TOSHIBA BiCD Digital Integrated Circuit Silicon Monolithic

TB62731FUG

Step-up DC-DC Converter for White LED Driver

The TB62731FUG is an LED driver that uses a high power efficiency step-up DC-DC converter. The converter turns on/off 2 to 6 white LEDs in series.
The IC incorporates an N-channel MOSFET transistor used for coil-switching and a function that reduces the LED current in response to increase in temperature.
The mean LED current can be easily set using an external resistor.

The IC is ideal as a driver for LED light sources used as liquid crystal backlights for PDAs, cellular phones, and handy terminals.

Weight: 0.016 g (typ.)

Features

- Maximum output voltage: Vo $\leq 28 \mathrm{~V}$
- Mean LED current values set according to external resistor

$$
\begin{aligned}
& 14 \mathrm{~mA} \text { (typ.) } @ \text { R_sens }=2.7 \Omega \\
& 20 \mathrm{~mA} \text { (typ.) } @ \text { R_sens }=1.8 \Omega
\end{aligned}
$$

- Supply power: Up to 320 mW supported
- Compact package: SSOP6-P-0.95B, 6 pins
- Built-in temperature derating function: LED current derated automatically depending on temperature
- High power efficiency

Up to 80% of peak power efficiency achieved using recommended components
Ron $=2.0 \Omega$ (typ.) @VIN $=3.2 \sim 5.5 \mathrm{~V}$
Built-in low Ron power MOS switch

Pin assignment (top view)

Block Diagram

Pin Functions

No	Symbol	
1	K	Pin connecting LED cathode to resistor used to set current. Feedback pin for voltage waveforms for controlling the LED constant current.
2,5	GND	Ground pin for the logic
3	SHDN	IC enable pin. Low, Standby Mode takes effect and pin A is turned off.
4	$V_{C C}$	Input pin for power supply for operating the IC. Operating voltage range: 3.0~5.5 V
6	A	DC-DC converter switch pin. The switch is an N-channel MOSFET transistor.

Note: Connect both GND pins to ground.

Absolute Maximum Ratings (unless otherwise specified, $\mathrm{T}_{\mathrm{opr}}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit
Supply voltage	V_{CC}	-0.3~+6.0	V
Input voltage	$\mathrm{V}_{\text {IN }}$	$-0.3 \sim+V_{C C}+0.3$	V
Pin A (anode) current	$\mathrm{I}_{0}(\mathrm{~A})$	+270	mA
Pin A voltage	$\mathrm{V}_{0}(\mathrm{~A})$	-0.3~+28	V
Power dissipation	P_{D}	0.41 (IC only)	W
		0.47 (IC mounted on PCB) (Note)	
Saturation thermal resistance	$\mathrm{R}_{\text {th (j-a) }} 1$	300 (IC only)	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\mathrm{R}_{\text {th (j-a) }}{ }^{2}$	260 (IC mounted on PCB)	
Operating temperature range	Topr	-40~+85	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-40~+150	${ }^{\circ} \mathrm{C}$
Maximum junction temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$

Note: The power dissipation is derated by $3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from the maximum rating for every $1^{\circ} \mathrm{C}$ exceeding the ambient temperature of $25^{\circ} \mathrm{C}$ (when the IC is mounted on a PCB).

Recommended Operating Conditions (unless otherwise specified, $\mathrm{T}_{\mathrm{opr}}=\mathbf{- 4 0 \sim 8 5}{ }^{\circ} \mathrm{C}$)

| Characteristics | Symbol | Test
 circuit | Test condition | Min | Typ. | Max |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | Unit 1

Electrical Characteristics (unless otherwise specified, $\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.0 \sim 5.5 \mathrm{~V}$)

Characteristics	Symbol	Test circuit	Test condition	Min	Typ.	Max	Unit
Supply voltage	V_{CC}	-	-	3.0	-	5.5	V
Current consumption at operation	I_{CC} (ON)	-	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-	0.6	0.9	mA
Current consumption at standby	ICc (SHDN)	-	SHDN $=0 \mathrm{~V}$	-	0.5	1.0	$\mu \mathrm{A}$
SHDN pin current	I_SHDN	-	SHDN $=\mathrm{V}_{\mathrm{CC}}$, Built-in pull-down resistor	-	4.2	7	$\mu \mathrm{A}$
Internal MOS transistor on-resistance	Ron	-	$I(A) \leqq 270 \mathrm{~mA},$ Including detected resistance	-	2.0	2.5	Ω
Internal MOS transistor switching frequency	$\mathrm{f}_{\text {OSC }}$	-	-	275	350	425	kHz
Pin A voltage	$\mathrm{V}_{\mathrm{o}}(\mathrm{A})$	-	-	28	-	-	V
Pin A current	$\mathrm{I}_{0}(\mathrm{~A})$	-	-	210	240	270	mA
Pin A leakage current	$\mathrm{I}_{\mathrm{oz}}(\mathrm{A})$	-	-	-	0.5	1	$\mu \mathrm{A}$
Set LED current (mean)	I_{0}	-	$\begin{array}{\|l} \mathrm{V}_{\mathrm{CC}}=3.2 \sim 4.2 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{S}} \text { sens }=1.8 \Omega \\ \mathrm{~T}_{\mathrm{opr}}=25^{\circ} \mathrm{C} \\ \hline \end{array}$ (Note 1)	17.6	20	22.4	mA
Pin K derating start ambient temperature	Tdel	-	$\text { Equivalent to R_sens = } 1.8 \Omega \text {, }$ $\mathrm{L}=4.7 \mu \mathrm{H}, \mathrm{~V}_{\mathrm{O}}=16 \mathrm{~V}$	-	$\left\|\begin{array}{c} 45 \\ \text { (Note 2) } \end{array}\right\|$	-	${ }^{\circ} \mathrm{C}$

Note 1: Due to operation of the temperature derating function, measure when $\mathrm{Ta}=25^{\circ} \mathrm{C}$.
Note that fluctuation in R_sens resistors is not included in the specified value.
I_{0} may be different from the specified value due to the relation between the inductor value and load.
Note 2: This rating is guaranteed by the design.

Figure 1 Application Circuit

The basic TB62731FUG circuit uses a step-up DC-DC converter and burst control of the current pulse.

Basic Operation

The internal MOS transistor (NMOS) is turned on at fOSC $=350 \mathrm{kHz}$, charging energy to the inductor.
The inductance current IL increases from 0 . When $\mathrm{IL}=\mathrm{ILpeak}=240 \mathrm{~mA}$ (typ.) or when $5 / 6(83.3 \%)$ of foSC $(=$ 350 kHz) is reached, the transistor is turned off.
At that time, the coil maintains IL = ILpeak, the Schottky diode is turned on, and IL = Ic2 flows. Then, Ic2 decreases, reaching IL $=0$.
The above operation repeats. When Ic2 is fully charged, the surplus current becomes I_{0}, which flows to the LED.

The graph below shows details of the basic pulse used for burst control.

Figure 2 Switching Waveform of Inductance

Figure 3 Burst Control Waveforms

Burst Control

Burst control is control of the number of current pulses, shown in the graph on the previous page.
Control is repeated in desired cycles. The current pulse in the graph is the charged current on capacitor 2 (C2) for output.

The current pulse is supplied to the LED as current discharged from the output-side capacitor. The current pulse flows to GND via R_sens.
The waveform of the voltage charged on the output-side capacitor is fed back to the IC from pin K via C 2.
The internal circuit which uses pin K for input controls the number of current pulses so that the mean voltage value of the obtained voltage waveform is 36 mV . As a result, the output current is controlled as the constant current (= mean current).

Connecting R_sens $=1.8 \Omega$ obtains the mean current ($36 \mathrm{mV} \div 1.8 \Omega=20 \mathrm{~mA}$).
Current is controlled by PFM (pulse frequency modulation) because the time when the output pulse is generated varies (increases/decreases).

A prerequisite is that the input power from VIN is larger than the output power to the LED load. The constant current is maintained by fixing a pulse stop time of $7.5 \sim 15 \mu \mathrm{~s}$ and increasing/decreasing the number of current pulses. The number of current pulses is fewer when the input power exceeds the output power, larger when the input power is less than the output power.

The burst frequency (pulse generation frequency) at controlled constant current is calculated as follows:
fburst $[\mathrm{Hz}]=$ (number of current pulses $\mathrm{x}(1 / 275 \sim 1 / 350 \mathrm{kHz})+$ pulse stop time $(7.5 \sim 15 \mu \mathrm{~s}) \ldots$ formula 1
The IC is designed to supply a load power of 320 mW (min).
Generally, a step-up inductance of $47 \mu \mathrm{H}$ is used for optimum design for the load power of 320 mW . When the load power is small, the inductance must be small.

Make sure the following condition for LED load between pins A and K is satisfied:
VIN (V_{CC}) < LED Vf total
Note that, regardless of control by the IC, LEDs are always on.

Standby Operation

The SHDN pin is used to set normal or standby operation. When SHDN is set to Low, the operation is standby; when the pin is High, the LED is turned on. Current consumption in Standby Mode is $1 \mu \mathrm{~A}$ (max).

Output-side capacitor setting

When the output-side capacitor $(\mathrm{C} 2)=0.1 \mu \mathrm{~F}$, the peak current to be supplied to LEDs is expected to be the set current $+5 \sim+8 \mathrm{~mA}$.
When $\mathrm{C} 2=0.01 \mu \mathrm{~F}$, the peak current is expected to be the set current $+20 \sim 30 \mathrm{~mA}$; when $\mathrm{C} 2=1 \mu \mathrm{~F}$, it is the set current $+2 \sim 3 \mathrm{~mA}$. Toshiba recommend $\mathrm{C} 2=1 \mu \mathrm{~F}$ or more considering the LED max If.
The IC is used only for lighting LEDs. The IC does not finely control output current ripples. This is because eliminating ripples is considered unnecessary as the LED emittance is recognized as the integral amount.

External inductance setting

The minimum external inductance is calculated as follows:
$\mathrm{L}(\mu \mathrm{H})=\left(\left(\mathrm{K} \times \mathrm{P}_{0}\right)-\mathrm{V}_{\mathrm{IN}} \min \times \mathrm{I}_{0}\right) \times(1 / \mathrm{fOSC} \min) \times 2 \times(1 / \mathrm{Ip} \min \times \mathrm{Ip} \min) \ldots$ formula 2
The above parameters are described below:
P_{o} : output power (power required by LED load)
$\mathrm{P}_{\mathrm{o}}(\mathrm{W})=\mathrm{Vf}$ LED \times If LED + Vf schottky \times If LED + R_sens \times If LED \times If LED
LED forward current: If LED $(\mathrm{mA})=$ Set current: $\mathrm{I}_{\mathrm{o}}(\mathrm{mA})$, LED forward voltage: Vf LED (V), schottky diode forward voltage: Vf schottky (V),
Setting resistance: R_sens (Ω)
VIN min (V): minimum input voltage (battery voltage)
If the input voltage includes a resistance component, take the voltage drop into consideration for the minimum input voltage.
The input current IIN is roughly estimated as follows:

$$
\operatorname{IIN}(\mathrm{mA})=\operatorname{VfLED} \times \mathrm{I}_{0} \times(1 / \eta) \times(1 / \mathrm{VIN}) \ldots \text { formula } 3
$$

When min VIN $=3.2(\mathrm{~V}), \operatorname{VfLED}=16(\mathrm{~V}), \mathrm{I}_{0}=18(\mathrm{~mA})$, and $\eta \geqq 75(\%)$, then $\mathrm{I}_{\mathrm{IN}}=0.12(\mathrm{~mA})$. As a result, the voltage drops by 1.2 V due to the $1-\Omega \mathrm{DC}$ resistance component. Because the IC's minimum $\mathrm{VCC}=$ 3.0 V , the minimum $\mathrm{V}_{\text {IN }}$ is $3.12 \mathrm{~V}\left(\mathrm{~V}_{\text {IN }} \geqq 3.12 \mathrm{~V}\right)$.
$\mathrm{I}_{0}(\mathrm{~A})$: Mean current value set according to resistance R _sens (Ω)
fOSC (Hz): Switching frequency of internal MOS transistor
Specified values for foSC (kHz): 275 min, 350 typ., 475 max
Ip (A): Peak current value supplied to external inductor
Specified values for Ip (A): $230 \mathrm{~min}, 240$ typ., 270 max
K: Margin of output power $\mathrm{K}=1.1 \sim 1.3$
The ideal condition is to give 1.05 to 1.3 times the output power P_{o} as the input power.
The loss of the IC is assumed to be included in the margin.
If K is too large, it may not be possible for the current characteristic to be the specified value. Note that $\mathrm{K}>1$.

Substitute the following conditions in formula 2.
Supply voltage VIN = 3.0~4.3 (V)
Output-side capacitor $\mathrm{C} 2=1(\mu \mathrm{~F}) \ldots \mathrm{C} 2$ is ignored in the calculation.
Where it is assumed that,
VfLED $=16(\mathrm{~V})$, Vf schottky $=0.3(\mathrm{~V})$, R_sens $=1.8(\Omega), \mathrm{I}_{\mathrm{O}}=20(\mathrm{~mA}), \mathrm{K}=1.1$
VfLED: LED Vf
Vf schottky: schottky diode Vf
R_sens: setting resistance
I_{0} : set current
K: margin

$$
\begin{array}{r}
\mathrm{L}(\mu \mathrm{H})=((1.1 \times 16 \times 0.02)-3 \times 0.02) \times(1 / 275 \mathrm{e} 3) \times 2 \times(1 /(0.21 \times 0.21))=48.1(\mu \mathrm{H}, \mathrm{~V} \text { IN }=3.0 \mathrm{~V}) \\
43.8(\mu \mathrm{H}, \mathrm{~V} \mathrm{~V}=4.3 \mathrm{~V})
\end{array}
$$

Thus, $48.1(\mu \mathrm{H})$ is selected when the input voltage is low, 3.0 V .
Note that the calculation does not consider fluctuations in inductance. Toshiba recommend selection of an inductance of 1.2 times the calculated value.

The recommended inductance under the above conditions is $\mathrm{L}(\mu \mathrm{H})=48.1(\mu \mathrm{H}) \times 1.2 \geqq 57.7(\mu \mathrm{H})$.

Selection of R_sens

Resistance between pin K and GND R_sens (Ω) is used for setting output current I_{o}. The mean output current I_{o} can be set according to the resistance.

The mean current $\mathrm{I}_{0}(\mathrm{~mA})$ to be set is roughly calculated as follows:

$$
\mathrm{I}_{0}(\mathrm{~mA})=36(\mathrm{mV}) \div \text { R_sens }(\Omega)
$$

For example, when R_sens $=1.8(\Omega), I_{o}=20(\mathrm{~mA})$.
Take a current error of $\pm 10 \%$ (not including R_sens error) into consideration.
The IC has a minimum output $\mathrm{P}_{\mathrm{o}}=320(\mathrm{~mA}$, choke coil $=47 \mu \mathrm{H})$.
At that time, if the product of mean current I_{0} and output voltage V_{0} exceeds $\mathrm{P}_{\mathrm{o}}=320(\mathrm{~mW})$, mean current I_{0} may become less than the desired value.

If the IC is not connected to the output-side capacitor (for smoothing), the set current I_{0} can be obtained.
At that time, because the current flowing to the LED is a pulse current with a maximum peak value of 270 mA , make sure that surge current IFP (mA) does not flow to the LED.

Toshiba recommend use of components with low reactance (parasitic inductance) and minimized PCB wiring.
Toshiba also recommend allocating components in the application circuit diagram as near each other as possible.

Resistance for setting current R_sens (Ω)
Figure 4

Output Derating Function

Toshiba recommend derating the LED current depending on the increase in ambient temperature.
The TB62731FUG is designed to ensure safe and efficient driving of white LEDs used as backlight sources for color LCDs. The IC incorporates a function that derates current according to the set temperature (the ambient temperature when the IC is mounted), Ta.

The IC features an output current that varies according to the internally-detected temperature T_{js} as follows: when $\mathrm{T}_{j \mathrm{~s}}=45\left({ }^{\circ} \mathrm{C}\right)$, output current is 100%; when $\mathrm{T}_{j \mathrm{~s}}=100\left({ }^{\circ} \mathrm{C}\right)$, output current is 0%.

The derating start temperature $\mathrm{T}_{\mathrm{S}}\left({ }^{\circ} \mathrm{C}\right)$ is determined based on Ta ($\mathrm{Ta}=\mathrm{Ts}$ when the IC is not operating) by subtracting the self-generated temperature $\mathrm{T}_{\mathrm{up}}\left({ }^{\circ} \mathrm{C}\right)$ from $\mathrm{T}_{\mathrm{js}}=45\left({ }^{\circ} \mathrm{C}\right)$.
$\mathrm{T}_{\mathrm{S}}\left({ }^{\circ} \mathrm{C}\right)=45\left({ }^{\circ} \mathrm{C}\right)-\mathrm{T}_{\mathrm{up}}\left({ }^{\circ} \mathrm{C}\right) \ldots$ formula 4
The derating characteristic is as shown in the graph below, Figure 5, which shows the relation between output current change ratio and internally-detected temperature (IC temperature) T_{js}.

The self-generated temperature $\mathrm{T}_{\mathrm{up}}\left({ }^{\circ} \mathrm{C}\right)$ is calculated as follows:
$\mathrm{T}_{\text {up }}\left({ }^{\circ} \mathrm{C}\right)=(\mathrm{P}$ loss $(\mathrm{W})-\mathrm{P}$ parts $\left.(\mathrm{W})) \times \theta_{\mathrm{ja}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\right) \ldots$ formula 5
P loss: power loss
P parts: power loss of parts
θ_{ja} : package saturation thermal resistance (Ω)
The parameters are described below:
DC resistance of inductor: $\operatorname{RDC}(\Omega)$
LED forward current: If LED (A)
LED forward voltage: Vf LED (V)
Schottky diode forward voltage: Vf schottky (V)
Setting resistance: R_sens

```
P loss (W)\simeq Po (W) \div (%) - Po (W)
P
\eta: power efficiency
P parts (W) \simeq RDC }\times\mathrm{ IIN + Vf schottky }\times\mathrm{ If LED + R_sens }\times\mathrm{ If LED }\times\mathrm{ If LED
0ja ( }\mp@subsup{}{}{\circ}\textrm{C}/\textrm{W})\leq260(*) (%/W
max when IC mounted on PCB
```

$\mathrm{P}_{\mathrm{o}}(\mathrm{W})=\mathrm{V}_{\mathrm{o}}(\mathrm{V}) \times \mathrm{I}_{\mathrm{o}}(\mathrm{A})$
V_{o} : Vf LED output voltage
I_{o} : mean output current $=$ set current
$\mathrm{P}_{\mathrm{i}}(\mathrm{W})=\mathrm{V}_{\text {IN }}(\mathrm{V}) \times \mathrm{I}_{\text {IN }}(\mathrm{A})$
P_{i} : input power
VIN: input voltage
IIN: mean input current

$$
\eta(\%)=100 \times \mathrm{P}_{\mathrm{o}}(\mathrm{~W}) \div \mathrm{P}_{\mathrm{i}}(\mathrm{~W})
$$

Example of calculation: Where the measurement result for any lighting circuit shows the following values: $R D C=0.5(\Omega), \mathrm{P}_{\mathrm{o}}=320(\mathrm{~mW}), \mathrm{IIN}=0.1(\mathrm{~mA}), \mathrm{I}_{0}=20(\mathrm{~mA}), \mathrm{R}_{-}$sens $=1.8(\Omega)$, Vf schottky $=0.3(\mathrm{~V})$, and $\eta=70$ (\%)

The self-generated temperature $\mathrm{T}_{\text {up }}\left({ }^{\circ} \mathrm{C}\right)$ is calculated as follows:

$$
\mathrm{T}_{\text {up }}\left({ }^{\circ} \mathrm{C}\right)=((0.32-(0.32 \times 0.7))-(0.5 \times 0.1+0.3 \times 0.02+1.8 \times 0.02 \times 0.02)) \times 260=10.2\left({ }^{\circ} \mathrm{C}\right)
$$

Thus, the derating start temperature $\mathrm{T}_{\mathrm{S}}\left({ }^{\circ} \mathrm{C}\right)$ is calculated as follows:

$$
\mathrm{T}_{\mathrm{S}}\left({ }^{\circ} \mathrm{C}\right)=45\left({ }^{\circ} \mathrm{C}\right)-10.4\left({ }^{\circ} \mathrm{C}\right)=34.8\left({ }^{\circ} \mathrm{C}\right)
$$

As a result, I_{o} is controlled in the recommended current range as shown in Figure 5.
Since saturation thermal resistance $\theta_{\mathrm{ja}}=260\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ is the maximum value, $\theta_{\mathrm{ja}}=210 \sim 260\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ is used as a mounting condition.

Depending on the IC characteristics, peripherals, and use environment, the derating start temperature fluctuates among ICs.

Figure 5 Derating Function of Set Current

Application Circuit Example 1 (characteristic using recommended coil as reference)

Though it is necessary to consider the DC resistance of L1, an inductance of 33 to 47 (typ.) to $68 \mu \mathrm{H}$ is suitable for turning on four LEDs.

L1: Toko A914BYW-470M
S-Di: Toshiba 1SS404 20 V/1A
LED: Nichia NSCW215T
R_sens: Rohm MCR03-1R8

L1: Toko A914BYW-470M
S-Di: Toshiba 1SS404 20 V/1A
LED: Nichia NSCW215T
R_sens: Rohm MCR03-1R8

Application Circuit Example 2

(characteristic using flat coil for handy terminal as reference)

Flat coils suitable for handy terminals have a large DC resistance; thus, the power efficiency drops slightly, to about 70%.

L1: TDK LDR344812T-390
S-Di: Toshiba 1SS404 20 V/1A
LED: Nichia NSCW215T
R_sens: Susumu RL0510S-1R8

L1: Toko A914BYW-270M
S-Di: Toshiba 1SS404 20 V/1A
LED: Nichia NSCW215T
R_sens: Susumu RL0510S-1R8

L1: Toko A914BYW-4R7 S-Di: Toshiba 1SS404 20 V/1A LED: Nichia NSCW215T R_sens: -

L1: Sumitomo Special Metals CXLD (CXAD) 120-150 S-Di: Toshiba 1SS404 20 V/1A
LED: Nichia NSCW215T
R_sens:-

Package Dimensions

SSOP6-P-0.95B
Unit: mm

Weight: 0.016 g (typ.)

About solderability, following conditions were confirmed

- Solderability
(1) Use of Sn-63Pb solder Bath
- solder bath temperature $=230^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux
(2) Use of $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder Bath
- solder bath temperature $=245^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

