# TLE42664

# Low Dropout Fixed Voltage Regulator

# Automotive Power

Never stop thinking



## Low Dropout Fixed Voltage Regulator

#### TLE42664G



### 1 Overview

#### Features

- Output Voltage 5 V ±2 % up to Output Currents of 50 mA
- Output Voltage 5 V ±3 % up to Output Currents 100 mA
- Very Low Dropout Voltage
- Very Low Current Consumption: typ. 40 μA
- Enable Input
- Output Current Limitation
- Reverse Polarity Protection
- Overtemperature Shutdown
- Wide Temperature Range From -40 °C up to 150 °C
- Suitable for Use in Automotive Electronics
- Green Product (RoHS compliant)
- AEC Qualified

### Description

The TLE42664 is a monolithic integrated low dropout fixed voltage regulator for load currents up to 100 mA. It is the 1-to-1 replacement product for the TLE4266-2. It is functional compatible to the TLE4266, but has a reduced quiescent current of typ. 40µA. The TLE42664 is especially designed for applications requiring very low standby currents, e.g. with a permanent connection to the car's battery. It can be disabled/enabled by the integrated EN pin. The device is available in the small surface mounted PG-SOT223-4 package and is pin compatible to the TLE4266-2 and the TLE4266. The device is designed for the harsh environment of automotive applications. Therefore it is protected against overload, short circuit and overtemperature conditions by the implemented output current limitation and the overtemperature shutdown circuit. The TLE42664 can be also used in all other applications requiring a stabilized 5 V voltage.

An input voltage up to 45 V is regulated to  $V_{Q,nom}$  = 5 V with a precision of ±3 %. An accuracy of ±2 % is kept for load currents up to 50 mA. A logical "HIGH" at the ENABLE pin enables the device.

| Туре      | Package     | Marking |
|-----------|-------------|---------|
| TLE42664G | PG-SOT223-4 | 42664   |



Rev. 1.01, 2009-09-30



**Block Diagram** 

# 2 Block Diagram

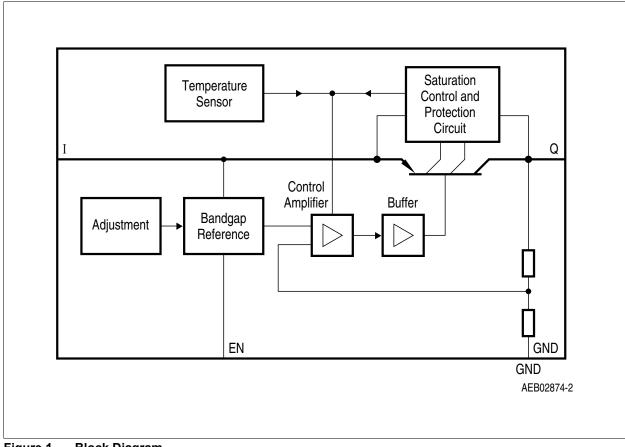



Figure 1 Block Diagram



#### **Pin Configuration**

# 3 Pin Configuration

# 3.1 Pin Assignment PG-SOT223-4

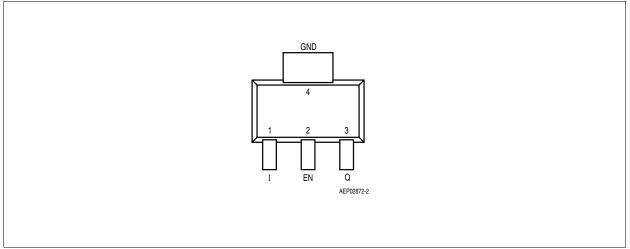



Figure 2 Pin Configuration (top view)

## 3.2 Pin Definitions and Functions PG-SOT223-4

| Pin No.       | Symbol | Function                                                                                |
|---------------|--------|-----------------------------------------------------------------------------------------|
| 1             | I      | Input                                                                                   |
|               |        | block to ground directly at the IC with a ceramic capacitor                             |
| 2             | EN     | Enable Input                                                                            |
|               |        | high level enables the device;                                                          |
|               |        | low level disables the device;                                                          |
|               |        | integrated pull-down resistor                                                           |
| 3             | Q      | Output                                                                                  |
|               |        | block to ground with a capacitor close to the IC terminals, respecting the values given |
|               |        | for its capacitance and ESR in "Functional Range" on Page 5                             |
| 4 / Heat Slug | GND    | Ground / Heat Slug                                                                      |
| _             |        | internally connected to leadframe and GND;                                              |
|               |        | connect to GND and heatsink area                                                        |



# 4 General Product Characteristics

### 4.1 Absolute Maximum Ratings

#### Absolute Maximum Ratings<sup>1)</sup>

 $T_i$  = -40 °C to 150 °C; all voltages with respect to ground, (unless otherwise specified)

| Pos.     | Parameter            | Symbol                  | Limit Values |      | Unit | Test Condition                                            |  |
|----------|----------------------|-------------------------|--------------|------|------|-----------------------------------------------------------|--|
|          |                      |                         | Min.         | Max. |      |                                                           |  |
| Input I, | Enable EN            | I                       |              |      |      |                                                           |  |
| 4.1.1    | Voltage              | $V_{\rm I}, V_{\rm EN}$ | -30          | 45   | V    | -                                                         |  |
| Output   | Q                    |                         |              | L    |      | Ĺ                                                         |  |
| 4.1.2    | Voltage              | V <sub>Q</sub>          | -0.3         | 32   | V    | -                                                         |  |
| Tempe    | rature               | I                       |              | L    |      |                                                           |  |
| 4.1.3    | Junction temperature | T <sub>i</sub>          | -40          | 150  | °C   | -                                                         |  |
| 4.1.4    | Storage temperature  | T <sub>stg</sub>        | -50          | 150  | °C   | -                                                         |  |
| ESD Su   | usceptibility        |                         |              | L    |      |                                                           |  |
| 4.1.5    | ESD Absorption       | $V_{ESD,HBM}$           | -3           | 3    | kV   | Human Body Model<br>(HBM) <sup>2)</sup>                   |  |
| 4.1.6    |                      | V <sub>ESD,CDM</sub>    | -1500        | 1500 | V    | Charge Device<br>Model (CDM) <sup>3)</sup> at all<br>pins |  |

1) not subject to production test, specified by design

2) ESD susceptibility Human Body Model "HBM" according to AEC-Q100-002 - JESD22-A114

3) ESD susceptibility Charged Device Model "CDM" according to ESDA STM5.3.1

- Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

## 4.2 Functional Range

| Pos.  | Parameter                  | Symbol         | Lim  | it Values | Unit | Remarks |
|-------|----------------------------|----------------|------|-----------|------|---------|
|       |                            |                | Min. | Max.      |      |         |
| 4.2.1 | Input voltage              | $V_1$          | 5.5  | 40        | V    |         |
| 4.2.2 | Output Capacitor's         | C <sub>Q</sub> | 10   | -         | μF   | -       |
| 4.2.3 | Requirements for Stability | $ESR(C_Q)$     | -    | 2         | Ω    | 1)      |
| 4.2.4 | Junction temperature       | T <sub>i</sub> | -40  | 150       | °C   | _       |

1) relevant ESR value at f = 10 kHz

Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table.



#### **General Product Characteristics**

### 4.3 Thermal Resistance

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org.

| Pos.  | Parameter                         | Symbol            |      | Limit Val | ues  | Unit | Conditions                                         |
|-------|-----------------------------------|-------------------|------|-----------|------|------|----------------------------------------------------|
|       |                                   |                   | Min. | Тур.      | Max. |      |                                                    |
| TLE42 | 664G (PG-SOT223-4)                | I                 |      |           | L    |      |                                                    |
| 4.3.1 | Junction to Case <sup>1)</sup>    | R <sub>thJC</sub> | -    | 17        | -    | K/W  | measured to heat slug                              |
| 4.3.2 | Junction to Ambient <sup>1)</sup> | R <sub>thJA</sub> | _    | 54        | _    | K/W  | 2)                                                 |
| 4.3.3 |                                   |                   | -    | 139       | -    | K/W  | footprint only <sup>3)</sup>                       |
| 4.3.4 |                                   |                   | -    | 73        | -    | K/W  | 300 mm <sup>2</sup> heatsink<br>area <sup>3)</sup> |
| 4.3.5 |                                   |                   | -    | 64        | -    | K/W  | 600 mm <sup>2</sup> heatsink<br>area <sup>3)</sup> |

1) Not subject to production test, specified by design.

 Specified R<sub>thJA</sub> value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm<sup>3</sup> board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.

3) Specified  $R_{thJA}$  value is according to Jedec JESD 51-3 at natural convection on FR4 1s0p board; The Product (Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm<sup>3</sup> board with 1 copper layer (1 x 70µm Cu).



# 5 Electrical Characteristics

### 5.1 Electrical Characteristics Voltage Regulator

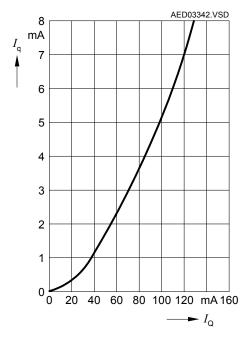
#### **Electrical Characteristics**

| V.=13.5 V: T.        | = -40  °C to | 150 °C; all | voltages with | respect to   | around (i | unless otherwise | specified) |
|----------------------|--------------|-------------|---------------|--------------|-----------|------------------|------------|
| $v_1 - 10.0 v_1 I_1$ |              | 150 0, an   | voltages with | i lespect to | ground (t |                  | specificuj |

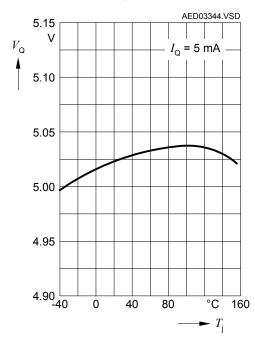
| Pos.    | Parameter                                                      | Symbol                  | Limit Values |           |      | Unit | Measuring Condition                                                        |  |
|---------|----------------------------------------------------------------|-------------------------|--------------|-----------|------|------|----------------------------------------------------------------------------|--|
|         |                                                                |                         | Min.         | Typ. Max. |      |      |                                                                            |  |
| Output  | Q                                                              |                         |              | 4         | 4    |      |                                                                            |  |
| 5.1.1   | Output Voltage                                                 | VQ                      | 4.9          | 5.0       | 5.1  | V    | 5 mA < $I_{\rm Q}$ < 50 mA<br>6 V < $V_{\rm I}$ < 16 V                     |  |
| 5.1.2   |                                                                |                         | 4.85         | 5.0       | 5.15 | V    | 5 mA < I <sub>Q</sub> <100 mA<br>6 V < V <sub>I</sub> < 21 V               |  |
| 5.1.3   | Output Voltage At Low Output<br>Currents                       | VQ                      | 4.80         | 5.0       | 5.20 | V    | 100 μA < <i>I</i> <sub>Q</sub> <5 mA<br>6 V < <i>V</i> <sub>I</sub> < 21 V |  |
| 5.1.4   | Dropout Voltage                                                | $V_{ m dr}$             | -            | 250       | 500  | mV   | $I_{Q} = 100 \text{ mA}$ $V_{dr} = V_{I} - V_{Q}^{(1)}$                    |  |
| 5.1.5   | Load Regulation                                                | $\Delta V_{ m Q, \ lo}$ | -            | 50        | 90   | mV   | $I_{\rm Q}$ = 1 mA to 100 mA<br>$V_{\rm I}$ = 13.5 V                       |  |
| 5.1.6   | Line Regulation                                                | $\Delta V_{Q, li}$      | -            | 5         | 30   | mV   | $V_{\rm I} = 6 \text{ V to } 28 \text{ V}$<br>$I_{\rm Q} = 1 \text{ mA}$   |  |
| 5.1.7   | Output Current Limitation                                      | $I_{Q}$                 | 150          | 200       | 500  | mA   | 1)                                                                         |  |
| 5.1.8   | Power Supply Ripple Rejection <sup>2)</sup>                    | PSRR                    | -            | 68        | -    | dB   | <i>f</i> <sub>r</sub> = 100 Hz; <i>V</i> <sub>r</sub> = 0.5 Vpp            |  |
| 5.1.9   | Overtemperature Shutdown<br>Threshold <sup>2)</sup>            | $T_{\rm j,sd}$          | 151          | -         | 200  | °C   | $T_{\rm j}$ increasing                                                     |  |
| 5.1.10  | Overtemperature Shutdown<br>Threshold Hysteresis <sup>2)</sup> | $T_{\rm j,sdh}$         | -            | 25        | -    | °C   | $T_{\rm j}$ decreasing                                                     |  |
| Current | Consumption                                                    | <u> </u>                |              |           |      |      |                                                                            |  |
| 5.1.11  | Current Consumption<br>Device Disabled                         | $I_{\rm q,OFF}$         | -            | 0         | 1    | μA   | $V_{\rm EN}$ = 0 V; $T_{\rm j}$ < 100 °C                                   |  |
| 5.1.12  | Quiescent Current                                              | Iq                      | -            | 40        | 60   | μA   | I <sub>Q</sub> = 100 μA, T <sub>j</sub> < 85 °C                            |  |
| 5.1.13  | $I_{\rm q} = I_{\rm I} - I_{\rm Q}$                            |                         | -            | 40        | 70   | μA   | I <sub>Q</sub> = 100 μA                                                    |  |
| 5.1.14  | Current Consumption<br>$I_q = I_1 - I_Q$                       | Iq                      | -            | 1.7       | 4    | mA   | <i>I</i> <sub>Q</sub> = 50 mA                                              |  |
| Enable  | Input                                                          | L                       | 1            | 1         | 1    |      |                                                                            |  |
| 5.1.15  | High Level Input Voltage                                       | $V_{\rm EN,ON}$         | 3.5          | -         | -    | V    | -                                                                          |  |
| 5.1.16  | Low Level Input Voltage                                        | $V_{EN,OFF}$            | -            | -         | 0.8  | V    | -                                                                          |  |
| 5.1.17  | Enable Input Current                                           | I <sub>EN,ON</sub>      | -            | 4         | 8    | μA   | V <sub>EN</sub> = 5 V                                                      |  |
| 5.1.18  | Pull-down Resistor                                             | R <sub>EN</sub>         | -            | 1.0       | -    | MΩ   | -                                                                          |  |

1) Measured when the output voltage  $V_{\rm Q}$  has dropped 100 mV from the nominal value obtained at  $V_{\rm I}$  = 13.5 V.

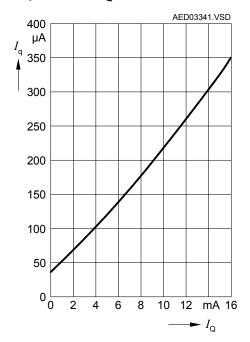
2) not subject to production test, specified by design

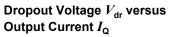

Downloaded from Elcodis.com electronic components distributor

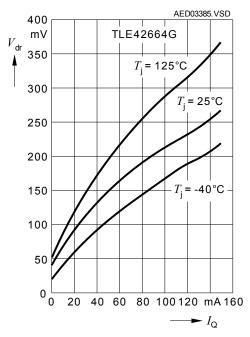



**Electrical Characteristics** 

# 5.2 Typical Performance Characteristics Voltage Regulator

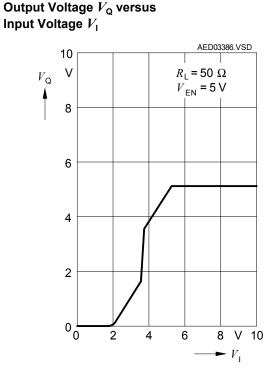

# Current Consumption $I_{\rm q}$ versus Output Current $I_{\rm Q}$



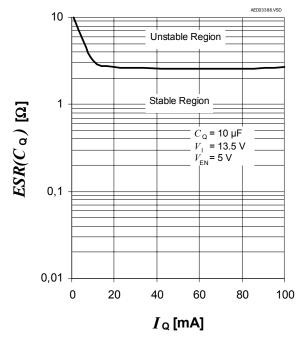


Output Voltage Variation  $\Delta V_{\rm Q}$  versus Junction Temperature  $T_{\rm J}$ 



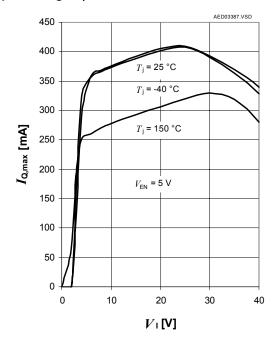
Current Consumption  $I_q$  versus Low Output Current  $I_Q$ 



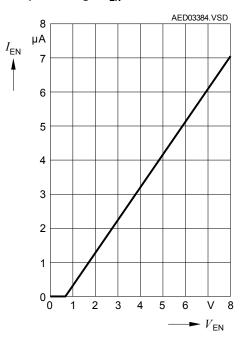






#### **Electrical Characteristics**

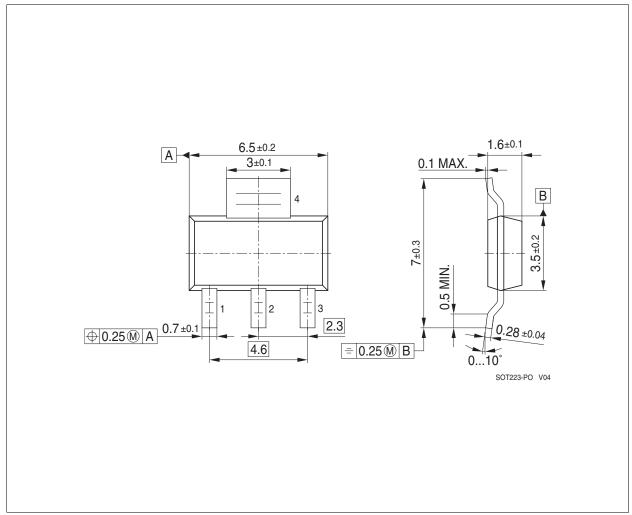



Region Of Stability: Output Capacitor's ESR  $ESR(C_Q)$  versus Output Current  $I_Q$ 



#### Maximum Output Current $I_{Q}$ versus Input Voltage $V_{I}$




Enable Input Current  $I_{\rm EN}$  versus Enable Input Voltage  $V_{\rm EN}$ 





#### **Package Outlines**

# 6 Package Outlines





#### Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

For further information on alternative packages, please visit our website: http://www.infineon.com/packages.

Dimensions in mm



**Revision History** 

# 7 Revision History

| Revision | Date       | Changes                                                                                                                                                                                    |
|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0      | 2009-06-26 | initial version data sheet                                                                                                                                                                 |
| 1.01     | 2009-09-30 | updated version data sheet; typing error corrected in <b>Table 4.1 "Absolute</b><br><b>Maximum Ratings" on Page 5</b> : In <b>Item 4.1.1</b> min. value corrected from "-42V" to<br>"-30V" |

Downloaded from **Elcodis.com** electronic components distributor

Edition 2009-09-30

Published by Infineon Technologies AG 81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

#### Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

#### Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

#### Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.