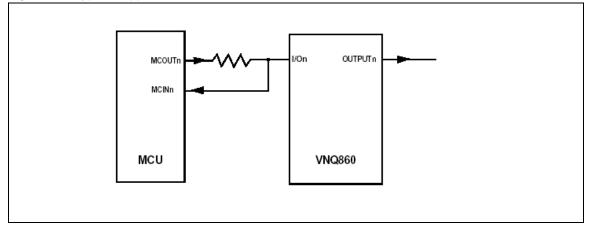
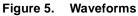
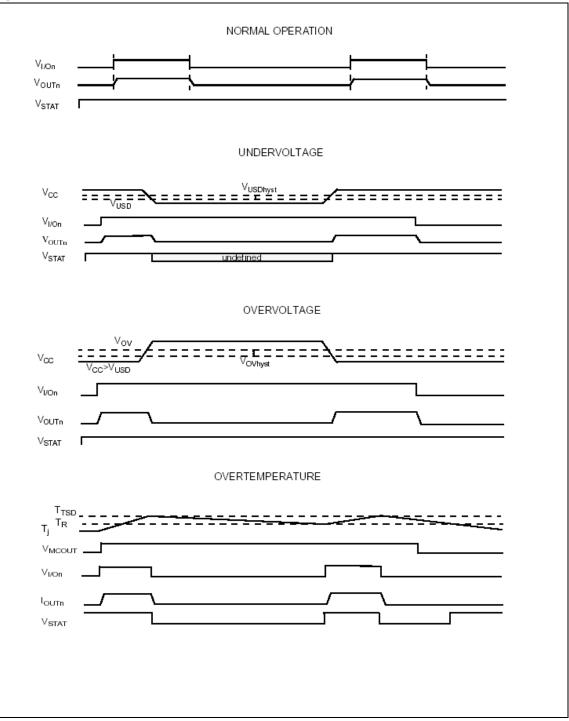





Figure 4. Typical Application Schematic

VNQ860-E / VNQ860SP-E

PowerSO-10[™] Thermal Data

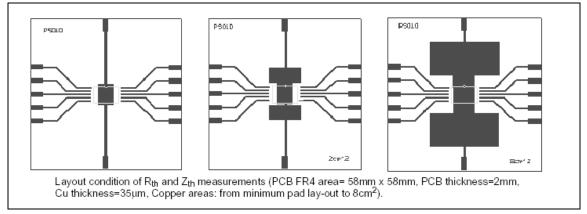
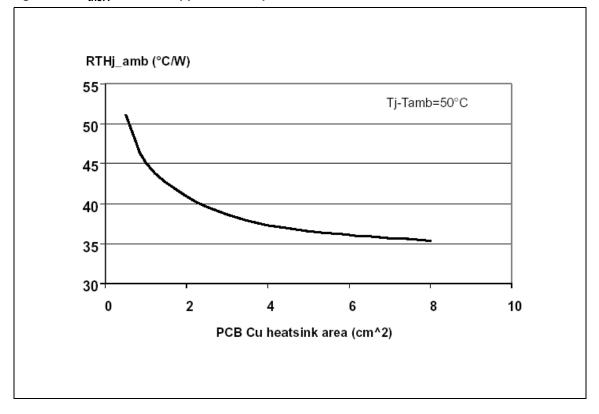
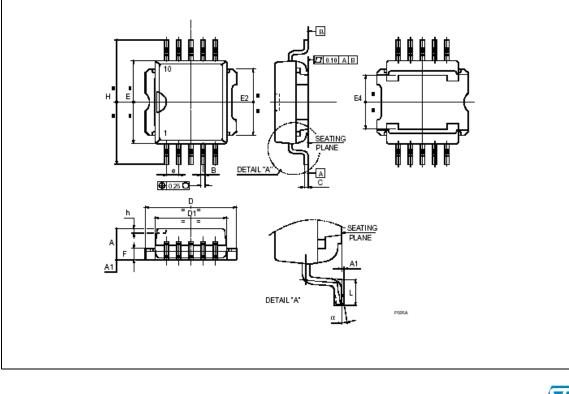



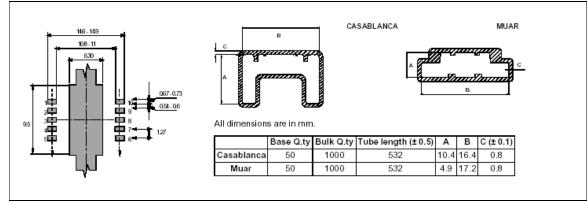
Figure 7. R_{thJA} Vs. PBC copper area in open box free air condition

Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com



Symbol		millimeters	
Symbol .	Min	Тур	Max
А	3.35		3.65
A (*)	3.4		3.6
A1	0.00		0.10
В	0.40		0.60
B (*)	0.37		0.53
С	0.35		0.55
C (*)	0.23		0.32
D	9.40		9.60
D1	7.40		7.60
E	9.30		9.50
E2	7.20		7.60
E2 (*)	7.30		7.50
E4	5.90		6.10
E4 (*)	5.90		6.30
e		1.27	
F	1.25		1.35
F (*)	1.20		1.40
Ĥ	13.80		14.40
H (*)	13.85		14.35
h		0.50	
L	1.20		1.80
L (*)	0.80		1.10
а	0°		8°
α (*)	2°		8°


Table 10. PowerSO-10[™] Mechanical Data

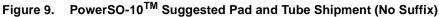
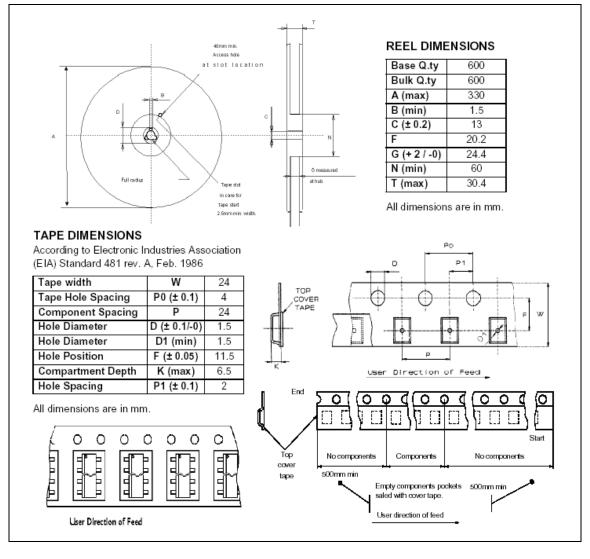
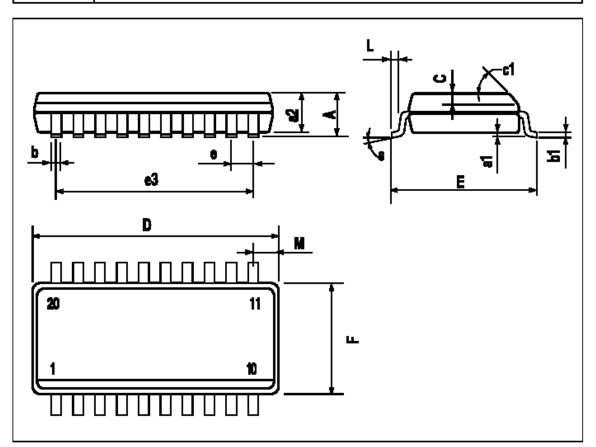
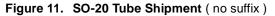

Note: (*) Muar only POA P013P

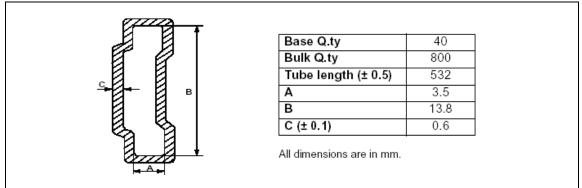
Figure 8.	PowerSO-10 [™] Package Dimensions
-----------	--

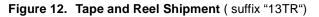


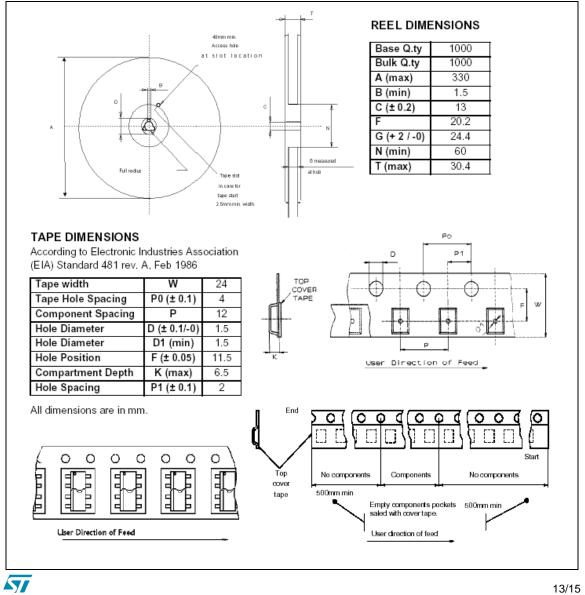
10/15






DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX
А			2.65			0.104
a1	0.10		0.20	0.004		0.007
a2			2.45			0.096
b	0.35		0.49	0.013		0.019
b1	0.23		0.32	0.009		0.012
С		0.50			0.020	
c1	45° (typ.)					
D	12.60		13.00	0.496		0.512
E	10.00		10.65	0.393		0.419
e		1.27			0.050	
F	7.40		7.60	0.291		0.299
L	0.50		1.27	0.19		0.050
М			0.75			0.029
S	8° (max.)					


Table 11. SO-20 Mechanical Data



12/15

Date	Revision	Description of Change			
14-Jul-2005	1	Updates , New template.			
7-Nov-2005	2	Few Updates.			

Table 12. Revision History

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

15/15