TB62725 P / F / F N

TB62725 series is the constant current driver designed for LED and the LED display. Output current value is set with one resistor with the outside.
Then, all the output becomes the about same current. This driver builds in the constant current output of eight bits, the shift register of eight bits, the latch of eight bits and gate circuit.
This driver is designed by using the $\mathrm{BI}-\mathrm{CMOS}$ process.
FEATURE
*Output Current Capability and the number of the output : 90mA X 8 outputs
*Constant Current Range : 5 to 90 mA
*Application Output Voltage :
0.7 V (output current 40 to 80 mA)
0.4 V (output current 5 to 40 mA)
*For Annode Common LED
*Input Signal Voltage Level : 3.3V CMOS Level (Shmitt Triggered Input)
*Power Supply Voltage Range VDD=3.0 to 3.6V
*Muximum output terminal voltage 17V
*Serial and Pararell Data Transfer Rate :
20MHz (max, Cascade Connection)
*Operation Temperature Range :
Topr= -40 to 85 degrees
*Package :
Type P : DIP16-P-300-2.56A
Type F : SSOP16-P-225-1.00
Type FN : SSOP16-P-225-0.65
*Package and Pin Layout: Same as the TB62705 series.
*Constant Current Error bitween bits (All Output On)

Output Voltage	Current Error between bits	Current Error between ICs	Output Current
$>=0.4 \mathrm{~V}$	$+/-6 \%$	$+/-15 \%$	2 to 40 mA
$>=0.7 \mathrm{~V}$			2 to 90 mA

Pin layout (TOP VIEW)

For part availability and ordering information please call Toll Free: 800.984.5337
Website: www.marktechopto.com | Email: info@marktechopto.com

TRUTH TABLE

CLOCK	/LATCH	/ENABLE	SERIAL-IN	OUT0 --- OUT5 --- OUT7	SERIAL-OUT
UP	H	L	Dn	Dn --- Dn-5 --- Dn-7	$\mathrm{Dn}-7$
UP	L	L	$\mathrm{Dn}+1$	No Change	$\mathrm{Dn}-6$
UP	H	L	$\mathrm{Dn}+2$	$\mathrm{Dn}+2--\mathrm{Dn}-3--\mathrm{Dn}-5$	$\mathrm{Dn}-5$
DOWN	X	L	$\mathrm{Dn}+3$	Dn+2 --- Dn-3 --- Dn-5	$\mathrm{Dn}-5$
DOWN	X	H	$\mathrm{Dn}+3$	Off	$\mathrm{Dn}-5$

Note) "OUT0 to $7=$ On" in case of Dn= "H" Level and "OUT0 to $7=$ Off" in case of Dn= "L" Level.
A resistor is connected with R-EXT and GND accompanied with outside, and it is necessary that a correct power supply voltage is supplied.

TIMING DIAGRAM

Note) Latches are level sensitive, not rising edge sensitive and not syncronus CLOCK. Input of LATCH-terminal to "H" level, data passes latches and input to "L" level, data hold latches. Input of ENABLE-terminal to "H" level, all output (OUT0 to 7) off.

TERMINAL DISCRIPTION

PIN No.	PIN NAME	FUNCTION
1	GND	GND terminal for control logic.
2	SERIAL-IN	Input terminal of a serial-data for shift-register
3	CLOCK	Input terminal of a clock for data shift to up-edge.
4	/LATCH	Input terminal of a data strobe. Latches passes data with "H" level input of LATCH-terminal, and hold data with "L" level input.
$5 \sim 12$	OUT0 to 7	Output terminals.
13	/ENABLE	Input terminal of output enable. All outputs (OUT0 to 7) do off with "H" level input of ENABLE-terminal, and do on with "L" level input.
14	SERIAL-OUT	Output terminal of a serial-data for next SERIAL-IN terminal.
15	R-EXT	Input terminal of connects with a resister for to set up all output current.
16	VDD	5V Supply voltage terminal

EQUIVALENT CIRCUIT OF INPUTS AND OUTPUTS

1. /ENABLE Terminal

2. CLOCK,SERIAL-IN Terminal

3. OUTO to 7 Terminal

4. SERIAL-OUT Terminal

MAXIMUM RATINGS ($\mathrm{Ta}=25 \mathrm{deg} \mathrm{C})$

CHARACTERISTICS	SYMBOL	RATING	UNIT
Supply Voltage	VDD	0 to 7	V
Input Voltage	VIN	-0.2 to VDD+0.2	
Output Current	IOUT	+90	mA/ch
Output Voltage	VOUT	-0.5 to 17	V
Power Dissipation	Pd1	Type P : 1.47(Free Air)	W
	Pd2	Type F and FN : 0.37 (Free Air), 0.78 (On PCB)	
Thrmal Resistance	Rth(j-a)1	Type P : 85(Free Air)	degC/W
	Rth(j-a)2	Type F and FN : 330 (Free Air), 160 (On PCB)	
Oparating Temperature	Topr	-40 to 85	degC
Storage Temperature	Tstg	-55 to 150	

Note) Type P : Ambient temperature delated above 25 degC in the proportion of $11.76 \mathrm{~mW} / \mathrm{degC}$.
Type F and $F N$: Ambient temperature delated above 25 degC in the proportion of $7.69 \mathrm{~mW} / \mathrm{degC}$.
Condition) On PCB at $50 \times 50 \times 1.6 \mathrm{~mm} \mathrm{Cu}<=40 \%$ (Glass Epoxy PCB)

RECOMMENDED OPERATING CONDITION (Ta=-40 to 85degC unless otherwise noted)

CHARACTERISTICS	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage	VDD		3	3.3	3.6	V
Output Voltage	VOUT			0.7	4	V
Output Current	IOUT	Each DC 1 Circuit	2		70	$\mathrm{mA} / \mathrm{ch}$
	IOH	SERIAL-OUT			-1	mA
	IOL				1	
Input Voltage	VIH		0.7VDD		$\begin{gathered} \text { VDD } \\ +0.15 \end{gathered}$	V
	VIL		-0.15		0.3VDD	
Clock Frequency	fCLK	Cascade Connected			20	MHz
/LATCH Pulse Width	tw /LATCH		50			ns
CLOCK Pulse Width	tw CLOCK				25	
/ENABLE Pulse Width	tw /ENABLE	Upper IOUT = 20 mA	2000			
		Lower IOUT $=20 \mathrm{~mA}$	4500			
Setup Time for CLOCK Terminal	tsetup1		10			
Hold Time for CLOCK Terminal	thold		5			
Setup Time for /LATCH Terminal	tsetup2		50			

ELECTRICAL CHARACTERISTICS (VDD=3.3V, Ta=25degC unless otherwise noted)

SWITCHING CHARACTERISTICS (Ta=25degC unless otherwise noted)

CHARACTERISTICS	SYBOL	TEST CONDITION	MIN TYP	MAX	UNIT
Propagation Delay Time	tpLH1	CLK - OUTn, /LATCH="H",/ENABLE="L"	140		ns
	tpLH2	/LATCH - OUTn, /ENABLE="L"	140		
	tpLH3	/ENABLE - OUTn, /LATCH="H"	140		
	tpLH	CLK - SERIAL OUT	5		
	tpHL1	CLK - OUTn, /LATCH="H",/ENABLE="L"	170		
	tpHL2	/LATCH - OUTn, /ENABLE="L"	170		
	tpHL3	/ENABLE - OUTn, /LATCH="H"	170		
	tpHL	CLK - SERIAL OUT	6		
Output Rise Time	t or	Voltage Waveform 10\% to 90\%	70		
Output Fall Time	t of	Voltage Waveform 90\% to 10\%	90		
Muximum CLOCK Rise Time	tr	Cascade connection isn't guarantee. (Note1)		5	us
Muximum CLOCK Fall Time	tf			5	

Condition : (Refer to test circuit.)
$\mathrm{Ta}=25 \mathrm{degC}, \mathrm{VDD}=\mathrm{VIH}=3.3 \mathrm{~V}$, VOUT=0.7V, VIL=0V, REXT=490ohms, VL=3.0V, RL=60ohms, CL=10.5pF
Note 1: When tf / tf of clock wave form is enlarged at the time as the cascade connection, the timing condition which is necessary for the data transfer may not be able to be secured. Give careful consideration to the timing condition.

TIMING WAVEFORM

2. CLOCK, SERIAL-IN , /LATCH, /ENABLE, OUTn

3. OUTn

OUTn

OUTPUT CURRNET vs Duty (LED Turn On Rate)

OUTPUT CURRNET vs Duty（LED Turn On Rate）
 ＊＊Comparison in VDD＝5V of TB62705 and TB6272

	$\begin{gathered} \text { TB62705 \& } 725 \text { DUTY(\%)-IOUT(mA) On PCB } \\ \text { Topr=55degC } \\ \text { VDD=5.0V, Vce }=1.0(\mathrm{~V}), \mathrm{Tj}=120(\mathrm{degC} \text { max }) \end{gathered}$									
100	0									
90	0 匈	幽 4	幽	－	－	里	4	－	－	－
80	0							－		
70	0									
									\pm	，
を 60	0									
$\stackrel{50}{5}$	0									
40	0									
30	0									
20	0 ＊	TB62	2725F	F／FN						
	－-	TB62	2725P							
	$0-+$	TB62	2705 C	CF／CFN						
		TB62	$2705 \mathrm{C}$	CP						
	$0 \square$									
	0	2	20	40	40		0		80	100
	DUTY－Turn On Rate（\％）									

OUTPUT CURRNET vs REXT RESISTOR

IOUT[mA]=(1.14/REXT[ohms])*16 -- Theory formula

APPLICATION NOTES(1 of 2)

This device owns only one ground pin that means signal ground pin and power ground pin are common.
If ground pattern layout contains large inductance and impedance, and the voltage between ground and LATCH, CLOCK terminals exceeds $0.5^{\star} V$ dd by switching noise in operation, this device may miss-operate.
So we would lile you to pay attention to pattern layout to minimize inductance.

APPLICATION NOTES(2 of 2)

TB62725P/F/FN application circuit (the case of VLED>17(V))
Example:
An unnecessary voltage in the case of VLED>17(V) makes a voltage descend by the Zener diode.

Weight: 1.11g (Typ.)

Weight: 0.14g (Typ.)

The information contained herein is subject to change without notice.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patens or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within spacified operating ranges as set forth in the most recent products spacifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in the document may include products subject to foreign exchange and foreign trade control laws.

(C) 2000 TOSHIBA CORPORATION ALL RIGHT Reserved

