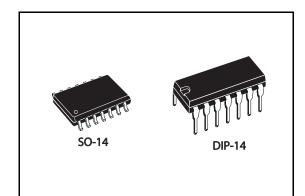


L6393


Half-bridge gate driver

Features

- High voltage rail up to 600 V
- dV/dt immunity ± 50 V/nsec in full temperature range
- Driver current capability:
 - 270 mA source,
 - 430 mA sink
- Switching times 75/35 nsec rise/fall with 1 nF load
- 3.3 V, 5 V CMOS/TTL inputs comparators with hysteresys
- Integrated bootstrap diode
- Uncommitted comparator
- Adjustable dead-time
- Compact and simplified layout
- Bill of material reduction
- Flexible, easy and fast design

Application

Motor driver for home appliances, factory automation, industrial drives and fans. HID ballasts, power supply units.

Description

The L6393 is a high-voltage device manufactured with the BCD "OFF-LINE" technology. It has a monolithic half-bridge gate driver for N-channel Power MOSFET or IGBT.

The high side (floating) section is designed to stand a voltage rail up to 600 V.

The logic inputs are CMOS/TTL compatible down to 3.3 V for easy of interfacing μ C/DSP.

The IC embeds an uncommited comparator available for protections against over-current, over-temperature, etc.

Order codes	Package	Packaging
L6393	DIP-14	Tube
L6393D	SO-14	Tube
L6393D013TR	SO-14	Tape and reel

Table 1. Device summary

Contents

1	Block diagram					
2	Pin connection					
	2.1 Pin description					
3	Truth table					
4	Electrical data					
	4.1 Absolute maximum ratings 6					
	4.2 Thermal data					
	4.3 Recommended operating conditions					
5	Electrical characteristics8					
	5.1 AC operation					
	5.2 DC operation					
6	Waveforms definition					
7	Typical application diagram 13					
8	Bootstrap driver					
	8.1 CBOOT selection and charging 14					
9	Package mechanical data 16					
10	Revision history					

1 Block diagram

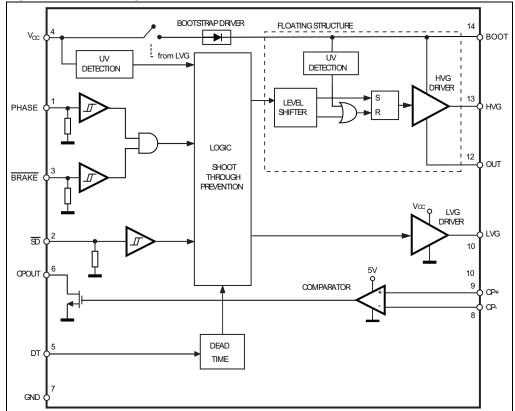
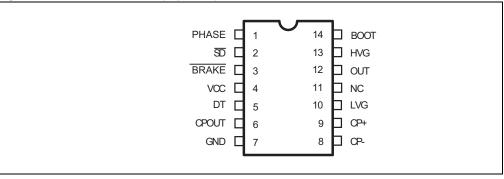



Figure 1. Block diagram

2 Pin connection

Figure 2.	Pin	connection	(top	view)
Figure 2.	гш	connection	(top	view)

2.1 Pin description

	i ili descrip		
Pin N#	Pin name	Туре	Function
1	PHASE	I	Driver logic input (active high)
2	SD (1)	I	Shut down input (active low)
3	BRAKE	I	Driver logic input (active low)
4	VCC	Р	Lower section supply voltage
5	DT	I	Dead time setting
6	CPOUT	0	Comparator output (open drain)
7	GND	Р	Ground
8	CP-	I	Comparator negative input
9	CP+	I	Comparator positive input
10	LVG ⁽¹⁾	0	Low side driver output
11	NC		Not connected
12	OUT	Р	High side (floating) common voltage
13	HVG ⁽¹⁾	0	High side driver output
14	BOOT	Р	Bootstrapped supply voltage

Table 2. Pin description

1. The circuit guarantees less than 1 V on the LVG and HVG pins (@ Isink = 10 mA), with V_{CC} > 3 V. This allows omitting the "bleeder" resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low; the gate driver assures low impedance also in SD condition.

57

3 Truth table

Table 3.	Truth table

INPUTS			Ουτι	PUTS
SD	PHASE	BRAKE	LVG	HVG
L	Х	Х	L	L
Н	L	L	Н	L
Н	L	Н	Н	L
Н	Н	L	Н	L
Н	Н	Н	L	Н

Note: X: don't care

In the L6393 IC the two input signals PHASE and BRAKE are fed into an AND logic port and the resulting signal is in phase with the high side output HVG and in opposition of phase with the low side output LVG. This means that if BRAKE is kept to high level, the PHASE signal drives the half-bridge in phase with the HVG output and in opposition of phase with the LVG output. If BRAKE is set to low level the low side output LVG is always ON and the high side output HVG is always OFF, whatever the PHASE signal. This kind of logic interface provides the possibility to control the power stages using the PHASE signal to select the current direction in the bridge and the BRAKE signal to perform current slow decay on the low sides.

From the point of view of the logic operations the two signals PHASE and BRAKE are completely equivalent, that means the two signals can be exchanged without any change in the behavior on the resulting output signals (see the Block Diagram in Fig.1).

Note: the dead time between the turn OFF of one power switch and the turn ON of the other power switch is defined by the resistor connected between DT pin and the ground.

4 Electrical data

4.1 Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{out}	Output voltage	V_{boot} - 21 to V_{boot} + 0.3	V
V _{cc}	Supply voltage	- 0.3 to + 21	V
V _{cp-}	Comparator negative input voltage	-0.3 to V _{CC} + 0.3	V
V_{cp+}	Comparator positive input voltage	-0.3 to V _{CC} + 0.3	V
V _{boot}	Floating supply voltage	V _{CC} - 0.3 to 620	V
V _{hvg}	High side gate output voltage output voltage	V_{out} - 0.3 to V_{boot} + 0.3	v
V _{Ivg}	High side gate output voltage output voltage	-0.3 to V _{cc} +0.3	V
Vi	Logic input voltage	-0.3 to 15	V
V _{cpout}	Open drain voltage	-0.3 to 15	V
dV _{out} /dt	Allowed output slew rate	50	V/ns
P _{tot}	Total power dissipation ($T_A = 85 \ ^{\circ}C$)	TBD	mW
Τ _J	Junction temperature	150	°C
T _{stg}	Storage temperature	-50 to 150	°C

Table 4. Absolute maximum rating

Note: ESD immunity for pins 12, 13 and 14 is guaranteed up to V (Human Body Model)

4.2 Thermal data

Table 5.Thermal data

Symbol	Parameter	SO-14	DIP-14	Unit
R _{th(JA)}	Thermal resistance junction to ambient max.	165	100	°C/W

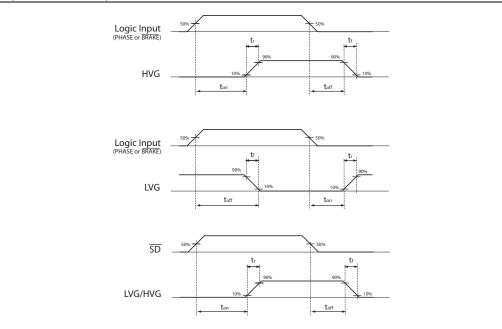
4.3 Recommended operating conditions

Table 6.	Recommended	operating	conditions
	neovonnonava	oporating	oonantionio

Symbol	Pin	Parameter	Test condition	Min	Max	Unit
V _{out}	12	Output voltage (1)			580	V
V _{BS} ⁽²⁾	14	Floating supply voltage ⁽¹⁾		TBD	TBD	V
f _{sw}		Switching frequency	HVG, LVG load C _L = 1 nF		800	kHz
V _{cc}	4	Supply Voltage		TBD	TBD	V
Tj		Junction Temperature		40	125	°C

1. If the condition TBD V < V_{boot} - V_{out} < TBD V and V_{boot} < TBD V are guaranteed, V_{out} can range from TBD V to 580 V

2. $V_{BS} = V_{boot} - V_{out}$


5 Electrical characteristics

5.1 AC operation

able 7. AC operation electrical characteristics ($V_{CC} = 15 V$, $I_J = +25 C$)							
Symbol	Pin	Parameter	Test condition	Min	Тур	Max	Unit
AC opera	tion				-		
t _{on}	1,3 vs	High/low side driver turn- on propagation delay	V _{out} = 0 V		125		ns
t _{off}	10, 13	High/low side driver turn- off propagation delay	$V_{boot} = V_{cc}$ $C_L = 1 nF$		125		ns
t _{sd}	2 vs 10, 13	Shut down to high/low side propagation delay	V _i = 0 to 3.3 V see <i>Figure 3 on page 9</i>		125		ns
MT		Delay matching, HS & LS turn-ON/OFF				40	ns
dt	5	Dead time setting range	$\begin{split} & R_{dt} = 0, C_{L} = 1 nF, C_{DT} = 100 nF \\ & R_{dt} = 37 k\Omega, C_{L} = 1 nF, C_{DT} = 100 nF \\ & R_{dt} = 136 k\Omega, C_{L} = 1 nF, C_{DT} = 100 nF \\ & R_{dt} = 260 k\Omega, C_{L} = 1 nF, C_{DT} = 100 nF \end{split}$		0.15 0.5 1.5 2.8		μs μs μs μs
MDT		Matching dead time	$\begin{split} & R_{dt} = 0 \; \Omega; \; C_{L} = 1 \; nF; \; C_{DT} = 100 \; nF \\ & R_{dt} = 37 \; k\Omega; C_{L} = 1 \; nF; C_{DT} = 100 \; nF \\ & R_{d} = 136 \; k\Omega; C_{L} = 1 \; nF; C_{DT} = 100 \; nF \\ & R_{dt} = 260 \; k\Omega; C_{L} = 1 \; nF; C_{DT} = 100 \; nF \end{split}$			60 TBD TBD TBD	ns ns ns ns
t _r	10,	Rise time	C _L = 1000 pF		75		ns
t _f	13	Fall time	C _L = 1000 pF		35		ns

Table 7. AC operation electrical characteristics ($V_{CC} = 15 \text{ V}, T_{J} = +25 \text{ °C}$)

57

Figure 3. Timing

5.2 DC operation

Symbol	Pin	Parameter	Test condition	Min	Тур	Мах	Unit
Low supply	v voltag	e section					
V _{cc_hys}		V _{cc} UV hysteresis		600	1500		mV
V_{cc_thON}		V _{cc} UV Turn ON threshold			9.5		V
V_{cc_thOFF}		V _{cc} UV Turn OFF threshold			8.0		V
I _{qccu}	4	Undervoltage quiescent supply current	$V_{CC} = 8 V$ $\overline{SD} = 5 V; PHASE and$ $\overline{BRAKE} = GND;$ $R_{DT} = 0 \Omega;$ $CP + = GND; CP - = 0.5 V$		110	150	μA
I _{qcc}		Quiescent current	$V_{CC} = 15 V$ $\overline{SD} = 5 V; PHASE and$ $\overline{BRAKE} = GND;$ $R_{DT} = 0 \Omega;$ $CP + = GND; CP - = 0.5 V$		600	1000	μA
Bootstrapp	ed sup	ply voltage section					
V _{BS_hys}		V _{BS} UV hysteresis		600	1000		mV
V_{BS_thON}		V _{BS} UV turn ON Threshold			9.1		V
$V_{BS_{thOFF}}$		V _{BS} UV turn OFF Threshold			8.1		V
I _{QBSU}	14	Undervoltage V _{boot} quiescent current	$V_{BS} = 7 V$ $\overline{SD} = 5 V; PHASE and$ $\overline{BRAKE} = 5 V;$ $R_{DT} = 0 \Omega;$ $CP + = GND; CP - = 0.5 V$		60	110	μA
I _{QBS}		V _{boot} quiescent current	$V_{BS} = 15 V$ SD = 5 V; PHASE and BRAKE = 5 V; $R_{DT} = 0 \Omega;$ CP + = GND; CP - = 0.5 V		140	210	μΑ
I _{LK}		High voltage leakage current	$V_{hvg} = V_{out} = V_{boot} = 600 V$			10	μA
R _{dson}		Bootstrap driver on resistance ⁽¹⁾	LVG ON		120		Ω

Table 8.DC opereation electrical characteristics ($V_{CC} = 15 V$; $T_J = +25 °C$)

10/20

57

Downloaded from $\underline{\text{Elcodis.com}}$ electronic components distributor

Symbol	Pin	Parameter	Test condition	Min	Тур	Max	Unit
Driving buffers section							
I _{so}	10, 13	High/low side source short circuit current	$V_{IN} = V_{ih} (t_p < 10 \ \mu s)$		270		mA
I _{si}	10, 13	High/low side sink short circuit current	$V_{IN} = V_{il} (tp < 10 \ \mu s)$		430		mA
Logic input	ts						
V _{il}	1, 2, 3	Low level logic threshold voltage				0.83	V
V _{ih}		High level logic threshold voltage		2.21			V
I _{PHASEh}	1	PHASE logic "1" input bias current	PHASE = 15 V		175	260	μ A
I _{PHASEI}		PHASE logic "0" input bias current	PHASE = 0 V			1	μA
I _{BRAKEh}	- 3	BRAKE logic "1" input bias current	BRAKE = 15 V		175	260	μA
I _{BRAKEI}		BRAKE logic "0" input bias current	BRAKE = 0 V			1	μA
I _{SDh}	2	SD logic "1" input bias current	<u>SD</u> = 15 V		30	100	μA
I _{SDI}		SD logic "0" input bias current	$\overline{SD} = 0 V$			1	μA

DC opereation electrical characteristics (V_{CC} = 15 V; T_J = +25 °C) (continued) Table 8.

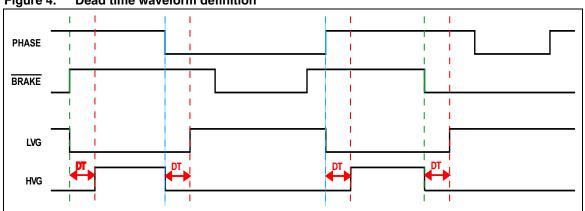

1. R_{DSon} is tested in the following way: $R_{DSon} = [(V_{CC} - V_{CBOOT1}) - (V_{CC} - V_{CBOOT2})] / [I_1(V_{CC}, V_{CBOOT1}) - I_2(V_{CC}, V_{CBOOT2})]$ where I_1 is pin 14 current when $V_{CBOOT} = V_{CBOOT1}$, I_2 when V_{CBOOT2} .

Table 9. Sense comparator

Symbol	Pin	Parameter	Test conditions	Min	Тур	Max	Unit
V _{io}	8, 9	Input offset voltage			±10	TBD	mV
I _{ib}		Input bias current				1	μA
V _{ol}	6	Open drain low level Output voltage	I _{od} = - 3 mA			0.5	V
t _{d_comp}		Comparator delay	C_{POUT} pulled to 5 V through 100k Ω resistor		110	210	ns
SR	6	Slew rate	C_L = 180 nF, R_{pu} = 5 k Ω		TBD		V/µs

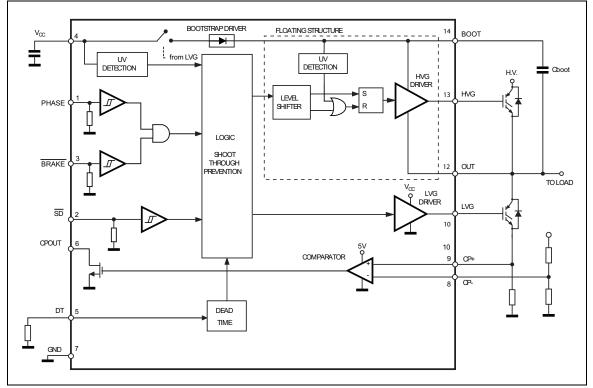

6

Figure 4. Dead time waveform definition

7 Typical application diagram

Figure 5. Application diagram

8 Bootstrap driver

A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode (*Figure 6.a*). In the L6393 a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low side driver (LVG), with diode in series, as shown in *Figure 6.b*.

An internal charge pump (Figure 6.b) provides the DMOS driving voltage.

The diode connected in series to the DMOS has been added to avoid undesirable turn on of it.

8.1 C_{BOOT} selection and charging

To choose the proper C_{BOOT} value the external MOS can be seen as an equivalent capacitor. This capacitor C_{EXT} is related to the MOS total gate charge:

$$C_{EXT} = \frac{Q_{gate}}{V_{gate}}$$

The ratio between the capacitors C_{EXT} and C_{BOOT} is proportional to the cyclical voltage loss. It has to be:

C_{BOOT} >>> C_{EXT}

e.g.: if Q_{gate} is 30nC and V_{gate} is 10 V, C_{EXT} is 3 nF. With C_{BOOT} = 100 nF the drop would be 300 mV.

If HVG has to be supplied for a long time, the C_{BOOT} selection has to take into account also the leakage and quiescent losses.

e.g.: HVG steady state consumption is lower than 200 μ A, so if HVG T_{ON} is 5 ms, C_{BOOT} has to supply 1 μ C to C_{EXT}. This charge on a 1 μ F capacitor means a voltage drop of 1 V.

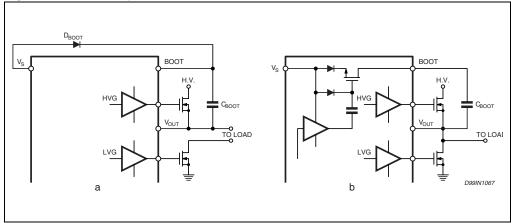
The internal bootstrap driver gives a great advantage: the external fast recovery diode can be avoided (it usually has great leakage current).

This structure can work only if V_{OUT} is close to GND (or lower) and in the meanwhile the LVG is on. The charging time (T_{charge}) of the C_{BOOT} is the time in which both conditions are fulfilled and it has to be long enough to charge the capacitor.

The bootstrap driver introduces a voltage drop due to the DMOS R_{DSon} (typical value: 120 Ω). At low frequency this drop can be neglected. Anyway increasing the frequency it must be taken in to account.

The following equation is useful to compute the drop on the bootstrap DMOS:

$$V_{drop} = I_{charge}R_{dson} \rightarrow V_{drop} = \frac{Q_{gate}}{T_{charge}}R_{dson}$$


where Q_{gate} is the gate charge of the external power MOS, R_{DSon} is the on resistance of the bootstrap DMOS, and T_{charge} is the charging time of the bootstrap capacitor.

For example: using a power MOS with a total gate charge of 30 nC the drop on the bootstrap DMOS is about 1 V, if the T_{charge} is 5 μ s. In fact:

$$V_{drop} = \frac{30nC}{5\mu s} \cdot 120\Omega \sim 0.7V$$

 V_{drop} has to be taken into account when the voltage drop on C_{BOOT} is calculated: if this drop is too high, or the circuit topology doesn't allow a sufficient charging time, an external diode can be used.

Figure 6. Bootstrap driver

9 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

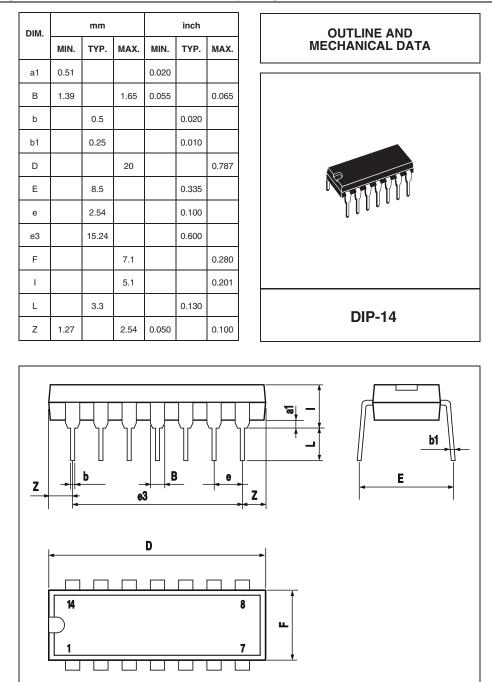


Figure 7. DIP-14 mechanical data and package dimensions

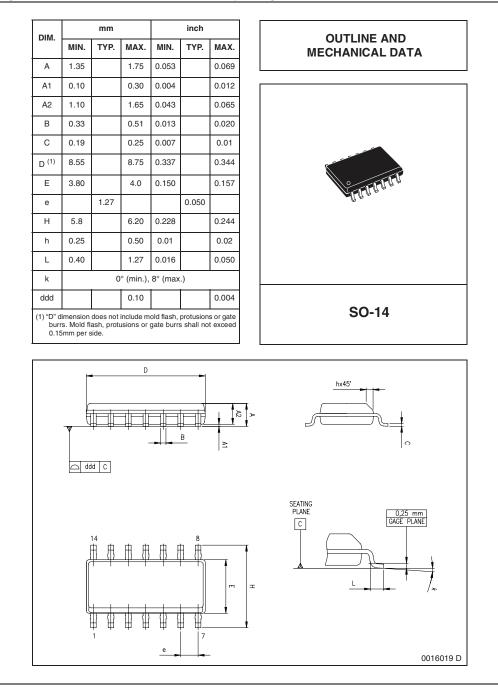


Figure 8. SO-14 mechanical data and package dimensions

18/20

57

10 Revision history

Table 10.Document revision history

Date	Revision	Changes
03-Mar-2008	1	Initial release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

